

How to read a Paper

ISMLL

Mohsan Jameel

Mohsan Jameel, Informations Systems and Machine Learning Lab (ISMLL) Hildesheim, October 2017

Outline

How to read a paper

Common paper structure

Finding additional material

Mohsan Jameel, Informations Systems and Machine Learning Lab (ISMLL) Hildesheim, October 2017

How to read a paper

- Like novel or newspaper stories, scientific articles needs to be read differently.
- Since they are not books designed for students sometimes they are not self contained and requires some research to be fully understood.
- Understand a paper for a researcher means to be able to implement the described algorithm.

How to read a Paper How to read a paper

Seminar - Big Data Analytics

How to read a paper

- ► Skim
- ► Re-read
- ► Analyze
- Summarize

Skim

First get the "Big picture" by reading the title, abstract, and introduction carefully: this will tell you the major findings and why they matter.

- Quickly scan the article without taking notes: focus on headings and subheadings
- ► Note the publishing date and conference/journal
- Note terms and parts you don't understand.
 Only with the bigger picture you will understand how much it is necessary to investigate something.

Re-read

Read the article again, asking yourself questions such as:

- What problems is the study trying to solve?
- Are findings well supported by evidence?
- ► Is the study repeatable? (i.e. is the article self contained?)
- If you do not understand take some time to find a brief explanation of what you are not understanding (one-two sentences).
- ► Is the paper innovative?

Interpret

- Examine graphs and tables carefully
- ► Try to interpret data first before looking at captions
- When reading the discussion and results look after key issues and new findings
- Make sure you have distinguished the main points. If not go over the text again.

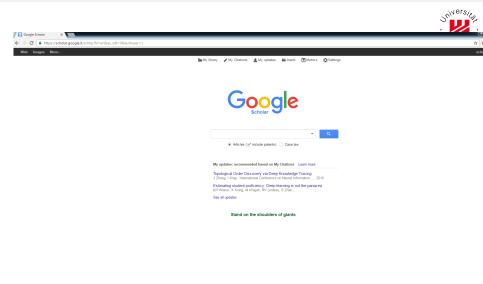
How to read a Paper How to read a paper

Seminar - Big Data Analytics

Summarize

- ► Take notes and underline key points: it improves reading
- ► Decide what part of the paper needs to be expanded and how much.

Common paper structure


- Abstract
- Introduction
- State of the art
- Algorithms explanation
- Experiments
- Conclusions and future work
- References

Let's take this paper as an example:

"Huang, S., Wang, S., Liu, T. Y., Ma, J., Chen, Z., and Veijalainen, J. (2015, August). Listwise Collaborative Filtering. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 343-352). ACM."

Go to: www.scholar.google.com/

About Google Scholar Privacy Terms Go to Ge

How to read a Paper Common paper structure

C ▲ https://scholar.google.it/scholar?hl=en&authuser=1&q=Listwise+Collaborative+Filtering&btnG=&as_sdt=1%2CS&as_sdtp=				
Web Images More				
Google	Listwise Collaborative Filtering			
Scholar	About 1,280 results (0.09 sec)			
<mark>Articles</mark> Case law My library	Listwise Collaborative Filtering <u>S Huang</u> , S Wang, TY Liu, J Ma, <u>Z Chen</u> Proceedings of the 38th, 2015 - dl.acm org Abstract Recently, ranking-oriented collaborative filtering (CF) algorithms have achieved great success in recommender systems. They obtained state-of-the-act performances by estimating a preference ranking of items for each user rather than estimating the absolute Cited by 2. Related articles and 16 versions. Cite Save More	[PDF] researchgate.net		
Any time Since 2016 Since 2015 Since 2012 Custom range	List-wise learning to rank with matrix factorization for collaborative filtering <u>Y Shi, M Larson</u> , <u>A Hanjalic</u> - Proceedings of the fourth ACM conference, 2010 - di acm org Abstract A ranking approach. ListRank-MF, is proposed for collaborative filtering that combines a list-wise learning-to-rank algorithm with matrix factorization (MF). A ranked list of items is obtained by nearing-to-rank algorithm with matrix factorization (MF). A ranked list of items is obtained by Related articles All 16 versions Cite Save More Cited by 99 Related articles All 16 versions Cite Save More	[PDF] tudelft.nl		
Sort by relevance Sort by date	Learning to rank: from pairwise approach to listwise approach Z Cao, <u>TQin, TY Liu, MF Isai, HL</u> - Proceedings of the 24th international, 2007 - dl.acm.org These include document retrieval, collaborative filtering, expet finding, anti web spam, sentiment analysis, and product metric between the corresponding to the yrobability distributions as the list -	[PDF] wustl.edu		
✓ include patents ✓ include citations	wise loss function when we use Cross En-tropy as metric, the listwise loss function Cited by 901 Related articles All 26 versions Cite Save More Probabilistic latent preference analysis for collaborative filtering	[PDF] cuhk.edu.hk		
❤ Create alert	Probabilistic detaining preference analysis to Contaborative interning NN Liu, N Jana, O Yang - Proceedings of the 18th ACM conference or, 2009 - diarm.org To recommend new items to a user, content-based filters match their representat-tions to those items the user has expressed interests on. In contrast, the collaborative filtering(C) approach does not require any content information about the items, it works by collecting ratings Cited by 78 Related articles All 5 versions C the Save More	(FOF) SUIK.900.1K		
	Effort estimation based on collaborative filtering <u>NOhsugi</u> , <u>MTsunda</u> , <u>A Monden</u> ,, Conference on Product, 2004 - Springer Their results showed that listwise deletion technique did not performed well when the level of missing data was more than 30 In this paper, we propose Collaborative Filtering (CF) based effort estimation method, under the assumption that the (historical) predictor data have a	[PDF] toyo.ac.jp		

Hildesheim, October 2017

Ν

Abstract

- Brief introduction to the topic
- Brief introduction to paper achievements
- Brief summary of the experiments

Introduction

- Introduction to the topic
- Introduction of the main concepts
- Introduction of the main state of the art methods
- ► State of the art limitations
- Hypotheses
- Contributions

The Importance of Hypotheses

- It is not enough to describe some new technique or system, some claim about it must be stated and evaluated
- In experimental research, hypotheses typically take one of these two forms:
 - ► Technique/system X automates task Y for the first time
 - ► Technique/system X automates task Y better, along some dimension, than each of its rivals
- In theoretical papers, the hypotheses are the statements of theorems and the supporting evidence is their proofs

The Importance of Hypotheses

Technique/system X automates task Y better, along some dimension, than each of its rivals, where the dimensions are typically:

- Behavior: X has a higher success rate or produces better quality outputs than Y
- ► Coverage: X is applicable to a wider range of examples then Y
- Efficiency: X is faster or uses less space then Y
- Dependability: X is more reliable, safe or secure than its rivals
- ► Maintainability: X is easier to adapt and extend than its rivals
- ► Usability: Users find X easier to use than its rivals

State of the art / Related work

- Is a broad and shallow account of the field, which helps to place the contribution of the paper in context
- What are the rival approaches?
- What are the drawbacks of each?
 - One sentence per method. Is it clear enough?
- ► How has the battle between different approaches progressed?
- What are the major outstanding problems?

Algorithm Explanation

- First the authors introduce the algorithm from which they derived the new algorithm
- ► Then, the new algorithm is explained
- ► Contains:
 - Formulas
 - Pseudo code

Algorithm 1: The ListCF Algorithm
Input: An item set I , a user set U , and a rating matrix $R \in \mathbb{R}^{M \times N}$. A set of rated items $I_u \subseteq I$ by
each user $u \in U$. The maximal number of
iterations maxIteration and error threshold ϵ .
Output: A ranking $\hat{\tau}_u$ of items for each user $u \in U$.
1 for $u \in U$ do
2 for $v \in U$ and $u \neq v$ do
3 $P_u, P_v \leftarrow \text{TopKProDist}(I_u, I_v, R)$ /* Eq.1 */
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 end
6 $N_u \leftarrow \text{SelectNeighbors}(\{sim(u, v)\}_{v \in U/u})$
7 end
8 for $u \in U$ do
9 t = 1
10 repeat
11 $\varepsilon = 0$
12 Initialize(φ_u^0)
13 for $g \in \mathcal{G}_{k}^{T_{u}}$ do
14 15 $\begin{vmatrix} \varphi_{u,g}^t \leftarrow \text{Update}(N_u, sim, R) \\ \varepsilon^t = \sqrt{\sum (\varphi_{u,g}^t - \varphi_{u,g}^{t-1})^2} \end{vmatrix}$ * Eq.8 */
15 $\varepsilon_{\pm} = \sqrt{\sum (\varphi_{u,g}^t - \varphi_{u,g}^{t-1})^2}$
16 end
17 $t \leftarrow t+1$
18 until $t > maxIteration \text{ or } \epsilon < \epsilon$;
19 for $t \in T_u$ do
20 $P(t) \leftarrow \text{Aggregation}(\{\varphi_{u,g}\}_{g \in \mathcal{G}_k^{T_u}})$
21 end
22 $\hat{\tau}_u \leftarrow \text{Ordering}(\{P(t)\}_{t \in T_u})$
23 end

Mohsan Jameel, Informations Systems and Machine Learning Lab (ISMLL) Hildesheim, October 2017

Experiments

Evaluation System

- ► What were the system specifications? cores, nodes, connectivity
- ► What was the technology used? MPI, Hadoop, HDFS, Spark, OpenMP

Dataset Explanation

- What are the available information?
- ► What are the available statistics? E.g. number of users, items, sparsity etc.

Evaluation protocol

- How is the error of the algorithm computed?
- Are there any other quantitative success measures?

Experiments

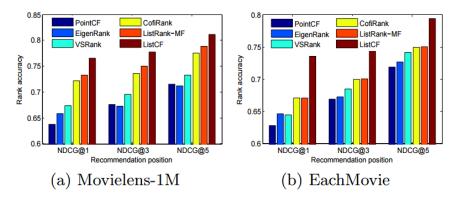

Are the results statistically significant?

Table 2: Statistics on the three datasets.

	Movielens-1M	EachMovie	Netflix
#users	6,040	$36,\!656$	429,584
#items	3,952	$1,\!623$	17,770
#ratings	1,000,209	$2,\!580,\!222$	99,884,940
#ratings/user	165.6	70.4	232.5
#ratings/item	253.1	1589.8	5621.0
sparsity	93.7%	95.7%	98.7%

How to read a Paper Common paper structure

Seminar - Big Data Analytics

Conclusions

- Repeats the contributions pointing out specifically how the paper addressed it
- Include future works

Finding additional material

- ► If you don't understand something...
- ► This is not a book, it happens...
 - Try to pose yourself a specific questions
 - Look online

Seminar - Big Data Analytics

Finding additional material

- A book explaining the algorithms
- A PhD thesis
- Tutorials
- Highly related state of the art papers

Web Images More			
Google	Listwise Collaborative Filtering		
Scholar	About 1,280 results (0.09 sec)		
Articles Case law My library	Listwise Collaborative Filtering <u>S Hung</u> , SWang, TY Lu, J Ma, <u>Z Chen</u> , - Proceedings of the 38th, 2015 - dl.acm org <u>Abstract Re</u> cently, ranking-oriented collaborative filtering (CF) algorithms have achieved great success in recommender systems. They obtained state-of-the-art performances by estimating a preference ranking of items for each user rather than estimating the absolute Cited by 2. Related ancites All 6 versions C cite Save More	[PDF] researchgate.net	
Any time Since 2016 Since 2015 Since 2012 Custom range	List-wise learning to rank with matrix factorization for collaborative filtering <u>Y Shi</u> , <u>M Larson</u> , <u>A Langinic</u> Proceedings of the fourth ACM conference, 2010 - di.acm.org Abstract A ranking approach, ListRank-MF, is proposed for collaborative filtering that combines a list-wise learning-to-rank algorithm with matrix factorization (MF). A ranked list of terms is obtained by minimizing a loss function that represents the uncertainty between Cited by 99 Related articles all 16 versions Cite. Save More	[PDF] tudeift.nl	
Sort by relevance Sort by date	Learning to rank: from painwise approach to listwise approach Z cao, <u>Toin, TY Liu, ME Taai, H.L.</u> Proceedings of the 24th international, 2007 - di.acm.org These include document retrieval, collaborative filtering , expert finding, and web spam, sentiment analysis, and product metric between the corresponding top k probability distributions as the list -	[PDF] wustl.edu	
✓ include patents ✓ include citations	wise loss function when we use Cross En- tropy as metric, the listwise loss function Cited by 901 Related articles All 26 versions Cite Save More		
Create alert	Probabilistic latent preference analysis for collaborative filtering <u>NN Lu</u> , <u>M</u> Zhao, <u>Q</u> Yang. Proceedings of the 18th ACM conference on, 2009 - di.acm.org To recommend new items to a user, content-based filters match their representat-ions to those items the user has expressed interests on. In contrast, the collaborative filtering (CF) approach does not require any content information about the items, it works by collecting ratings Cited by 78 Related articles All 5 versions Cite Save More	[PDF] cuhk.edu.hk	
	Effort estimation based on collaborative filtering <u>N Ohsugi</u> . <u>M Tsunoda</u> . <u>A Monden</u> — Conference on Product, 2004 - Springer Their results showed that listwise deletion technique did not performed well when the level of missing data was more than 30 In this paper, we propose Collaborative Filtering (CF) based effort estimation method, under the assumption that the (historical) predictor data have a	[PDF] toyo.ac.jp	

25 / 30

2
MAN I

Sheng-Lung Huang National Taiwan University Biomedical imaging, fiber, laser, crystal Verified email at ntu.edu.tw

Title 1–20	Cited by	Year
Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams J Cao, E Ertein, V Srinivasan, WFan, S Huang, H Zheng, JWL Yim, Nature nanotechnology 4 (11), 732-737	266	2009
Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fbroblasts. P Savatier, S Huang, L Szekely, KG Wiman, J Samanut Oncogene 9 (3), 809-818	248	1994
Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves B Yan, O Dai, X Liu, S Huang, Z Wang Plant and voil 79(7) 261-268	227	1996

🖾 Follow 👻

Google Scholar

	Q,
Get my own profile	

Citation indices	All	Since 2011
Citations	15313	10955
h-index	49	39
i10-index	408	298

← → C https://scholar.google.it/scholar?hl=en&authuser=1&q=Listwise+Collaborative+Filtering&btnG=&kas_sdt=1%2C5&kas_sdtp=				
Web Images More				
Google	Listwise Collaborative Filtering			
Scholar	About 1,280 results (0.09 sec)			
Articles Case law My library	Listwise Collaborative Filtering <u>S Huang</u> S Wang, TY Lu, J Ma, <u>Z Chem</u> Proceedings of the 38th, 2015 - dl.acm.org Abstract Recently, ranking-oriented collaborative filtering (CF) algorithms have achieved great success in recommender systems. They obtained state-of-the-art performances by estimating a preference ranking of items for each user rather than estimating the absolute Cited by 2. Related ancides A IIG versions C Cite Save More	[PDF] researchgate.net		
Any time Since 2016 Since 2015 Since 2012 Custom range	List-wise learning to rank with matrix factorization for collaborative filtering <u>Y Shi, M Larson. A Hanjalic</u> . Proceedings of the fourth ACM conference 2010di.acm.org Abstract A ranking approach. LusRank-MF. is proposed for collaborative filtering that combines a list-wise learning-to-rank algorithm with matrix factorization (MF). A ranked list of terms is obtained by minimizing a loss function that represents the uncertainty between Cited by 99 Related articles All 16 versions C CE Save More	[PDF] tudelft.nl		
Sort by relevance Sort by date	Learning to rank: from pairwise approach to listwise approach Z Cao, <u>T Qin, TY Liu, MF Tsai, HL</u> i - Proceedings of the 24th international, 2007 - di.acm.org These include document retrieval, collaborative filtering, expet finding, anti web spam, sentiment analysis, and product metric between the corresponding top k probability distributions as the list -	[PDF] wustl.edu		
✓ include patents ✓ include citations	wise loss function when we use Cross En- tropy as metric, the listwise loss function Cited by 901 Related articles All 26 versions Cite Save More			
ĭ≌ Create alert	Probabilistic latent preference analysis for collaborative filtering <u>NN Liu</u> , M Zhao, Q'Ang - Proceedings of the 18th ACM conference on, 2009 - di.acm org To recommend new items to a user, content-based filters match their representa-tions to those items the user has expressed interests on. In contrast, the collaborative filtering(CF) approach does not require any content information about the items, it works by collecting ratings Cited by 78 Related articles All 5 versions Cite Save More	[PDF] cuhk.edu.hk		
	Effort estimation based on collaborative filtering <u>N Chaugi</u> . <u>M Sunoda</u> . <u>A Monden</u> Conference on Product, 2004 - Springer Their results showed that listwise deletion technique did not performed well when the level of missing data was more than 30 In this paper, we propose Collaborative Filtering (CF) based effort estimation method, under the assumption that the (historical) predictor data have a	[PDF] toyo.ac.jp		

← → C ▲ https://scholar.google.it/scholar?hl=en&authuser=1&q=Listwise+Collaborative+Filtering&btnG=&as_sdt=1%2C5&as_sdtp=			
Web Images More			
Google	Listwise Collaborative Filtering		
Scholar	About 1,280 results (0.09 sec)		
Articles Case law My library	Listwise Collaborative Filtering <u>S Hung</u> . S Wang, TY Liu, J Ma, <u>Z Chen</u> Proceedings of the 38th, 2015 - dl.acm.org Abstract Recently, ranking-oriented collaborative filtering (CF) algorithms have achieved great success in recommender systems. They obtained state-of-the-art performances by resumaning a preference ranking or items for each other maner man salimating the absolute Cited by 2. Related ancies A III 6 versions C the Save More	[PDF] researchgate.net	
Any time Since 2016 Since 2015 Since 2012 Custom range	List-wise learning to rank with matrix factorization for collaborative filtering <u>Y.Sh., M.Larson, A.Hanjalic</u> Proceedings of the fourth ACM conference, 2010 di.acm.org Abstract A ranking approach, LuistRank-MF, is proposed for collaborative filtering that combines a list-wise learning-to-rank algorithm with matrix factorization (MF). A ranked list of items is obtained by minimizing a loss function that represents the uncertainty between Cited by 99 Related articles all 16 versions Cite Save More	(PDF) tudelft.nl	
Sort by relevance Sort by date	Learning to rank: from pairwise approach to listwise approach Z Cao, <u>I Qin, TY Liu, MF Tsai, H Li</u> - Proceedings of the 24th international, 2007 - di.acm.org These include document retrieval, collaborative filtering , expet finding, anti web spam, sentiment analysis, and product metric between the corresponding top k probability distributions as the list -	[PDF] wustl.edu	
✓ include patents ✓ include citations	wise loss function when we use Cross En- tropy as metric, the listwise loss function Cited by 901 Related articles All 26 versions Cite Save More		
ĭ≌ Create alert	Probabilistic latent preference analysis for collaborative filtering <u>NN Liu</u> , M Zhao, <u>Q'ang</u> - Proceedings of the 18th ACM conference on, 2009 - di.acm org To recommend new items to a user, content-based filters match their representa-tions to those items the user has expressed interests on . In contrast, the collaborative filtering(CF) approach does not require any content information about the items, it works by collecting ratings Cited by 78 Related articles All 5 versions Cite Save More	[PDF] cuhk.edu.hk	
	Effort estimation based on collaborative filtering <u>N Chsugi</u> . <u>M Tsunoda</u> . <u>A Monden</u> Conference on Product, 2004 - Springer Their results showed that listweise deletion technique did not performed well when the level of missing data was more than 30 In this paper, we propose Collaborative Filtering (CF) based effort estimation method, under the assumption that the (historical) predictor data have a	[PDF] toyo.ac.jp	

Google	Listwise Collaborative Filteri		
Ŭ		Cite	×
Scholar	About 1,270 results (0.07 sec)	Copy and paste a formatted citation or use one of the links to import into a bibliography manager.	
Articles	Listwise Collaborative Filt S. Huang, S. Wang, TY Liu, J. Ma, Z. (MLA Huang, Shanshan, et al. "Listwise Collaborative Filtering." Proceedings of the 38th International ACM SIGIR Conference on Research and	archgate.net
Case law	Abstract Recently, ranking-oriented or areat success in recommender system	Development in Information Retrieval. ACM, 2015.	
My library	estimating a preference ranking of it Cited by 2 Related articles All 6 v	APA Huang, S., Wang, S., Liu, T. Y., Ma, J., Chen, Z., & Veijalainen, J. (2015, August). Listwise Collaborative Filtering. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in	
Any time	List-wise learning to rank w	Information Retrieval (pp. 343-352). ACM.	ft.nl
Since 2016	Y Shi, M Larson, A Hanjalic - Procee	· · · · · · · · · · · · · · · · · · ·	
Since 2015 Since 2012 Custom range	Abstract A ranking approach, ListRa combines a list-wise learning-to-ranl items is obtained by minimizing a lo Cited by 98 Related articles All 16	Chicago Huang, Shanshan, Shuaiqiang Wang, Tie-Yan Liu, Jun Ma, Zhumin Chen, and Jari Veijalainan. "Listwise Collaborative Filtering." In Proceedings of the 30th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 343-352, ACM, 2015.	
Sort by relevance Sort by date	Learning to rank: from pairw Z Cao, <u>T Qin, TY Liu, MF Tsai, H Li</u> These include document retrieval, analysis, and product metric betw	Harvard Huang, S., Wang, S., Liu, T.Y., Ma, J., Chen, Z. and Veijalainen, J., 2015, August. Listwise Collaborative Filtering. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 343-352), ACM.	.edu
✓ include patents ✓ include citations	wise loss function when we use (Cited by 900 Related articles All 2 Probabilistic latent preference	Vancouver Huang S, Wang S, Liu TY, Ma J, Chen Z, Veijalainen J. Listwise Collaborative Filtering. InProceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval 2015 Aug	.edu.hk
M Create alert	<u>NN Liu</u> , M Zhao, <u>Q Yang</u> - Proceedir To recommend new items to a us items the user has expressed intere- does not require any content informa Cited by 78 Related articles All 5	9 (pp. 343-352) ACM. BibTeX EndNote RefMan RefWorks	