Combining Audio-based Similarity with Web-based Data to
Accelerate Automatic Music Playlist Generation

Peter Knees!, Tim Pohle', Markus Schedl', and Gerhard Widmer!2

!Department of Computational Perception, Johannes Kepler University Linz, Austria
2Austrian Research Institute for Artificial Intelligence (OFAI)

peter.knees @jku.at, tim.pohle @jku.at, markus.schedl@jku.at, gerhard.widmer@jku.at

ABSTRACT

We present a technique for combining audio signal-based
music similarity with web-based musical artist similarity to
accelerate the task of automatic playlist generation. We
demonstrate the applicability of our proposed method by
extending a recently published interface for music players
that benefits from intelligent structuring of audio collections.
While the original approach involves the calculation of sim-
ilarities between every pair of songs in a collection, we in-
corporate web-based data to reduce the number of necessary
similarity calculations. More precisely, we exploit artist sim-
ilarity determined automatically by means of web retrieval
to avoid similarity calculation between tracks of dissimilar
and/or unrelated artists. We evaluate our acceleration tech-
nique on two audio collections with different characteristics.
It turns out that the proposed combination of audio- and
text-based similarity not only reduces the number of nec-
essary calculations considerably but also yields better re-
sults, in terms of musical quality, than the initial approach
based on audio data only. Additionally, we conducted a
small user study that further confirms the quality of the
resulting playlists.

Categories and Subject Descriptors

H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing

General Terms
Algorithms

Keywords

Automatic Playlist Generation, Web-based Artist Similar-
ity, Music Similarity, Music Information Retrieval, Traveling
Salesman Problem

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MIR’06, October 26-27, 2006, Santa Barbara, California, USA.

Copyright 2006 ACM 1-59593-495-2/06/0010 ...$5.00.

147

1. INTRODUCTION

Structuring and organizing large music repositories is a
non-trivial problem. Nevertheless, the constant upward tr-
end of electronic music distribution requires sophisticated
methods for accomplishing these tasks automatically. The
rapidly growing field of Music Information Retrieval is a
direct response to these and related demands.

As in traditional Information Retrieval, one of the central
challenges is to find well suited content descriptors. Several
approaches exist to extract features for describing music.
The most common is to analyze the audio signal directly (for
an overview, see e.g. [15]). A complementary approach is to
analyze texts that concern on music or musical artists and
their work. For convenience, this meta-data is usually taken
from the web by invoking a search engine, e.g. querying
with the artist’s name. The obtained web pages can be
used to calculate, for example, artist similarity by applying
text-retrieval methods [22, 5, 8, 6].

This paper contributes to the current state of the art by
presenting a new and effective way to combine these distinct
sources of information for efficient music playlist generation.
Music playlists are predefined sequences of music pieces. In
many cases, it is comfortable for the user to have playlists
that fit the current situation, e.g. parties, jogging, or a ro-
mantic dinner. While all previously presented approaches
only make use of audio-based features, we incorporate ad-
ditional web-based features to reduce the number of audio-
based similarity calculations as well as improving the quality
of the generated playlists. We will demonstrate the appli-
cability by extending an interface for mobile music players,
which we call the “wheel” [18].

This paper is organized as follows. In the next section,
we give a brief overview of existing approaches to combine
audio-based features with web-based features and existing
(audio-based) approaches to automatic playlist generation,
including our own “wheel”-interface. In Section 3, we review
the initial methodology from [18] and present our extension.
In Section 4, we compare our extension to the original tech-
nique in terms of complexity and performance. In the last
section, we draw conclusions and point out future directions.

2. RELATED WORK

First, we will review three (to the best of our knowledge,
all existing) approaches that combine audio-based and web-
based data. Second, we give an overview of automatic play-
list generation systems, among them our own “wheel”, which
will be used to demonstrate the effectiveness of our combi-
nation technique throughout the remainder of this paper.

2.1 Audio-based and Web-based Combination

In [22], audio-based as well as web-based genre classifica-
tion are used for the task of style detection on a set of 5
genres with 5 artists each. Combining the predictions made
by both methods linearly yields perfect overall prediction for
all test cases. In [4], audio-based track similarity is linearly
combined with web-based artist similarity to obtain a new
similarity measure. In [9], we augment an interface to music
collections with terms obtained from the web. The interface
consists of a three-dimensional island landscape that places
the musical pieces according to their sound similarity. The
user can freely navigate in this virtual environment. The ex-
ploration is supported by presenting terms on the landscape
that are related to the audio content in that region and the
corresponding artists. Thus, it provides semantic feedback
based on music.

2.2 Automatic Playlist Generation

The problem of playlist generation is treated as a net-
work flow problem in [1]. Given a start track and an end
track in a song collection, the algorithm finds a path (of
user-defined length) through the network satisfying user-
defined constraints. Each piece is labeled with a number
of boolean attributes representing arbitrary aspects of the
music. [2] presents a more efficient approach for handling
various types of meta-data. According to user-defined con-
straints, the meta-data of each track is transformed into a
cost function. The playlist is constructed by iteratively op-
timizing an initial randomly chosen playlist with regard to
the cost function. In [11], labeled tracks are not assumed,
since the playlist generation algorithm is based on a music
similarity function (cf. [12]), which can be computed auto-
matically. Several approaches are evaluated for producing
a playlist of given length for a given start track. In [7], a
highly interactive user interface that facilitates music explo-
ration and playlist generation is presented. The user can
grab pieces of music from similarity-based flows of tracks to
create playlists. The interface presented in [21] relies on an
underlying map (regardless whether automatically or manu-
ally created) and puts a focus on social interaction at playlist
creation.

For creating playlists on mobile devices, [14] incorporates
Self-Organizing Maps (SOM) [10]. SOMs are used to clus-
ter similar pieces of music and are visualized by means of
Smoothed Data Histograms, cf. [17]. This visualization leads
to a 2-dimensional representation of the collection which is
inspired by geographical maps. Playlists can be defined in-
tuitively by drawing paths on the map.

From our point of view, users are seldom capable of paying
much attention to the management of their playlists while
en route. Therefore, we have presented an approach that
makes a complete music collection easily accessible through
a simple wheel [18]. This approach automatically organizes
a music collection into a large circular playlist by applying a
Traveling Salesman Algorithm on the calculated music sim-
ilarity. If such an algorithm succeeds in finding the best
tour, the generated playlist satisfies the constraint that con-
secutive tracks are maximally similar on average. The whole
playlist and thus the whole collection is accessible with only
one circular controller — the “wheel” (cf. Figure 1).

In this paper, we present an extension to the “wheel”.
While the original approach involves the calculation of acous-
tical similarities between every pair of songs in a collection,

148

Y

¢

12Av]J punos s,4ajjoavaig,

Sonata 12

” John Cage -

Figure 1: A screenshot of our Java applet “Trav-
eller’s Sound Player”.

we incorporate web-based data to reduce the number of nec-
essary similarity calculations. To this end, we retrieve infor-
mation about artists from the web, which we use to assess
the similarity of artists. It turns out that by using this
combination, we can reduce the number of necessary simi-
larity calculations considerably and also improve the basic
approach that is based on audio only.

3. METHODOLOGY

With our playlist generation approach, we aim at max-
imizing the average similarity between consecutive tracks
in a playlist, and thus, obtaining playlists containing large
sections of consistent music. A resulting playlist can be in-
terpreted as a projection of the whole collection onto one di-
mension. The collection is arranged around a circular wheel.
Coherent areas of different musical styles should emerge nat-
urally around the wheel; these can then be directly accessed
via a simple wheel turn.

In this section, we explain our approach to generate one
large playlist consisting of all tracks from the collection by
modeling a Traveling Salesman Problem (TSP). First, we
describe the functionality of the original approach that op-
erates on a full matrix of musical distances obtained from
an audio-based similarity function. This comprises the cal-
culating audio similarity and applying a TSP algorithm.
Subsequently, we describe our enhancement based on in-
corporating web-derived features. Since the web provides
knowledge and opinions of a large number of people, also
“cultural” aspects are covered by this approach.

3.1 Audio-based Similarity

In this work, we decided to use the well-established algo-
rithmic outline proposed by Aucouturier and Pachet in [3],
since it outperforms most other audio-based approaches,
cf. [15]. This approach is based on Mel Frequency Cep-
stral Coeflicients (MFCCs) computed on short-time audio
segments. As proposed in [3], we calculated 19 MFCCs.
Each track is then represented as a Gaussian Mixture Model
(GMM) of the distribution of MFCCs. The similarity of two
tracks is calculated by sampling from one GMM and deter-

mining the probability that these samples would have been
generated by the other track’s GMM. Similarity calculation
for each pair of tracks in a collection of size n results in
an n X n matrix, on which we model a Traveling Salesman
Problem.

Note that our approach is not restricted to this particular
similarity measure. It also smoothly integrates with other
audio-based measures, such as [12, 16, 13].

3.2 Traveling Salesman Problem

Finding an optimal solution for the Traveling Salesman
Problem is NP-hard, which implies that there is no known
algorithm that calculates the exact result fast for large data
sets. Many heuristics have been proposed that approximate
the correct result. In the initial approach, we selected four
of them for evaluation. Here, we will limit the evaluation to
the Minimum Spanning Tree algorithm since it performed
well in previous experiments. Furthermore, it is capable
of dealing with edges of infinite costs. This is particularly
important for our proposed extension (see below). For con-
venience, we call this algorithm MinSpan in this paper. This
algorithm (e.g. [20]) is evaluated although it makes the as-
sumption that the triangle inequality is fulfilled, which is not
the case on the data we use'. First, a minimum spanning
tree is found with a standard algorithm (Kruskal algorithm)
in O(n - logn), with n being the number of edges. After-
wards, a depth-first search is performed on the minimum
spanning tree, and a tour is constructed by connecting the
nodes in the order they are first visited during the depth-
first search. Thus, at least in the current implementation,
some transitions, i.e. edges not contained in the minimum
spanning tree, are introduced into the route irrespective of
their actual costs.

3.3 Web-based Similarity

Since perception of music is also influenced by information
other than the pure audio signal, e.g. cultural, social, his-
torical, and/or contextual aspects, this kind of information
should not be neglected when generating playlists. On the
one hand, it may help to avoid stylistic confusions sometimes
made by audio-based similarity measures. On the other
hand, a priori information can be utilized to reduce the ef-
fort to be expended for playlist creation. An easily accessible
source for this kind of information is the World Wide Web
since it incorporates many people’s knowledge and opinions.
Thus, we use the names of the artists contained in the col-
lection to complement the audio-based similarity measure
with cultural knowledge by applying web-information re-
trieval techniques. The used technique has been success-
fully applied to the task of genre classification and yielded
promising results for direct artist similarity [8]: For each
artist, we search the web with Google. The query string
consists of the artist’s name as an exact phrase extended by
the keyword music. We retrieve 50 of the top-ranked web
pages for each query, remove all HTML tags, and use com-

!Many TSP algorithms require the distance measure
d between the nodes to satisfy the triangle inequality
d(ac) < d(ab) + d(bc) for all triples a,b and ¢. On the
audio similarity matrix constructed from our test data, the
triangle inequality does not hold in about five percent of
the cases when comparing randomly chosen direct and al-
ternative edges. On data that satisfies the triangle inequal-
ity, MinSpan produces a tour that is guaranteed not to be
longer than twice the optimum tour.

149

Folk—Rock(4)
Rap(4) . . . Electronica(16)
Jazz(1) Electronica(2) | Electronica(5) | Electronica(1) Acid Jazz(1)
Punk-Rock(1)
Folk—Rock(1) . . Acid Jazz(1)
Italian(1) Electronica(1) Acid Jazz(1) Electronica(1)
Rap(2)
Italian(3) Reggae(2) A Cappella(1)
Electronica(1) Italian(1) Acid Jazz(1)
Electronica(1)
Punk-Rock(4)
Electronica(1) Rap(4) Blues(1) Jazz(3)
Jazz(5)
Electronica(12) | Rap(1) Celtic(2) Celtic(3) B“g;:‘@“;&’;"“)
Punk-Rock(1) | Electronica(1) Reggae(1) A Cappella(1) A Cappella(2)
Rap(1)

Figure 2: An example 5x5 SOM trained on the web-
based features of our second test collection. For rea-
sons of lucidity, the corresponding genres instead of
the individual artists are listed. The values in paren-
thesis represent the number of artists per genre
mapped to the respective unit.

mon English stop word lists to remove frequent terms. For
computational efficiency, we also remove all terms that do
not occur on at least ¢ pages over all artists. We choose the
threshold ¢ such that about 10,000 terms remain.

For each artist a and each term t appearing in the re-
trieved pages, we count the number of occurrences tf:, (term
frequency) of term ¢ in documents related to a. Furthermore,
we count df: the number of pages the term occurred in (doc-
ument frequency). These are combined using the term fre-
quency x inverse document frequency (¢f xidf) function [19].
The term weight per artist is computed as

W — {(1 + log, tfta) log, % if tfia > 0 (1)
0 otherwise
where N is the total number of pages retrieved.
As a result, each artist is described by a vector of term
weights. The weights are normalized such that the length of
the vector equals 1 (Cosine normalization). This removes
the influence of the retrieved web pages’ length. Using
this representation, similarities between artists can be de-
rived, for example, by calculating Euclidean distances. How-
ever, we prefer another way of combining the two similarity
sources, which is elaborated next.

3.4 Combining Both Approaches

Currently, only two approaches that directly combine au-
dio-based track similarity and web-based artist similarity
exist (see Section 2.1). In both, classification results or sim-
ilarities are simply linearly combined into a single result. In
our case, a linear combination is not useful since it does not
reduce the number of necessary computations. Furthermore,
this kind of combination only modifies the audio-based dis-

tances by applying the artist distances directly to their cor-
responding tracks, creating another proximity matrix that
is biased toward tracks from the same artist. Since we aim
at exploiting web-based artist similarity to reduce the effort
to be made for audio similarity calculation, we use the addi-
tional artist information to prohibit similarity calculations
of songs that are unlikely to be similar. To this end, the
similarity of artists is taken as an indicator for the similar-
ity of their songs. Consequently, we only calculate distances
of tracks by similar artists. All the other pairwise similari-
ties are assumed to be infinite, i.e. for the TSP, there is no
connection between the corresponding “cities”. Thus, these
transitions are not available when building the minimum
spanning tree.

This method not only improves the “quality” of the gen-
erated playlists, as we shall see below, also the number of
necessary calculations decreases considerably. To avoid in-
troducing an “artist filter”, i.e. grouping all tracks from one
artist together in the playlist, we redefine artist similarity
using a SOM [10] that is trained on the set of web-based term
weight vectors. We define two artists to be similar if they are
mapped to the same unit or to adjacent units of the SOM,
i.e. their Manhattan distance is less than or equal to 1. In
cases where the SOM contains units without neighbors, or
more generally, where the neighborhood graph of the SOM
units is disconnected, we introduce additional transitions to
assure the producibility of a minimum spanning tree for the
MinSpan algorithm. To this end, we find those units from
disconnected parts whose model vectors have minimum dis-
tance in feature space and add transitions between all artists
contained on these units. We iterate this step until all parts
of the map are connected. A SOM resulting from our second
evaluation collection is depicted in Figure 2.

We utilize the SOM as a convenient method to determine
the binary similarity measure. Other approaches comprise
finding the k-Nearest Neighbors or defining a threshold to
find a variable number of similar artists. We decided to
train a SOM as this does not require to define such param-
eters. However, in our case, the chosen size of the SOM has
an important impact on the number of audio calculations to
be carried out. We will systematically evaluate the impact
of the SOM size on the resulting playlist in the next sec-
tion. The goal is to find a setting which disposes of as many
transitions as possible between songs unlikely to be similar
while leaving enough options for the TSP algorithm to find
a route.

4. EVALUATION

To evaluate our approach, we pursue two strategies. First,
we perform a quantitative evaluation by carrying out sys-
tematic experiments and measuring long-term consistency
of the playlists. Second, we present the results of a small
user study which was carried out to evaluate the practical
usefulness of the approach. Finally, we tackle the theoretical
background concerning runtime complexity.

4.1 Test Collections

For our experiments, we used two in-house collections.
The first contains 3456 tracks (by 339 artists) assigned to
7 general, quite evenly distributed genres: Classical (14.7%),
Dance (15.0%), Hip-Hop (14.5%), Jazz (13.6%), Metal
(14.9%), Pop (11.6%), and Punk (15.6%). The minimum
number of tracks per artist is 1, the maximum 317.

150

In the second collection, also very specific genres are pres-
ent to demonstrate the applicability of the approach on
non-standard music. The second collection contains 2545
tracks (by 103 artists) assigned to 13 genres: A Cappella
(4.4%), Acid Jazz (2.7%), Blues (2.5%), Bossa Nova (2.8%),
Celtic (5.2%), Electronica (21.1%), Folk Rock (9.4%), Ital-
ian (5.6%), Jazz (5.3%), Metal (16.1%), Punk Rock (10.2%),
Rap (12.9%), and Reggae (1.8%). The minimum number of
tracks per artist is 8, the maximum 61.

4.2 Quantitative Evaluation

We evaluate the improvement of our extension compared
to the original, audio-only approach. Our focus is on the
reduction of necessary similarity calculations. In addition,
we require a measure to quantify the “quality” of a playlist.
We decided to consider the long-term consistency according
to genre, i.e. how clearly defined the type of music is in a
certain region of the wheel. We assume that a user would
expect coherent parts of music in an angle of maximally 45
degrees (for a detailed discussion see [18]). This corresponds
to one eight of the whole playlist (432 tracks for the first,
318 tracks for the second collection).

4.2.1 Long-Term Consistency

To estimate consistency, the Shannon entropy of the genre
distribution is calculated on playlist sequences comprising
one eighth of the playlist: It is counted how many of n con-
secutive tracks belong to each genre. The result is normal-
ized and interpreted as a probability distribution, on which
the Shannon entropy is calculated. The Shannon entropy is
defined as

H(z) = =) p(x)log, p() 2
x

with log, p(z) = 0 if p(z) = 0. This value is averaged over
the whole playlist (i.e. each track of the playlist is chosen
once as the starting track for a sequence of length 432 or 318,
depending on the used collection). For lack of a more pre-
cise qualitative evaluation criterion, we assume that lower
entropy values indicate a more intuitive arrangement of the
music.

4.2.2 Impact of SOM Size

To study the impact of the SOM size on the number of
calculations and the long-term consistency, we performed
a series of experiments with quadratic SOMs in the range
of 1 x 1 to 10 x 10. Every experiment has been carried
out five times. In the following, we only consider the av-
erage value for each setting, which is sufficient to illustrate
the general trend. Figure 3 illustrates the fractions of nec-
essary audio similarity calculations when employing our ac-
celeration technique on the number of calculations necessary
without using our approach. Furthermore, the correspond-
ing long-term entropy values for the different SOM sizes are
displayed.

An obvious finding is that for the amount of transitions,
the first collection has consistently higher values than the
second. In contrast, for the long-term entropy, the values
for the second collection are always higher. This is no sur-
prise, since the first collection contains three times as many
artists than the second but only half as many genres. The
leftmost points (SOM size 1 x 1) reflect the initial approach
without any combination with web data. Since all artists
are contained on a single unit, distances between all tracks

255 T
o
o o s
2t o o o g 1
S *
* ok
Ko R REETT™
150 s g ¥*

% Coll.1 long-term entropy

—s%— Coll.1 amount of transitions| |
O Coll.2 long—term entropy

—&— Coll.2 amount of transitions

0.5

.
5x5 6x6 77 8x8 9x9
SOM size

.
4x4

.
3x3

I
2x2 10x10

Figure 3: Number of audio-based calculations nec-
essary (fraction of the maximum) and long-term en-
tropy values for different SOM sizes (average of 5
runs).

must be calculated. For increasing SOM sizes, the number
of similarity calculations decreases considerably?. For the
second collection, using a small SOM with 4 units (2 x 2)
reduces the effort to 77%, a 3 x 3 SOM drastically reduces
the amount of required calculations to 35%. For a 6x6 SOM
about 16%, for even larger SOMs only 10% of calculations
remain. Interestingly, for the 10 x 10 and 9 x 9 SOMs the
value is slightly higher than for the 8 x 8 SOM. We assume
this to be caused by the fact that the number of units equals
roughly the number of data items (artists). Thus, no use-
ful similarity can be produced by the Manhattan distance
technique and similarity is mainly defined by our connection
approach (see Section 3.4). For the first collection, a similar
behavior can be observed (without the small increase at the
end), considering the fact that due to the higher number of
artists, larger SOMs have a higher impact.

Taking a look at the development of the long-term en-
tropy in Figure 3 reveals that (for one exception) incorpo-
rating web data leads to lower entropy values and thus more
consistent playlists with respect to genre. To get a better
impression of the impact of the SOM size on playlist quality,
Figure 4 visualizes the genre distribution of a typical playlist
for each SOM size.

From the obtained results, we can conclude that for 103
artists, a SOM with 36 units is best suited, leading to ap-
proximately 3 artists per unit in average. As far as we
can see for the other collection (339 artists), again, a SOM
(10 x 10) whose number of units equals about one third of
the number of artists leads to the best results. Choosing
such a SOM size, for each artist, similarities for all tracks
by 15 similar artists (including self-references) have to be
calculated in average.

2Compared to the number of similarity calculations, we can
neglect the time required to compute the SOMs.

151

4.3 Subjective Evaluation

To prove the practical usefulness of the approach, we car-
ried out a small user study with 10 test persons. Using the
first test collection, we created a playlist from which we ex-
tracted 10 short sequences with length 10 each. To this end,
we randomly chose a starting point on the “wheel” and con-
secutively extracted the 10-track-playlists at intervals of 36
degrees. Each test person had to rate each playlist with re-
spect to overall musical consistency on a scale ranging from
1 (“totally inconsistent”) to 5 (“completely smooth transi-
tions”). Results can be found in Table 1.

playlistno. | 1] 2] 3] 4] 5] 6] 7] 8] 9
avg. rating || 4.5 3.6 | 2.6|2.7|3.8|41]3.6|5.0|5.0

0]
23]

Table 1: Average rating values for the 10 test
playlists. The average rating over all playlists equals
3.92.

It can be seen that 7 out of 10 playlists have been given
over 3 points on average. Furthermore, the raw data reveals
that, out of the total 100 ratings, 33 were top-ranked (5
points) and 29 gained 4 points. This shows that the major-
ity of playlists automatically generated by our approach is
considered useful and very consistent by users.

4.4 Runtime Complexity

Finally, we want to give theoretical support to the empiri-
cal evidence presented in the preceding section. To this end,
we make some assumptions about the average music collec-
tion. Let a be the number of artists and n be the overall
number of tracks in the collection. Our assumptions are:

e A collection contains more than two artists (a > 2).

e The number of tracks per artist is bounded by a con-
stant tmaz-

e The distribution of musical styles in a collection is well-
balanced. Thus, on the SOM, each unit is assigned the
same number of artists. By choosing an appropriate
SOM size depending on a, we can keep the number
of artists per unit, denoted by u, constant. For each
artist, this leads to s = 5 - u similar artists (including
self-reference).

Based on these assumptions we can estimate the number of
song similarities that have to be calculated as O(a - s - t2,,,).
Since s and tmqe. can be estimated with upper bounds, the
number of calculations depends on « instead of n?. More
precisely, instead of runtime O(n?-log n?) for the audio only
approach, we can reduce runtime complexity to O(a - log a)
for the MinSpan algorithm.

However, since the size of the SOM is a function of a, we
have runtime of O(a?) in the training phase of the SOM. In
the training step, for a given number of iterations, the dis-
tances between all units’ model vectors (f(a)) and all data
items (a) are calculated. Nevertheless, with our extension
we can reduce complexity from O(n? - log n?) to O(a?). In
practice, the time required to compute the SOM is negligible
compared to the calculation time for the track similarities.

In terms of the behavior of our approach, we can get fur-
ther interesting insights when considering two extreme sce-
narios. The first one regards a collection that contains only

music by one artist. Incorporating web-based information
has no effect at all. The second scenario is a collection of
tracks where each track is performed by a different artist,
e.g. a collection of “one-hit wonders”. In this case, the artist
similarity is directly applicable as track similarity. However,
it is questionable whether this is desirable, especially since
it also requires quite an effort to acquire the necessary in-
formation for all artists.

This leads to the final consideration regarding runtime —
the time necessary for the web retrieval. Even though re-
trieval of the web pages is linear in the number of artists,
downloading and processing 50 related pages is time con-
suming (approximately 30 seconds per artist). Neverthe-
less, the proposed approach can be modified such that other
meta-information are incorporated and exploited to calcu-
late similarities, e.g. manually assigned artist information.

5. CONCLUSIONS

We have presented an approach to accelerating automatic
playlist generation. This is accomplished by incorporating
musical artist similarity based on web data. Besides the
achieved improvements in runtime complexity, we could also
show that the combination of audio-based similarity mea-
sures with web-based data improves the resulting playlists
in terms of stylistic consistency. We further proved the use-
fulness of the created playlists with a small user study.

An important aspect of this paper is the bridging of the
gap between audio-based track similarity and web-based
artist similarity. Indeed, we have shown that these comple-
mentary approaches are very powerful in conjunction. Thus,
we can conclude that the proposed combination technique
can also be used to reduce complexity and improve the re-
sults of similar tasks like automatic music recommendation.
For future work, we aim at reducing the effort to be made
to obtain web-based features.

6. ACKNOWLEDGMENTS

This research is supported by the Austrian Fonds zur Foér-
derung der Wissenschaftlichen Forschung (FWF) under pro-
ject number LL112-N04 and by the Vienna Science and Tech-
nology Fund (WWTF) under project number CI010 (Inter-
faces to Music). The Austrian Research Institute for Ar-
tificial Intelligence acknowledges financial support by the
Austrian ministries BMBWK and BMVIT.

7. REFERENCES

[1] M. Alghoniemy and A. Tewfik. A Network Flow
Model for Playlist Generation. In Proceedings of the
IEEE International Conference on Multimedia and
Ezxpo (ICME’01), Tokyo, Japan, August 22-25 2001.
J-J. Aucouturier and F. Pachet. Scaling Up Music
Playlist Generation. In Proceedings of the IEEE
International Conference on Multimedia and Expo
(ICME’02), Lausanne, Switzerland, August 26-29
2002.
J-J. Aucouturier and F. Pachet. Improving Timbre
Similarity: How High is the Sky? Journal of Negative
Results in Speech and Audio Sciences, 1(1), 2004.
S. Baumann. Artificial Listening Systems:
Modellierung und Approximation der subjektiven
Perzeption von Musikdahnlichkeit. PhD thesis,
Technical University of Kaiserslautern, 2005.

2]

8]

[4]

152

e T .
REGG E
Boss[- i
CELTI u 1

JAzZZ - | I 1

BLU[) od i

ITALL g i |]
Acizl- -]
ELec B0 4
PUNK |~ - B
METL n 1
FOLK - i i
acapL I I . E|

RAP TN 3 i 0 A
BOSS = B

Izl - i

BLU[u i
ACJZ|- -
ELEC =1 1 - r u 2

AL i
CELT i
FOLK = n e 1
METL - - I q J 1
PUNK [3 i
ACAP |- I
REGG = L Il |
FOLK 7 T
METL i pe 3

ITAL| _ I
REGG
ACAP E 3

RAP . m u

BLU
BOSS

2z -_T
PUNK - -
Aciz|
ELEC I | .
CELT I o L
T
u

ITAL| W
PUNK .

METL

Lt] N

am_»
3P 23
emRo
58%&

\\\\\\\\\\I;T
| |

AcAP [
CeLTE
F =
el
S -
e
tec - = =
L5
T -
Jicr
R k. 3 \
o ;
T =
REGGL o
ol I
e
e
ACJZ|-
e = = I
B0ss|- I
o -
g ="
wenf E = I
PUNKL n I
v w -
25 -
s =
BOSS. I
= =
s x -_ X
FOLK
e m -
oo
e
s m
o
3 r \ . - .-
e ‘ -_—
=
ot -
BOSS - u
o -
=
e =S
ver n
Yorer
g — Cmm
Jrdn = -
PowE T =
L ‘ .
cleoF ne T — I
g —— - o™
o
Tk 1 E s
Aonef Y x
soser =
BLUF 1
CELT ﬂ
S
REGG [~
Ronl
s
PO am
ELECF T " i}
ACJZ[=
e = =
el
REGG |-
Rk . mw
80ss|- 1
e
edn -
2l -
aur
e B o
PUNK [~ L L L
w0 % % 2000

Figure 4: Genre distributions in playlists generated
on our second collection, descending from 1 x 1 (au-
dio only) to 10 x 10 SOM. Dark segments indicate a
high agglomeration of tracks from the corresponding
genre. The genres are ordered by the index where
most pieces of that genre are accumulated. Thus, in
the optimum case a playlist would tend to result in
a diagonally descending sequence of black bars.

[5]

[6]

[7]

8]

[9]

(14]

S. Baumann and O. Hummel. Using Cultural
Metadata for Artist Recommendation. In Proceedings
of the 8rd WedelMusic Conference, September 2003.
W.W. Cohen and W. Fan. Web-Collaborative
Filtering: Recommending Music by Crawling The
Web. WWW9 / Computer Networks, 33(1-6):685-698,
2000.

M. Goto and T. Goto. Musicream: New Music
Playback Interface for Streaming, Sticking, Sorting,
and Recalling Musical Pieces. In Proceedings of the
Sizth International Conference on Music Information
Retrieval (ISMIR’05), London, UK, September 2005.
P. Knees, E. Pampalk, and G. Widmer. Artist
Classification with Web-based Data. In Proceedings of
5th International Conference on Music Information
Retrieval (ISMIR’04), pages 517-524, Barcelona,
Spain, October 2004.

P. Knees, M. Schedl, T. Pohle, and G. Widmer. An
Innovative Three-Dimensional User Interface for
Exploring Music Collections Enriched with
Meta-Information from the Web. In Proceedings of the
ACM Multimedia 2006, Santa Barbara, California,
USA, October 2006.

T. Kohonen. Self-Organizing Maps. Springer, 2001.
B. Logan. Content-Based Playlist Generation:
Exploratory Experiments. In Proceedings of the 3rd
International Conference on Music Information
Retrieval (ISMIR’02), Paris, France, October 2002.
B. Logan and A. Salomon. A Music Similarity
Function Based on Signal Analysis. In Proceedings of
the IEEE International Conference on Multimedia and
Ezxpo (ICME’01), Tokyo, Japan, August 22-25 2001.
M. Mandel and D. Ellis. Song-Level Features and
Support Vector Machines for Music Classification. In
Proceedings of the 6th International Conference on
Music Information Retrieval (ISMIR’05), London,
UK, 2005.

R. Neumayer, M. Dittenbach, and A. Rauber.
PlaySOM and PocketSOMPlayer, Alternative
Interfaces to Large Music Collections. In Proceedings
of the 6th International Conference on Music
Information Retrieval (ISMIR’05), London, UK, 2005.

153

(15]

(16]

(18]

(19]

20]

(22]

E. Pampalk. Computational Models of Music
Similarity and their Application to Music Information
Retrieval. PhD thesis, Vienna University of
Technology, March 2006.

E. Pampalk, A. Rauber, and D. Merkl. Content-Based
Organization and Visualization of Music Archives. In
Proceedings of the ACM Multimedia, pages 570-579,
Juan les Pins, France, December 1-6 2002.

E. Pampalk, A. Rauber, and D. Merkl. Using
Smoothed Data Histograms for Cluster Visualization
in Self-Organizing Maps. In Proceedings of the
International Conference on Artifical Neural Networks
(ICANN’02), pages 871-876, Madrid, Spain, August
2002. Springer.

T. Pohle, E. Pampalk, and G. Widmer. Generating
Similarity-based Playlists Using Traveling Salesman
Algorithms. In Proceedings of the 8th International
Conference on Digital Audio Effects (DAFz-05), pages
220-225, Madrid, Spain, September 20-22 2005.

G. Salton and C. Buckley. Term-weighting Approaches
in Automatic Text Retrieval. Information Processing
and Management, 24(5):513-523, 1988.

S.S. Skiena. The Algorithm Design Manual.
Springer-Verlag, New York, Department of Computer
Science, State University of New York, Stony Brook,
NY 11794-4400, 1997.

1. Stavness, J. Gluck, L. Vilhan, and S. Fels. The
MUSICtable: A Map-Based Ubiquitous System for
Social Interaction with a Digital Music Collection. In
Proceedings of the 4th International Conference on
Entertainment Computing (ICEC’05), Sanda, Japan,
2005.

B. Whitman and P. Smaragdis. Combining Musical
and Cultural Features for Intelligent Style Detection.
In Proceedings of the 3rd International Conference on
Music Information Retrieval (ISMIR’02), Paris,
France, October 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

