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Planning and Optimal Control

Syllabus

A. Models for Sequential Data
Tue. 22.10. (1) 1. Markov Models
Tue. 29.10. (2) 2. Hidden Markov Models
Tue. 5.11. (3) 3. State Space Models
Tue. 12.11. (4) 3b. (ctd.)

B. Models for Sequential Decisions
Tue. 19.11. (5) 1. Markov Decision Processes
Tue. 26.11. (6) 1b. (ctd.)
Tue. 3.12. (7) 1c. (ctd.)
Tue. 10.12. (8) 2. Monte Carlo and Temporal Difference Methods
Tue. 17.12. (9) 3. Q Learning
Tue. 24.12. — — Christmas Break —
Tue. 7.1. (10) 4. Policy Gradient Methods
Tue. 14.1. (11) 5. Cooperative Reinforcement Learning
Tue. 21.1. (12) 6. Learning to Optimize
Tue. 28.1. (13) 7. Reinforcement Learning for Games
Tue. 4.2. (14) Q&A
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Planning and Optimal Control 1. Discrete Optimization

What is Discrete Optimization?

I Compared to continuous optimization, some or all relevant variables
are restricted to be discrete variables x ∈ D, where D is a set of
discrete values.

I Mostly involved with solving Combinatorial Optimization Problems
(COP) with the help of e.g. Integer Programming or Constraint
Programming.
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Planning and Optimal Control 1. Discrete Optimization

Common Combinatorial Optimization Problems

I There are a lot of different COPs that are relevant in research and
industry.

I Some examples are:
I Convex Hull

I Knapsack

I Graph Problems (Max-Cut, Minimum Vertex Cover, etc.)

I Routing Problems (TSP, VRP, etc.)

I many more ...
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Planning and Optimal Control 1. Discrete Optimization

The Knapsack Problem

I Given a set of items with different attributes (e.g. weight and value)
find the subset that maximizes an objective involving one or more
attributes substitute to some constraints w.r.t. other attributes.

I A simple example is maximizing the value with a constraint on the
total weight of the selected items.

Image source: CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=985491
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Planning and Optimal Control 1. Discrete Optimization

The Traveling Salesman Problem (TSP)

I Given a set N of cities and the dis-
tances between each pair of cities,
what is the shortest possible route
that visits each city and returns to
the origin?

I First formulated in 1930, it is one of
the most intensively studied prob-
lems in optimization and therefore
used as a benchmark for many op-
timization methods.
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Planning and Optimal Control 1. Discrete Optimization

Vehicle Routing Problems (VRP)

I Generalization of the TSP for more
than one vehicle.

I In standard formulation 1 depot and
all vehicles have the same capacity.

I Lots of extensions of the VRP to
describe more complex problem set-
tings, e.g.
I Time Windows (TW),

I Pickup and Delivery (PD),

I Heterogeneous Fleet,

I etc.
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Planning and Optimal Control 1. Discrete Optimization

Challenges

I In general COPs are NP-hard.
I Cannot be solved in polynomial time but only verified.

I Especially real world routing problems come with many different hard
and soft constraints.
I Just finding a feasible solution is already very hard.
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Planning and Optimal Control 2. MDP Formulation

How can we solve COPs with ML/RL?

I Learn solution strategies from data/experience!

I Formulate the solution of a COP as MDP.

I For most COPs there exist to ways of formulating them as MDP:

1. Direct sequential construction of a solution one item at a time,
2. Consecutive improvement of an existing feasible solution.
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Planning and Optimal Control 2. MDP Formulation

Direct sequential construction

The first option we have is to solve the COP by directly constructing a
high quality solution:

I We formulate the solution of the COP as a sequence of actions
at = n ∈ N where N ≡ D is the set of the discrete decision variable,
which we will denote as set of actions A,

I States st ∈ S which we assume to sufficiently describe the state of
the problem and the current solution at time step t,

I The transition matrix P in general is deterministic for most problems,

I The reward r can be given as the additional cost per decision or as
quality metric on the final solution,

I Leading to the MDP formulation as (S, A, T, P, r)1.
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Planning and Optimal Control 2. MDP Formulation

Improvement of an existing solution

The second option assumes that we have a first feasible but not optimal
solution to the COP and is concerned with finding a better solution:

I We formulate the consecutive improvement of a COP solution as a
sequence of actions at ∈ A where A is a set of problem dependent
improvement operators (heuristics),

I States st ∈ S which we assume to sufficiently describe the state of
the problem and the current solution at time step t,

I The transition matrix P in general is deterministic for most problems,

I The reward r is given as the improvement over the current best
solution,

I Leading to the MDP formulation as (S, A, T, P, r)2.
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Planning and Optimal Control 3. Approaches for Direct Construction

How can we embed the problem state?

I Finding a good representation and embedding for the states is of high
importance, since we assume that states
”...sufficiently describe the state of the problem and the current
solution...”

I Example of problem components in a TSP:
I n = |N| cities each with two coordinates (x, y),

I current partial solution πt = {a1, a2, ..., at},
I origin city n0.
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Planning and Optimal Control 3. Approaches for Direct Construction

Pointer Networks

I One of the first attempts to directly
solve COPs by Vinyals et al. 2015,

I Employs a sequence-to-sequence
encoder-decoder RNN model,

I Uses special pointer attention
masks,

I Original model is trained in a
supervised fashion, however later
extended to RL training by
Bello et al. 2016.

Image source: Vinyals et al. 2015
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Planning and Optimal Control 3. Approaches for Direct Construction

Pointer Networks (ctd.)

Given an input sequence X , the Pointer Network computes the conditional
probability p(π | X ; θ) via the probability chain rule:

p(π | X ; θ) =
n∏

t=1

p(πt | X , π1:t−1; θ) (1)

where X = {x1, ..., xn} is a sequence of n vectors (e.g. cities in the TSP)
and π = {π1, ..., πT} is a sequence of indices indexing the elements of X .

The supervised objective is to maximize the conditional probability on a
provided training set:

θ∗ = arg max
θ

∑
X , π(train)

log p(π(train) | X ; θ) (2)
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Planning and Optimal Control 3. Approaches for Direct Construction

Pointer Attention

Let (e1, ..., en) be the encoder and (d1, ..., dt) the decoder hidden states.
Then the standard attention mask at time step t is computed according to:

u
(t)
i = ωT tanh(W1ei + W2dt) i ∈ (1, ..., n) (3)

a
(t)
i = softmax(u

(t)
i ) i ∈ (1, ..., n) (4)

d ′t =
n∑

i=1

a
(t)
i ei (5)

For the pointer attention the mask is instead defined as:

p(πt | X , π1:t−1) = softmax(u(t)) (6)

where the softmax normalizes the vector u(t) (of length n) to be an output
distribution over the set of inputs.
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Planning and Optimal Control 3. Approaches for Direct Construction

Why would we like to use RL instead of
purely supervised training?

I The performance of the model is tied to the quality of the
supervised labels,

I Getting high-quality labeled data is expensive and may be infeasible
for new problem statements,

I We care more about finding a competitive solution than replicating
the results of another algorithm.
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Planning and Optimal Control 3. Approaches for Direct Construction

Learning Pointer Networks via Policy Gradient

I Extension proposed by Bello et al. 2016

I Employ an Advantage Actor Critic algorithm (A3C, Mnih et al. 2016)

We define the new objective as the expected quality of the solution, given
input X :

J(θ | X ) = Eπ∼p( . |X ; θ) [L(π | X )] (7)

Then the policy gradient is defined as (REINFORCE):

∇θJ(θ | X ) = Eπ∼p( . |X ; θ) [(L(π | X )− b(X ))∇θ log p(π | X ; θ)] (8)
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Planning and Optimal Control 3. Approaches for Direct Construction

Transformer Networks

I First proposed by Vaswani et al. 2017 for machine translation,

I Adapted by Kool et al. 2019 to solve routing problems.

I Similar to the RL Pointer Network defines a stochastic policy
p(π | X ; θ) based on a Self-Attention Encoder-Decoder model
(transformer),

I and computes a solution π in the same way as in Eq.1:

p(π | X ; θ) =
n∏

t=1

p(πt | X , π1:t−1; θ)
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Planning and Optimal Control 3. Approaches for Direct Construction

The transformer architecture of Vaswani et al. 2017.
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Planning and Optimal Control 3. Approaches for Direct Construction

Self-Attention Encoder (1/5)

Simple Scaled Dot-Product Attention is defined as:

uij =
(Wxi )

TWxj√
demb

(9)

where the input is node features xi and xj .

Self-Attention first embeds the node features via a linear projection:

x̃i = Winitxi (10)

Then produces a query, key and value embedding by additional
projections:

qi = WQ x̃i , κi = Wκx̃i , vi = WV x̃i . (11)
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Planning and Optimal Control 3. Approaches for Direct Construction

Self-Attention Encoder (2/5)

Then the respective utilities are calculated according to:

uij =

{
qTi κj√
dκ

if j ∈ Hi

−∞ else
(12)

where −∞ prevents message passing between non-adjacent nodes which
do not lie in the neighborhood Hi of node i .

In the next step the attention weights aij are computed with a softmax:

aij = softmaxj(uij) =
exp(uij)∑

q∈Hi
exp(uiq)

(13)
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Planning and Optimal Control 3. Approaches for Direct Construction

Self-Attention Encoder (3/5)

Finally there are two ways to compute the new feature representation x ′i :

1. Single-head attention:

x ′i =
∑
j

aijvj (14)

2. Multi-head attention (MHA):
calculates Eq.14 M times with different parameters and reduced

dimensions dκ = dv = dinit
M . The resulting M vectors x

′(m)
i ,

m ∈ 1, ...,M are then concatenated and projected back:

MHAi = [x
′(1)
i : ... : x

′(m)
i ]WM (15)
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Planning and Optimal Control 3. Approaches for Direct Construction

Self-Attention Encoder (4/5)

Figure: The single and multi-head attention layers of Vaswani et al. 2017.
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Planning and Optimal Control 3. Approaches for Direct Construction

Self-Attention Encoder (5/5)

Figure: The Encoder forward of Kool et al. 2019.
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Planning and Optimal Control 3. Approaches for Direct Construction

Qualitative Advantages of the Self-Attention Encoder

Compared to an RNN Encoder as used in the Pointer Net the
Self-Attention Encoder...

I is able to model dependencies between nodes or specific node
features,

I embedding can be pre-computed also for complex problems and the
encoder doesn’t need to be run for each time step t,

I enforces no order on the input but is permutation equivariant
(node-embedding) or invariant (graph-embedding).
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Planning and Optimal Control 3. Approaches for Direct Construction

Self-Attention Decoder (1/2)

I The decoder has a similar structure as the encoder. However the
query is computed over the context vector h(c).

I The context is the concatenation of the graph embedding, the last
node in the current tour and the origin (TSP) or capacity (VRP).

I We again do a linear projection q(c) = WCh(c) and calculate the
utilities (compatibility) according to:

u(c)j =


qT

(c)
κj√
dκ

if is feasible(j , k)

−∞ else
(16)

by which we can enforce the hard problem constraints at time step t.

I Followed by softmax normalization and MHA as in Eq. 13 and 15.
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Planning and Optimal Control 3. Approaches for Direct Construction

Self-Attention Decoder (2/2)

Figure: The Decoder forward of Kool et al. 2019.
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Planning and Optimal Control 3. Approaches for Direct Construction

Model Comparison

Figure: Comparison of Pointer Net (PN) and Self-Attention Model (AM) on TSP
with different policy gradient baselines in Kool et al. 2019. They compare
exponential moving average, a learned critic and the cost of a solution from a
deterministic greedy rollout of the best policy so far.
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Planning and Optimal Control 3. Approaches for Direct Construction

Inference Strategies

The optimality of solutions produced by direct construction is not
guaranteed. Therefore several advanced inference strategies can be used:

I Sampling:
Simply sample multiple candidate solutions and select the best one,

I Active Search:
Refine the parameters of the stochastic policy pθ during inference to
minimize Eπ∼p( . |X ; θ) [L(π | X )] on a single test input X ,

I Heuristic Post-Optimization:
Apply additional improvement heuristics to the solution (e.g. 2-opt),

I Monte-Carlo Tree Search (MCTS):
Apply MCTS together with heuristic transformations
(more on MCTS in next lecture).
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Planning and Optimal Control 4. Approaches for Consecutive Improvement

Iterative Improvement with RL Controller
I Method proposed by Lu et al. 2019,

I Implements an iterative method that selects an improvement operator
(heuristic) and applies it to the existing solution,

I If there is no improvement achieved for several iterations, the solution
is perturbed (→ rule based controller!).

Figure: The proposed framework of Lu et al. 2019.
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Planning and Optimal Control 4. Approaches for Consecutive Improvement

Implementation Details

I Uses a Self-Attention Encoder (like the
transformer encoder) to embed the problem
state,

I The Decoder is represented by a 2-layer FC
network,

I The input to the model at each time step
consists of the embedding of the problem and
the current solution (tour plan) and a running
history of past actions and their effects,

I While the policy network controlling the
improvement operators is learned, the
perturbations are done in a random fashion.

Image: Policy network of Lu et al. 2019
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Planning and Optimal Control 4. Approaches for Consecutive Improvement

Model Comparison

Method N=20 N=50 N=100
Obj. Time Obj. Time Obj. Time

Google OR Tools 6.43 - 11.31 - 17.16 -
AM (greedy) 6.40 1s 10.98 3s 16.80 8s
AM (sampling) 6.25 6m 10.62 28m 16.23 2h
Local Rewrite 6.16 - 10.51 - 16.10 -
LKH 6.14 2h 10.38 7h 15.65 13h
Iterative Improvement 6.12 12m 10.35 17m 15.57 24m

Table: Experiment results on CVRP from Table: 1 in Lu et al. 2019

Where:
AM: [Kool et al. 2019],
Local Rewrite: [Chen and Tian 2019],
LKH: [Helsgaun]
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