

Big Data Seminar

Lucas Drumond, Josif Grabocka

Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science
University of Hildesheim, Germany

October 22, 2014

SciNers it is

What is Big Data?

900

Some definitions:

"A collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications."

http://en.wikipedia.org/wiki/Big_data

Some definitions:

- ► "A collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications." http://en.wikipedia.org/wiki/Big_data
- "Big data is high-volume, high-velocity and high-variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making." www.gartner.com/it-glossary/big-data/

Big Data is about:

► Storing and accessing large amounts of (unstructured) data

Big Data is about:

- ► Storing and accessing large amounts of (unstructured) data
- ► Processing high volume data streams

Big Data is about:

- ► Storing and accessing large amounts of (unstructured) data
- ► Processing high volume data streams
- Making sense of the data

Big Data is about:

- ► Storing and accessing large amounts of (unstructured) data
- ► Processing high volume data streams
- Making sense of the data
- Predictive technologies

- ▶ 1.28 billion users (1.23 billion monthly active in January 2014)
- ► Size of user data sored by Facebook: 300 Petabytes
- ► Average amount of data that Facebook takes in daily: 600 terabytes
- ► Size of Facebook's Graph Search database: 700 Terabytes

- ► 3.3 billion searches per day (on average)¹
- ➤ 30 trillion unique URLs identified on the Web¹
- ▶ 20 billion sites crawled a day¹
- ► In 2008 Google processed more than 20 Petabytes of data per day²

¹http://searchengineland.com/google-search-press-129925 ²Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM 51, 1 (January 2008), 107-113.

《ロト《伊ト《恵》 및 사오오 Lucas Drumond, Josif Grabocka, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

- ► Average number of tweets per day: 58 million¹
- ► Number of Twitter search engine queries every day: 2.1 billion¹
- ► Total number of active registered Twitter users: 645,750,000¹

1http://www.statisticbrain.com/twitter-statistics/

- Ensembl database contains the genome of humans and 50 other species
- ▶ "only" 250 GB¹

1http://www.ensembl.org/

- ► Large Hadron Collider has collected data from over 300 trillion proton-proton collisions
- ► Approx. 25 Petabytes per year

Overview

The rules of selecting a paper:

- 1: Students visit the course website and select a paper under the Section literature (deadline: 29.10).
- 2: The selected paper is notified to ldrumond@ismll.de and josif@ismll.de
 - ► Deadline: 29.10
 - First come, first served
 - Send three preferred papers to avoid allocation crashes
- 3: The instructors create a schedule for the talks and notify the students. The first talk is scheduled for 12.11.

Papers list: Part I

Author	Title	Year
Ahmed, N.K. et al.	Graph Sample and Hold: A Framework for Big-	2014
	graph Analytics	
Dean, T. et al.	Fast, Accurate Detection of 100,000 Object	2013
	Classes on a Single Machine	
Dong, X. et al.	Knowledge Vault: A Web-scale Approach to	2014
	Probabilistic Knowledge Fusion	
Gonzalez, J.E. et al.	PowerGraph: Distributed Graph-parallel Compu-	2012
	tation on Natural Graphs	
Han, WS. et al.	TurboGraph: A Fast Parallel Graph Engine Han-	2013
	dling Billion-scale Graphs in a Single PC	
Liu, C. et al.	Distributed Nonnegative Matrix Factorization	2010
	for Web-scale Dyadic Data Analysis on MapRe-	
	duce	

http://www.ismll.uni-hildesheim.de/lehre/semBI-14w/index_en.html

Lucas Drumond, Josif Grabocka, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany October 22, 2014

Papers list: Part II

Author	Title	Year
Ottaviano, G., Ven-	Partitioned Elias-Fano Indexes	2014
turini, R.		
Rakthanmanon, T.	Searching and Mining Trillions of Time Series	2012
et al.	Subsequences Under Dynamic Time Warping	
Recht, B. et al.	Hogwild: A Lock-Free Approach to Parallelizing	2011
	Stochastic Gradient Descent	
Yu, HF. et al.	Scalable Coordinate Descent Approaches to Par-	2012
	allel Matrix Factorization for Recommender Sys-	
	tems	

http://www.ismll.uni-hildesheim.de/lehre/semBI-14w/index_en.html

Lucas Drumond, Josif Grabocka, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany October 22, 2014

Regulations of the presentations:

- ► Depending on the number of students, there will be one or two seminar presentations per lecture schedule.
- ► Each seminar lasts for 50 minutes, including 10 minutes of questions and discussions.
- ► All the students should participate in the talks of others.

Advice on the presentation

- ► Understand and describe the underlying theoretic foundation of the methodologies (learning algorithms, equations)
- ► Describe the methods in your own formulation and avoid reading out the content of the paper
- Think analytically and describe the advantages and disadvantages of the paper
- ▶ If applicable, propose ideas and improvements in the end

Seminar Report

- ► Every presenter should prepare a report on the paper he presented.
- ► The report should include a description of the method, its strengths and weaknesses
- ► The overall tone of the report should be analytic of the work and not a repetition of the paper
- ► Additional ideas, experiments or illustrations will be rewarded

Structure of the Seminar Report

- ► Content should not exceed 30 pages
- ▶ Submission deadline, 2 weeks before the term break (28.01.2015).
- ► To be submitted (to Lucas Drumond C36Spl):
 - 3 printed and bound copies
 - ▶ 1 CD with the report, source code and all relevant materials

Any Questions?