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ABSTRACT

In content-based audio retrieval, the goal is to find sound
recordings (audio documents) based on their acoustic fea-
tures. This content-based approach differs from retrieval
approaches that index media files using metadata such as
file names and user tags. In this paper, we propose a ma-
chine learning approach for retrieving sounds that is novel
in that it (1) uses free-form text queries rather than sound
based queries, (2) searches by audio content rather than via
textual meta data, and (3) scales to very large number of
audio documents and very rich query vocabulary. We han-
dle generic sounds, including a wide variety of sound ef-
fects, animal vocalizations and natural scenes. We test a
scalable approach based on a passive-aggressive model for
image retrieval (PAMIR), and compare it to two state-of-
the-art approaches; Gaussian mixture models (GMM) and
support vector machines (SVM).

We test our approach on two large real-world datasets:
a collection of short sound effects, and a noisier and larger
collection of user-contributed user-labeled recordings (25K
files, 2000 terms vocabulary). We find that all three methods
achieved very good retrieval performance. For instance, a
positive document is retrieved in the first position of the
ranking more than half the time, and on average there are
more than 4 positive documents in the first 10 retrieved, for
both datasets. PAMIR was one to three orders of magnitude
faster than the competing approaches, and should therefore
scale to much larger datasets in the future.

Categories and Subject Descriptors: H.5.5 [Informa-
tion Interfaces and Presentation]: Sound and Music
Computing; 1.2.6[Artificial Intelligence]: Learning; H.3.1
[Information Storage and Retrieval]: Content Analysis
and Indexing.

General Terms: Algorithms. Keywords: content-based

audio retrieval, ranking, discriminative learning, large scale
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1. INTRODUCTION

Large-scale content-based retrieval of online multimedia
documents becomes a central IR problem as an increasing
amount of multimedia data, both visual and auditory, be-
comes freely available. Online audio content is available
both isolated (e.g., sound effects recordings), and combined
with other data (e.g., movie sound tracks). Earlier works
on content-based retrieval of sounds focused on two main
thrusts: classification of sounds to (usually a few high-level)
categories, or retrieval of sounds by content-based similarity.
For instance, people could use short snippets out of a music
recording, to locate similar music. This “more-like-this” or
“query-by-example” setting is based on defining a measure
of similarity between two acoustic segments.

In many cases, however, people may wish to find exam-
ples of sounds but do not have a recorded sample at hand.
For instance, someone editing her home movie may wish to
add car-racing sounds, and someone preparing a presenta-
tion about jungle life may wish to find samples of roaring
tigers or of tropical rain. In all these cases, a natural way
to define the desired sound is by a textual name, label, or
description, since no acoustic example is available®.

Only a few systems have been suggested so far for content-
based search with text queries. Slaney [14] proposed the idea
of linking semantic queries to clustered acoustic features.
Turnbull et al. [15], described a system of Gaussian mixture
models of music tracks, that achieves good average precision
on a dataset with ~1300 sound effect files.

Retrieval systems face major challenges for handling real-
world large-scale datasets. First, high precision is much
harder to obtain, since the fraction of positive examples de-
creases. Furthermore, as query vocabulary grows, more re-
fined discriminations are needed, which are also harder. For
instance, telling a lion roar from a tiger roar is harder than
telling any roar from a musical piece. The second hurdle
is computation time. The amount of sound data available
online is huge, including for instance all sound tracks of user
contributed videos on YouTube and similar websites. In-
dexing and retrieving such data requires efficient algorithms
and representations. Finally, user-generated content is in-
herently noisy, in both labels and auditory content. This is
partially due to sloppy annotation but more so because dif-
ferent people use different words to describe similar sounds.

IText queries are also natural for retrieval of speech data,
but speech recognition is outside the scope of this work.



Retrieval and indexing of user-generated auditory data is
therefore a very challenging task.

In this paper, we focus on large-scale retrieval of general
sounds such as animal vocalizations or sound effects, and ad-
vocate a framework that has three characteristics: (1) Uses
text queries rather than sound similarity. (2) Retrieves by
acoustic content, rather than by textual metadata. (3) Can
scale to handle large noisy vocabularies and many audio
documents while maintaining precision. Namely, we aim to
build a system that allows a user to enter a (possibly multi-
word) text query, and that then ranks the sounds in a large
collection such that the most “acoustically relevant” sounds
are ranked near the top.

We retrieve and rank sounds not by textual metadata,
but by acoustic features of the audio content itself. This
approach will allow us in the future to index massively more
sound data, since many sounds available online are poorly
labeled, or not labeled at all, like the sound tracks of movies.
Such a system is different from other information retrieval
systems that use auxiliary textual data, such as file names
or user-added tags. It requires that we learn a mapping
between textual sound description and acoustic features of
sound recordings. Similar approaches have been shown to
work well for large-scale image retrieval.

The sound-ranking framework that we propose differs from
earlier sound classification approaches in multiple aspects:
It can handle a large number of possible classes, which are
obtained from the data rather than predefined. Since users
are typically interested in the top-ranked retrieved results,
it focuses on a ranking criterion, aiming to identify the few
sound samples that are most relevant to a query. Finally,
it handles queries with multiple words, and efficiently uses
multi-word information.

In this paper, we propose the use of PAMIR, a scalable
machine learning approach trained to directly optimize a
ranking criterion over multiple-word queries. We compare
this approach to two other machine-learning methods trained
on the related multi-class classification task. We evalu-
ate the performance of all three methods on two real-life
and large-scale labeled datasets, and discuss their scalabil-
ity. Our results show that high-precision retrieval of general
sounds from thousands of categories can be obtained even
with real-life noisy and inconsistent labels that are available
today online. Furthermore, these high-precision results can
be scale to very large datasets using PAMIR.

2. PREVIOUS WORK

A common approach to content-based audio retrieval is
the query-by-example method. In such a system, the user
presents an audio document and is proposed a ranked list of
audio documents that are the most “similar” to the query,
by some measure. A number of studies thus present com-
parisons of various sound features for that similarity appli-
cation. For instance, Wan and Lu [19] evaluate features and
metrics for this task. Using a dataset of 409 sounds from
16 categories, and a collection of standard features, they
achieve about 55% precision, based on the class labels, for
the top-10 matches. The approach we present here achieves
similar retrieval performance on a much larger dataset, while
letting the user express queries using free-form text instead
of an audio example.

Turnbull et al. [15] described a system that retrieves au-
dio documents based on text queries, using trained Gaussian
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mixture models as a multi-class classification system. Most
of their experiments are specialized for music retrieval, using
a small vocabulary of genres, emotions, instrument names,
and other predefined “semantic” tags. They recently ex-
tended their system to retrieve sound effects from a library,
using a 348-word vocabulary [16]. They trained a Gaus-
sian mixture model for each vocabulary word and provided
a clever training procedure, as the normal EM procedure
would not scale reasonably for their dataset. They demon-
strated a mean average precision of 33% on a set of about
1300 sound effects with five to ten label terms per sound file.
Compared to their system, we propose here a highly scalable
approach that still yields similar mean average precision on
much larger datasets and much larger vocabularies.

3. MODELS FOR RANKING SOUNDS

The content-based ranking problem consists of two main
subtasks: First, we need to find a compact representation of
sounds (features) that allows to accurately discriminate dif-
ferent types of sounds. Second, given these features, we need
to learn a matching between textual tags and the acoustic
representations. Such a matching function can then be used
to rank sounds given a text query.

We focus here on the second problem: learning to match
sounds to text tags, using standard features for representing
sounds (MFCC, see Sec. 4.2 for a motivation of this choice).
We take a supervised learning approach, using corpora of
labeled sounds to learn matching functions from data.

We describe below three learning approaches for this prob-
lem, chosen to cover the leading generative and discrimina-
tive, batch and online approaches. Clearly, the best method
should not only provide good retrieval performance, but also
scale to accommodate very large datasets of sounds.

The first approach is based on Gaussian mixture mod-
els (GMMs) [13], being a common approach in speech and
music processing literature. It was used successfully in [16]
over a similar content-base audio retrieval task, but using
a smaller dataset of sounds and a smaller text vocabulary.
The second approach is based on support vector machines
(SVMs) [17], being the main discriminant approach in the
machine learning literature for classification. The third ap-
proach, PAMIR [8], is an online discriminative approach that
achieved superior performance and scalability in the related
task of content-based image retrieval from text queries.

3.1 The Learning Problem

Consider a text query ¢ and a set of audio documents A,
and let R(g, A) be the set of audio documents in A that are
relevant to ¢q. Given a query ¢, an optimal retrieval system
should rank all the documents a € A that are relevant for ¢
ahead of the irrelevant ones;

rank(g,a) < rank(q,a”) Vat€R(q,A),a” € R(q, A)

1)
where rank(q, a) is the position of document a in the ranked
list of documents retrieved for query ¢. Assume now that
we are given a scoring function F(gq,a) € R that expresses
the quality of the match between an audio document a and
a query ¢. This scoring function can be used to order the
audio documents by decreasing scores for a given query. Our
goal is to learn a function F' from training audio documents
and queries, that correctly ranks new documents and queries

F(g,a™) > F(q,a”) Va"€R(q,A),a” €R(q,A). (2)



The three approaches considered in this paper (GMMs, SVMs,
PAMIR) are designed to learn a scoring function F' that ful-
fills as many of the constraints in Eq. 2 as possible.

Unlike standard classification tasks, queries in our prob-
lem often consist of multiple terms. We wish to design a
system that can handle queries that were not seen during
training, as long as their terms come from the same vocab-
ulary as the training data. For instance, a system trained
with the queries “growling lion”, “purring cat”, should be be
able to handle queries like “growling cat”. Out-of-dictionary
terms are discussed in Sec. 6.

We use the bag-of-words representation borrowed from
text retrieval [4] to represent textual queries. In this con-
text, all terms available in training queries are used to create
a vocabulary that defines the set of allowed terms. This bag-
of-words representation neglects term ordering and assigns
each query a vector ¢ € RI*!, where |T'| denotes the vocabu-
lary size. The t' component ¢; of this vector is referred to
as the weight of term t in the query ¢. In our case, we use
the normalized idf weighting scheme [4],

bY idf,
(04 ddf;)?

j=

= vi=1,...,T. (3)

qt

Here, b} is a binary weight denoting the presence (bf = 1) or
absence (bf = 0) of term ¢ in g; idf; is the inverse document
frequency of term ¢ defined as idf: —log(r), where 7y
refers to the fraction of corpus documents containing the
term t. Here r; was estimated from the training set labels.
This weighting scheme is fairly standard in IR, and assumes
that, among the terms present in ¢, the terms appearing
rarely in the reference corpus are more discriminant and
should be assigned higher weights.

At query time, a query-level score F(q,a) is computed as
a weighted sum of term-level scores

|7

F(q,a) = th - scoremoperL(a,t)
=1

(4)

where ¢; is the weight of the t* term of the vocabulary in
query ¢ and scorepoprr() is the score provided by one of
the three models for a given term and audio document. We
now describe separately each of the three models.

3.2 The GMM Approach

Gaussian mixture models (GMMs) have been used exten-
sively in various speech and speaker recognition tasks [12,
13]. In particular, they are the leading approach today for
text-independent speaker verification systems. In what fol-
lows, we detail how we used GMMSs for the task of content-
based audio retrieval from text queries.

GMNDMs are used in this context to model the probability
density function of audio documents. The main (obviously
wrong) hypothesis of GMMs is that each frame of a given au-
dio document has been generated independently of all other
frames; hence, the density of a document is represented by
the product of the densities of each audio document frame:

p(alGMM) = [ ] plaslGMM) (5)
!

where a is an audio document and ay is a frame of a.

As in speaker verification [13], we first train a single uni-
fied GMM on a very large set of audio documents by maxi-
mizing the likelihood of all audio documents, using the EM
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algorithm, without the use of any label. This background
model can be used to compute p(albackground), the like-
lihood of observing an audio document a given the back-
ground model.

We then train a separate GMM model for each term of the
vocabulary T, using only audio documents are relevant for
that term. Once trained, each model can be used to compute
p(alt), the likelihood of observing an audio document a given
text term 2.

Training uses a mazimum a posteriori (MAP) approach
[7], that constrains each term model to stay near the back-
ground model. The model of p(alt) is first initialized with
the parameters of the background model; Then, the mean
parameters of p(alt) are iteratively modified as in [11]

>y pilas)ay
Zf p(ilayr)

where f[i; is the new estimate of the mean of Gaussian 7 of
the mixture, z? is the corresponding mean in the background
model, ay is a frame of a training set audio document corre-
sponding to the current term, and p(ilay) is the probability
that ay was emitted by Gaussian i of the mixture. The
regularizer a controls how constrained the new mean is to
stay near the background model and is tuned using cross
validation.

At query time, the score for a term ¢ and document a is
a normalized log likelihood ratio score
llall ) ’

og p(alt)
p(albackground)
where ||a|| is the number of frames of document a. This can
thus be seen as a frame average log likelihood ratio between
the term and the background probability models.

3.3 The SVM Approach

Support vector machines (SVMs)[17] are considered to be
an excellent baseline system for most classification tasks.
SVMs aim to find a discriminant function that maximizes
the margin between positive and negative examples, while
minimizing the number of misclassifications in training. The
trade-off between these two conflicting objectives is con-
trolled by a single hyper-parameter C' that is selected using
cross validation.

Similarly to the GMM approach, we train a separate SVM
model for each term of the vocabulary 7. For each term ¢,
we use the training-set audio documents relevant to that
term as positive examples, and all the remaining training
documents as negatives.

At query time, the score for a term ¢ and document a is
as follows:

fii = ap; + (1 - a) (6)

(7)

scoregmm(a,t) =

SVMi(a) — 7™

(8)

scoresvm(a,t) =

oSVM 4
where SV M¢(a) is the score of the SVM model for term ¢
applied on audio document a, and p2Y* and o7V are re-

spectively the mean and standard deviation of the scores of
the SVM model for term ¢. This normalization procedure
achieved the best performance in a previous study compar-
ing various fusion procedures for multi-word queries [1].

3.4 The PAMIR Approach

The passive-aggressive model for image retrieval (PAMIR)
was proposed in [8] for the problem of content-based image



retrieval from text queries. It obtained very good perfor-
mance on this task, with respect to competing probabilistic
models and SVMs. Furthermore, it scales much better to
very large datasets. We thus adapted PAMIR for retrieval
of audio documents and present it below in more detail.
Let query g € Rl be represented by the vector of normal-
ized idf weights for each vocabulary term, and a be repre-
sented by a vector € Rd“, where d, is the number of features
used to represent an audio document. Let W be a matrix
of dimensions (|7'] X do). We define the query-level score as

(9)

which measures how well a document a matches a query gq.
For more intuition, W can also be viewed as a transforma-
tion of a from an acoustic representation to a textual one,
W : R% — Rl With this view, the score becomes a dot
product between vector representations of a text query g and
a text document Wa, as often done in text retrieval [4].

Fw(g,a) = ¢"""*"Wa,

scorepamir(a,t) = Wea (10)

where W is the ¢ row of W.

3.4.1 Ranking Loss

Let us assume that we are given a finite training set
(11)

where for all k, g is a text query, ag € R(qk, Atrain) is an
audio document relevant to g, and a, € R(qk, Atrain) is an
audio document non-relevant to qr. The PAMIR approach
looks for parameters W such that

Dtrain = {(quai‘—yal_)7 ey (qnya'_n‘—aa‘;)}y

Yk, Fwl(gr,af) = Fw(agr,ap) > e, e>0  (12)
This equation can be rewritten using the per-sample loss Vk,
Iw (qr, a;l} a, ) = max {O, e — Fw (g, a;:) + Fw (g, a;)}. In
other words, PAMIR aims to find a W such that for all k,
the positive score Fw (gx,a; ) should be greater than the
negative score Fw (qxr,p; ) by a margin of € at least.

This criterion is inspired by the ranking SVM approach
[9], which has successfully been applied to text retrieval.
However, ranking-SVM requires to solve a quadratic opti-
mization procedure, which does not scale to handle very

large number of constraints.

3.4.2  Online Training

PAMIR wuses the passive-aggressive (PA) family of algo-
rithms, originally developed for classification and regression
problems [5] to iteratively minimize

L(Dt'rain;w) = ZZW(QMGZ_:G;) (13)
k=1

At each training iteration i, PAMIR solves the following
convex problem:

) 1 . _
W' = argmin W= WP+ O lw(gaf a)). (14)

where ||-|| is the point-wise La norm. Therefore, at each iter-
ation, W' is selected as a trade-off between remaining close
to the previous parameters W*~! and minimizing the loss
on the current example lw(qi,aj'7ai_). The aggressiveness
parameter C' controls this trade-off. It can be shown that
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the solution of problem (14) is,
W' =W+ 7V,

. lwi—1(qi,al af)}
where 7, =mindC, W E0 7T )
{ V2

Vi= —[qil(a;r —ag),-.. Tl

and ) 4; (ai —ay)]
where qf is the " value of vector ¢;, and V; is the gradient

of the loss with respect to W.

4. EXPERIMENTAL SETUP

We first describe the two datasets that we used for test-
ing our framework. Then we discuss the acoustic features
used to represent audio documents. Finally, we describe the
experimental protocol.

4.1 Sound Datasets

The success of a sound-ranking system depends on the
ability to learn a matching between acoustic features and
the corresponding text queries. Its performance strongly
depends on the size and type of the sound-recording dataset
but even more so on the space of possible queries: classifying
sounds into broad acoustic types (speech, music, other) is
inherently different from detecting more refined categories
such as (lion, cat, wolf).

In this paper we chose to address the hard task of using
queries at varying abstraction levels. We collected two sets
of data: (1) a “clean” set of sound effects and (2) a larger
set of user-contributed sound files.

The first dataset consists of sound effects that are typically
short, contain only a single ‘auditory object’, and usually
contain the ‘prototypical’ sample of an auditory category.
For example, samples labeled ‘lion’ usually contain a wild
roar. On the other hand, most sound content that is publicly
available, like the sound tracks of home movies and amateur
recordings, are far more complicated. They could involve
multiple auditory objects, combined into a complex audi-
tory scene. Our second dataset, user-contributed sounds,
contains many sounds with precisely these latter properties.

To allow for future comparisons, and since we cannot dis-
tribute the actual sounds in our datasets, we have made
available a companion website with the full list of sounds
for both datasets [2]. It contains links to all sounds avail-
able online, and detailed references to CD data, together
with the processed labels for each file. This can be found
online at soundlsound.googlepages.com. .

4.1.1 Sound Effects

To produce the first dataset, SFX, we collected data from
multiple sources: (1) a set of 1400 commercially available
sound effects from collections distributed on CDs; (2) a col-
lection of short sounds available from www.findsounds.com,
including ~3300 files with 565 unique single-word labels; (3)
a set of ~1300 freely available sound effects, collected from
multiple online websites including partners in rhyme, acous-
tica.com, ilovewavs.com, simplythebest.net , wav-sounds.com,
wavsource.com, wavlist.com. Files in these sets usually did
not have any detailed metadata except file names.

We manually labeled all of the sound effects by listening
to them and typing in a handful of tags for each sound. This
was used for adding tags to existing tags (from findsounds)
and to tag the non-labeled files from other sources. When



labeling, the original file name was displayed, so the label-
ing decision was influenced by the description given by the
original author of the sound effect. We restrict our tags to
common terms used in file names, and those existing in the
findsound data. We also added high level tags to each file.
For instance, files with tags such as ‘rain’, ‘thunder’ and
‘wind’ were also given the tags ‘ambient’ and ‘nature’. Files
tagged ‘cat’, ‘dog’, and ‘monkey’ were augmented with tags
of ‘mammal’ and ‘animal’. These higher level terms assist
in retrieval by inducing structure over the label space.

4.1.2 User-contributed Sounds

To produce the second dataset, Freesound, we collected
samples from the Freesound project [6]. This site allows
users to upload sound recordings and today contains the
largest collection of publicly available and labeled sound
recordings. At the time we collected the data it had more
than 40,000 sound files amounting to 150 Gb.

Each file in this collection is labeled by a set of multi-
ple tags, entered by the user. We preprocessed the tags by
dropping all tags containing numbers, format terms (mp3,
wav, aif, bpm, sound) or starting with a minus symbol, fix-
ing misspellings, and stemming all words using the Porter
stemmer for English. Finally, we also filtered out very long
sound files (larger than 150 Mb).

For this dataset, we also had access to anonymized log
counts of queries, from the freesound.org site, provided by
the Freesound project. These query counts provide an excel-
lent way to measure retrieval accuracy as would be viewed
by the users, since it allows to weight more heavily queries
that are popular, and down-weight rare queries.

The query log counts included 7.6M queries. 5.2M (68%)
of the queries contained only one term, and 2.2M (28%)
had two terms. The most popular query was wind (35K in-
stances, 0.4%), followed by scream (28420) and rain (27594).
To match files with queries, we removed all queries that con-
tained non-English characters and the negation sign (less
than 0.9% of the data). We also removed format suffixes
(wav, aif, mp3), non-letter characters and stemmed query
terms similarly to file tags. This resulted in 7.58 M queries
(622K unique queries, 223K unique terms).

Table 1 summarizes the various statistics for the first split
of each dataset, after cleaning.

4.2 Acoustic Features

There has been considerable work in the literature on de-
signing and extracting acoustic features for sound classifi-
cation (e.g. [19]). Typical feature sets include both time-
and frequency-domain features, such as energy envelope and
distribution, frequency content, harmonicity, and pitch. The

Freesound | SFX

Number of documents 15780 3431
for training 11217 2308

for test 4563 1123
Number of queries 3550 390
Avg. # of rel. doc. per q. 28.3 27.66
Text vocabulary size 1392 239
Avg. # of words per query 1.654 1.379

Table 1: Summary statistics for the first split of each
of the two datasets.
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most widely used features for speech and music classification
are mel-frequency cepstral coefficients (MFCC). Moreover,
in some cases MFCCs were shown to be a sufficient represen-
tation, in the sense that adding additional features did not
improve classification accuracy [3]. We believe that high-
level auditory object recognition and scene analysis could
benefit considerably from more complex features and sparse
representations, but the study of these features and repre-
sentations is outside the scope of the current study.

We therefore chose to focus in this work on MFCC-based
features. We calculated the standard 13 MFCC coefficients
together with their first and second derivatives, and removed
the (first) energy component, yielding a vector of 38 features
per time frame. We used standard parameters for calculat-
ing the MFCCs, as set by the default in the RASTA matlab
package, resulting in that each sound file was represented by
a series of a few hundreds of 38 dimensional vectors. The
GMM based experiments used exactly these MFCC features.
For the (linear) SVM and PAMIR based experiments, we
wish to represent each file by a single sparse vector. We
therefore took the following approach: we used k-means to
cluster the set of all MFCC vectors extracted from our train-
ing data. Based on small-scale experiments, we settled on
2048 clusters, since smaller numbers of clusters did not have
sufficient expressive power, and larger numbers did not fur-
ther improve performance. Clustering the MFCCs trans-
forms the data into a sparse representation that can be used
efficiently during learning.

We then treated the set of MFCC centroids as “acous-
tic words”, and viewed each audio file as a “bag of acoustic
words”. Specifically, we represented each file using the dis-
tribution of MFCC centroids. We then normalized this joint
count using a procedure that is similar to the one used for
queries. This yields the following acoustic features:

LJe idf.
S5 (tF idf;)?

where d, is the number of features used to represent an audio
document, ¢ f¢ is the number of occurrences of MFCC cluster
t in audio document a, and idf. is the inverse document
frequency of MFCC cluster ¢, defined as —log(r.), r. being
the fraction of training audio documents containing at least
one occurrence of MFCC cluster c.

(15)

e =

4.3 The Experimental Procedure

We used the following procedure for all the methods com-
pared, and for each of our two datasets tested. We used two
levels of cross validation, one for selecting hyper parameters,
and another for training the models.

Specifically, we first segmented the underlying set of audio
documents into three equal non-overlapping splits. Each
split was used as a held-out test set for evaluating algorithm
performance. Models were trained on the remaining two-
thirds of the data, keeping test and training sets always non-
overlapping. Reported results are averages over 3 split sets.

To select hyper parameters for each model, we further
segmented each training set into 5-fold cross validation sets.
For the GMM experiments, the cross-validation sets were
used to tune the following hyper-parameters: the number of
Gaussians of the background model (tested between 100 and
1000, final value is 500), the minimum value of the variances
of each Gaussian (tested between 0 and 0.6, final value is
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Figure 1: Precision as a function of rank cutoff, SFX
data. Error bars denote standard deviation over
three split of the data. Avg-p represents the mean
average precision for each method.

107Y times the global variance of the data), and a in (6)
(tested between 0.1 and 0.9, final value is 0.1). For the
SVM experiments, we used a linear kernel and tuned the
value of C (tested 0.01, 0.11, 10, 100, 200, 500, 1000, final
value is 500). Finally, for the PAMIR experiments, we tuned
C (tested 0.01, 0.1, 0.5, 1, 2 10, 100, final value 1).

We used actual anonymized queries that were submitted
to the Freesound database to build the query set. An audio
file was said to match a query if all its tags are covered by
the query. For example, if a document was labeled with
tags ‘growl’ and ‘lion’, all the queries ‘growl’; ‘lion’, ‘growl
lion” were considered as matching the document. However, a
document labeled 'new york’ is not matched by a query 'new’
or ’york’. All other documents were marked as negative.

The set of labels in the training set of audio documents
define a vocabulary of textual words. We removed from the
test sets all queries that were not covered by this vocabulary.
Similarly, we pruned validation sets using vocabularies built
from the cross-validation training sets. Out-of-vocabulary
terms are discussed in Sec. 6.

Evaluations

For all experiments, we compute the per-query precision at
top k, defined as the percentage of relevant audio documents
within the top k positions of the ranking for the query. Re-
sults are then averaged over all queries of the test set, using
the observed weight of each query in the query logs. We also
report the mean average-precision for each method.

S. RESULTS

We trained the GMM, SVM and PAMIR models on both
Freesound and SFX data, and tested their performance and
running times. Figure 1 shows the precision at top k as
a function of k, for the SFX dataset. All three methods
achieve high precision at top-ranked documents with PAMIR,
outperforming other methods (but not significantly), and
GMM providing worse precision. The top-ranked document
was relevant to the query in more than 60 % of the queries.
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Figure 2: Precision as a function of rank cutoff,

Freesound data. Error bars denote standard de-
viation over three split of the data. All methods
achieve similar top-1 precision, but GMM outper-
forms other methods for precision over lower ranked
sounds. On average, eight of the sounds (40%)
ranked at top 20 were tagged with labels matched
by the query. Avg-p represents the mean average
precision for each method.

Similarly precise results are obtained for Freesound data,
although this data set has an order of magnitude more doc-
uments and these are tagged with a vocabulary of query
terms that is an order of magnitude larger (Fig. 2). PAMIR
is superior for the top 1 and top 2, but then outperformed
by GMM, whose precision is consistently higher by ~10%
for all kK > 2. On average 8 files out of the top 20 are rele-
vant for the query with GMM, and 6 with PAMIR. PAMIR
outperforms SVM, although being 10 times faster, and is
400 times faster than GMM on this data.

5.1 Error Analysis

The above results provide average precision across all queries,

but queries in our data are highly variable in the number of
relevant training files per query. For instance, the number
of files per query in Freesound data ranges from 1 to 1049,
with most queries having only few files (median = 9). The
full distribution is shown in Fig. 3(top). A possible result is
that some queries do not have enough files for training on,
and hence performance on such poorly sampled queries will
be low.

Figure 3(bottom) demonstrates the effect of training sam-
ple size per query, within our dataset. It shows that ranking
precision greatly improves when more files are available for
training, but this effect saturates with ~ 20 files per query.

We further looked into specific rankings of our system.
Since the tags assigned to files are partial, it is often the
case that a sound may match a query by its auditory con-
tent, but the tags of the file do not match the query words.
Table 2 demonstrate this effect showing the 10 top-ranked
sound for the query bigcat. All first five entries are cor-
rectly retrieved, and found precise since their tags contain
the word ’bigcat’. However, entry number 6 is tagged ’grow!’
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Figure 3: Top: Distribution of number of matching
files per query in the training set, Freesound data.
Most queries have very few positive examples; mode
= 3, median = 9, mean = 28. Bottom: Precision at
top 5 as a function of number of files in the training
set that match each query, Freesound data. Queries
that match less than 20 files, yield on average lower
precision. Precision obtained with PAMIR, aver-

aged over all three splits of the data.

(by findsound.com), and was ranked by the system as rele-
vant to the query. Listening to the sound, we confirm that
the recording contains the sound of a growling big cat (such
as a tiger or a lion). We provide this example online at [2]
for the readers of the paper to judge the sounds. This exam-
ple demonstrates that the actual performance of the system
may be considerably better than estimated using precision
over noisy tags. Obtaining a quantitative evaluation of this
effect requires to carefully listen to thousands of sound files,
and is outside the scope of the current work.

5.2 Scalability

The datasets handled in this paper are significantly larger
than in previous published work. However, the set of po-
tentially available unlabeled sound is much larger, including
for instance sound tracks of user-generated movies available
online. The run-time performance of the learning methods
is therefore crucial for handling real data in practice.

Table 3 shows the total experimental time necessary to
provide all results for each method and database, including
feature extraction, hyper-parameter selection, model train-
ing, query ranking, and performance measurement. As can
be seen, PAMIR scales best, while GMMs are the slow-
est method for our two datasets. In fact, since SVMs are
quadratic with respect to the number of training examples,
we expect much longer training times as the number of doc-
uments grows to a web scale. Of the methods that we tested,
in their present form, only PAMIR would therefore be fea-
sible for a true large-scale application.

For all three methods, adding new sounds for retrieval
is computationally inexpensive. Adding new term can be
achieved by learning a specific model for the new term, which
is also feasible. Significant changes in the set of queries and
relevant files may require to retrain all models, but initial-
ization using the older model can make this process faster.
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Table 2: Top-ranked sounds for the query big cat.
The file ’guardian’ does not match the label ’bigcat’
but its acoustic content does match the query.

human | eval | score | file name tags
eval by
tags
+ + 4.04 | panther panther, bigcat,
-roar2 animal, mammal

+ + 3.68 | leopard4 leopard, bigcat,
animal, mammal

+ + 3.67 | panther3 panther, bigcat
animal, mammal

+ + 3.53 | jaguar jaguar, bigcat
animal, mammal

+ + 3.40 | cougarb cougar, bigcat
animal, mammal

+ — 3.26 | guardian | growl, expression,
animal

+ =+ 2.76 | tiger tiger, bigcat
animal, mammal

+ + 2.72 | Anim-tiger | tiger, bigcat
animal, mammal

- - 2.69 | bad disk x | cartoon, synthesized

- - 2.68 | racecar 1 race, motor, engine,
ground, machine

Table 3: Total experimental time (training4test)
times, in hours, assuming a single modern CPU, for
all methods and both datasets, including all feature
extraction and hyper-parameter selection. File and
vocabulary sizes are for a single split as in Table 1.

Data files | terms GMMs | SVMs | PAMIR
Freesound || 15780 | 1392 2400 hrs | 59 hrs 6 hrs
SFX 3431 239 960 hrs 5 hrs 3 hrs

6. DISCUSSION

We developed a scalable system that can retrieve sounds
by their acoustic content, opening the prospect to search
vast quantities of sound data, using text queries. This was
achieved by learning a mapping between textual tags and
acoustic features, and can be done for a large open set of tex-
tual terms. Our results show that content-based retrieval for
general sounds, spanning acoustic categories beyond speech
and music, can be accurately achieved, even with thousands
of possible terms and noisy real-world labels. Importantly,
the system can be rapidly trained on a large set of labeled
sound data, and could then be used to retrieve sounds from
a much larger (e.g. Internet) repository of unlabeled data.

We compared three learning approaches for modeling the
relation between acoustics and textual tags. The most im-
portant conclusion is that good performance can be achieved
with the highly-scalable method called PAMIR, that was
earlier developed for content-based image retrieval. For our
dataset, this approach was 10 times faster than multi-class
SVM, and 1000 times faster than a generative GMM ap-



proach. This suggests that the retrieval system can be fur-
ther scaled to handle considerably larger datasets.

We used a binary measure to tell if a file is relevant to
a query. In some cases, the training data also provides a a
continuous relevance score. This could help training by re-
fining the ranking of mildly vs strongly relevant documents.
Continuous ranking measures can be easily incorporated to
PAMIR since it is based on comparing pairs of documents.
This is achieved by adding constraints on the order of two
positive documents with one having a higher relevant score
than the other one. To handle continuous relevance with
SVM, one would have to modify the training objective from
a classification task (“is this document related to this term?”)
to a regression task (“how much is this document related to
this term?”). Any regression approaches can be used, in-
cluding SVM regression, but it is unclear that they would
scale and still provide good performance. Finally, it is not
clear how the GMM approach could be modified to handle
continuous relevance.

The progress of large-scale content-based audio retrieval
is largely limited by the availability of high-quality labeled
data. Approaches for collecting more labeled sounds could
include computer games [18], and using closed-captioned
movies. User-contributed data is an invaluable source of
labels, but also has important limitations. In particular,
users tend to provide annotations with information that does
not exist in the recording. This phenomenon becomes most
critical in the vision domain, where users avoid “stating the
obvious” and describe the context of an image rather than
the objects that appear in it. We observe similar effects in
the sound domain. In addition, different users may describe
the same sound with different terms, and this may cause
under-estimates of the system performance.

This problem is related to the issue of ’out-of-dictionary’
searches, where search queries use terms that were not ob-
served during training. Standard techniques for address-
ing this issue make use of additional semantic knowledge
about the queries. For instance, queries can be expanded
to include additional terms like synonyms or closely related
search terms, based on semantic dictionaries or query logs [10].
This aspect is orthogonal to the problem of matching sounds
and text queries and was not addressed in this paper.

This paper focused on the feasibility of a large-scale content-
based approach to sound retrieval, and all the methods we
compared used the standard and widely used MFCC fea-
tures. The precision and computational efficiency of the
PAMIR system can now help to drive progress on sound
retrieval, allowing to compare different representations of
sounds and queries. In particular, we are currently test-
ing sound representations based on auditory models, which
are intended to capture better some perceptual categories in
general sounds. Such models could be beneficial in handling
the diverse auditory scenes that can be found in the general
auditory landscape.
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