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ABSTRACT 
 
Scalable approaches to video content classification are limited by 
an inability to automatically generate representations of events 
that encode abstract temporal structure.  This paper presents a 
method in which temporal information is captured by representing 
events using a lexicon of hierarchical patterns of movement that 
are mined from large corpora of unannotated video data.  These 
patterns are then used as features for a discriminative model of 
event classification that exploits tree kernels in a Support Vector 
Machine.  Evaluations show the method learns informative 
patterns on a 1450-hour video corpus of natural human activities 
recorded in the home. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning –knowledge acquisition. 

General Terms 
Algorithms, Experimentation. 

Keywords 
Temporal Data Mining, Video Content Classification, Video 
Event Recognition, Tree Kernel, Support Vector Machine. 

1. INTRODUCTION 
Just as the rise of the internet saw an explosion in available text 
corpora, the falling prices of digital video cameras and storage 
media have set the stage for a similar proliferation of personal 
video recordings.  Our ability to search through and index these 
new resources is dependant upon techniques that can 
automatically classify the content of events in video.  Although 
simple events can often be modeled based on image features 
extracted from key frames, many complex events require more 
structured models for accurate classification.  Researchers have  

 

Figure 1.  A static overhead view of the kitchen as recorded 
in the Human Speechome Project database (above left).  By 
tracing regions of interest over objects, such as the stove and 
table, motion detection can be localized to specific areas of a 
room (below left).  This allows for sequences of video data to 
be represented as multi-variate time series (below right).  By 
thresholding over these series, movement events are 
extracted and hierarchical temporal relations between them 
can be discovered (above right). 

 

made some progress in this task by modeling the temporal 
structure inherent to complex tasks (e.g., [6], [8], [9]).  While 
such work generally relies on hand built models, scalable 
approaches to video content classification will only be fully 
realized by automatically generating representations that encode 
the temporal structure of events.  In this paper, we present a novel 
approach to learning such representations in which a lexicon of 
hierarchical patterns of human movements is mined from 
unannotated video data and then used to train a discriminative 
model of event classification.   

A great deal of work in event classification has focused on 
representing the temporal structure of complex events.  Much of 
this work, however, has focused on modeling the dynamics 
between low level features in video data and does not, in general, 
address the more abstract temporal relations that make up 
complex events.  Such relations are extremely useful, though, 
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because complex events are often composed of sub-events that 
occur in varied temporal and hierarchical relations to each other.  
For example, Figure 2 shows how the complex event making 
coffee can be decomposed into the sub-events: grinding beans and 
filling the pot, which can occur simultaneously, and turning on 
the machine, which must occur after the others have completed.  

Recently a number of researchers have developed techniques to 
model such abstract temporal information by hand using, for 
example, probabilistic context free grammars [9] and temporal 
logics [6].  However, it is unclear how well such formalisms may 
be automatically learned from large real-world video corpora.  
For example, while [5] shows that models based on temporal 
logic can be learned from data, his approach only handles a 
limited set of relations (i.e. before and at the same time) and is 
only tested on small sets of staged events (e.g. putting an object 
on a table using carefully controlled movements).  Also, although 
algorithms for learning probabilistic context free grammars may 
scale to large corpora (e.g., [10]), such grammars can only encode 
strictly sequential relations (e.g. before and after, but not during 
or overlap) and thus may not be appropriate for classifying many 
types of complex events. 

 
Figure 2.  A graphical representation of the event making 
coffee shows how complex events can be composed of sub-
events in various hierarchical temporal relationships. 

In this paper, we present a novel methodology to facilitate 
learning temporal structure in event classification.  Complex 
events are modeled using a lexicon of hierarchical patterns of 
movement, which are mined from a large corpus of unannotated 
video data.  These patterns act as features for a tree kernel [3] 
based Support Vector Machine (SVM) that is trained on a small 
set of manually annotated events.  Evaluations on a large corpus 
of real-world video data show the performance of the system to 
be above a baseline Hidden Markov Model.  These results 
confirm the effectiveness of the pattern mining algorithm, and 
further, suggest a new approach to event classification that 
achieves high accuracy with minimal human effort (i.e. small 
human annotated data sets combined with a larger amount of 
unannotated data).   

The remainder of the paper is organized as follows: first, we 
describe our corpus of real-world video data, collected as part of 
the Human Speechome Project [13], and discuss methods for data 
pre-processing and automatic detection of low level movement.  
We then detail how the hierarchical patterns of movement are 
mined from this unannotated video data.  Next, we describe how 
these learned patterns are used as features in a discriminative 

model of event classification. Finally, evaluations of the acquired 
patterns and the overall system are presented.   

2. THE HUMAN SPEECHOME PROJECT 
The Human Speechome Project (HSP) is an effort to observe and 
computationally model the longitudinal course of language 
development for a single child at an unprecedented scale [13].  In 
pursuing this goal, the home of a newborn infant has been 
instrumented so that each room in the house contains a 
microphone and video camera that record audio and video data.  
Now in the sixth month of a three year study, approximately 
24,000 hours of audio and video data have been collected, 
averaging about 300 gigabytes of data collected per day.  The 
video data used throughout this work represents a subset of this 
HSP corpus; namely, about 1450 hours of video (ceiling mounted 
omnidirectional camera, 1 megapixel resolution, 14 frames per 
second) collected from the kitchen during the first two months of 
the project. 

This data represents an unedited and highly complex domain of 
real-world human activity: the patterns of life for a family at 
home.  Events are unscripted, often complex, sometimes multi-
agent, and rarely easy to find.  These factors make it a 
challenging test bed for work in video content classification, but 
relevant for applications in security, smart homes, and many other 
domains.  

Although such real-world data presents many challenges, this 
corpus offers certain advantages for event classification as well.  
In particular, the omnidirectional cameras offer a full, top-down 
view of each room from a fixed and known position.  Such static 
positioning simplifies the task of motion detection, allowing for 
high precision using relatively simple techniques.  In this work 
we employ an algorithm from Computer Vision research [11] in 
which a pixel is considered to have motion if the luminosity of 
that pixel changes by some threshold.  Thresholds are continually 
updated based on each individual pixel’s mean and variance in 
order to allow for spurious intensity changes not due to observed 
movements (e.g., lighting changes due to shifting cloud cover).  
This algorithm allows for online motion detection of the video 
data that is used for both storage compression (see [13]) as well as 
data analysis. 

Another aspect of the HSP data which we exploit in our analysis 
is the fact that home environments are populated with many 
objects (particularly furniture and large appliances) that are 
stationary and are rarely moved to new locations.  These objects 
can be traced out as regions of interest that have special semantic 
interpretations when motion is detected in their vicinity.  Figure 1 
shows regions of interest traced over a static image coming from 
the camera in the kitchen of the HSP environment.  Here, Region 
3 is traced over the refrigerator.  Thus, any motion detected 
within Region 3 can be interpreted as motion near the refrigerator.  
By tracing out many such regions (e.g. the sink, table, 
dishwasher) we can convert the video data into a compact 
representation that captures the level of motion in each of a 
number of hand-specified regions of interest.  Figure 1 shows a 
graph of this representation with time extending on the x-axis, 
each region of interest represented as a different row on the y-
axis, and the level of motion in that region represented by the 
region’s brightness (the darker the region, the more motion).  
These multi-variate time series representations not only provide a 
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convenient way to view large amounts of video statically (see 
[13]), but by drastically reducing the dimensionality of video (i.e. 
from 960 pixels x 960 pixels per frame to 10 regions per frame) 
they provide a compact basis for mining hierarchical patterns of 
movement. 

 

 

 

 

 

 

 

 

Figure 3.  Any two events must be in one of seven 
asymmetric temporal relations described by Allen 
(1984). 

3. MINING PATTERNS OF MOVEMENT 
In this work, events are modeled using a lexicon of hierarchical 
patterns of movement that capture aspects of the underlying 
temporal structure of a complex event.  In this section we describe 
how these hierarchical patterns are mined from the large 
unannotated HSP corpus.  As described in section 2, the video 
data from HSP can be represented as a multi-variate time series of 
movements within regions of interest that have been manually-
defined over semantically relevant areas of a room.  We equate 
the problem of learning hierarchical patterns of movement with 
that of finding significant temporal relationships between 
movements in these regions of interest. 

Although some temporal relationship must exist between 
movements in any two regions of interest, some are more 
interesting than others.  For example, although it may be the case 
that while someone was using the sink (i.e. movement in Region 
1, Figure 1) someone else in the kitchen opened the refrigerator 
door (i.e. movement in Region 3, Figure 1), the temporal 
relationship between these two events is probably not going to be 
particularly relevant for modeling the structure of a complex 
event.  On the other hand, the fact that someone is moving near 
the sink (i.e. Region 1, Figure 1) just before there is movement 
near the dishwasher (i.e. Region 4, Figure 1) may be an important 
pattern to detect because it often occurs when someone is washing 
the dishes. 

Ideally, in generating a lexicon of hierarchical patterns, we would 
seek to separate those temporal relationships in the data that are 
useful for event classification from those that are not.  However, 
since we do not know a priori which event types the lexicon will 
be used to represent, we make the simplifying assumption that the 
only patterns worth finding are those that occur significantly in 
the data.  We now describe the steps necessary to discover such 
patterns. 

The first step in finding significant patterns of movement is to 
threshold the multi-variate time series such that movement either 
is or is not occurring at any particular region at time t.  Given this 
threshold, we can view each region as being a state indicator, and  

Figure 4.  Pseudo-code for mining hierarchical patterns of 
movement from large unannotated video corpora. 

the continued occurrence of an active state may be treated as a 
low level movement event (e.g. Movement above the threshold 
from time t1 to time t2 in region 3 is considered a “refrigerator 
movement” with duration (t2-t1); see Figure 1).   

Given such movement events, we can categorize the temporal 
relations between them using the set of temporal relations 
outlined by Allen [1].  Allen suggests 7 symmetric temporal 
relations that may be used to classify relations between pairs of 
time periods as shown in Figure 3 (i.e. meets, equals, during, 
before, starts, finishes, and overlap).  Further, we can speak of a 
relation as being hierarchical when one or more of the events 
related to each other are themselves relations between sub events 
(e.g. [A meets [B before C]] or [[A before B] equals [C during 
D]]).  These hierarchical events have an order, that corresponds to 
the depth of that event (e.g. 1st order: [A meets B]; 2nd order: [[A 
meets B] before C]; 3rd order: [[[A meets B] before C] during D]; 
etc…). 

 

LEARN-PATTERNS(matrix data) 
significant Events ← ∅ 
counts ← ∅ 
foreach timeslice t in data 

 

events ← FIND-COMPOSITE-EVENTS(t) 
foreach event F in events 
increment countsf 

if F passes threshold 
add to significant Events 

return significant Events 
 

 

FIND-COMPOSITE-EVENTS(vector t) 
candidateCompositeEvents ← ∅ 
justFinishedEvents ← list of events ending at t 
stillActiveEvents ← list of events still open at t 
 

foreach event F in justFinishedEvents 
//find present relations  
FIND-RELATIONS(F, justFinishedEvents)  
 

//find future relations  
FIND-RELATIONS(F, stillActiveEvents)  
 

//find past relations  
FIND-RELATIONS(F, STM)  

 

updateSTM() 
return candidateCompositeEvents 

 

 

FIND-RELATIONS (event F, list eventSet) 
foreach event G in eventSet 
compositeEvent ← temporal relation btw F and G  
if compositeEvent is reliable 

push onto significant Events 
else 

push onto candidateCompositeEvents 
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Figure 5.  Significant patterns are matched in multi-variate time series representations of events.  These patterns are collected 
together under a dummy root node for use with a tree kernel based Support Vector Machine.  Single patterns can be instantiated 
multiple times in an event and individual events can participate in multiple patterns. 
 

We equate the task of discovering patterns of movement with that 
of identifying hierarchical movement events that occur 
significantly in the large set of unannotated video data.  To 
discover such events, two algorithms are combined: one 
originally developed in the domain of weather analysis [7], the 
other from robotics [2].  While both seek to find hierarchical 
patterns in unannotated data, Hoppner’s algorithm is preferable in 
its manner of detecting related events, while Cohen’s algorithm 
has a more stringent thresholding method.  The algorithm 
presented here seeks to exploit useful aspects of both approaches. 

We present pseudo-code for our algorithm in Figure 4. The 
algorithm processes the multi-variate time series frame by frame, 
at each point checking if any low level movement events have 
just ended (i.e., the state indicator for a region has gone to zero).  
If this has happened, that low level movement event is compared 
with the events in three different sets: 1) the set of events that also 
have just ended; 2) the set of events that are still ongoing; and 3) 
the set of events that have recently ended.  We define a time 
limited Short Term Memory (STM) in which these recently 
completed events are stored.  The size of this STM acts as a 
windowing length such that only events within this window can 
be compared.1 

For each pair of events (i.e., the newly ended event and the event 
selected from one of the three sets), the temporal relation that 
exists between them is calculated. 2  This relation can now be 
treated as a new event that is composed of the two sub-events.  
The number of occurrences for each composed event is 
maintained.  If the composite event has already been found 
significant (e.g., in a previous iteration), it is added to the set of 
events that just ended, and is itself composed with the other 
events as described above.  By recursively adding events that 
were previously found significant, the system is able to discover 
hierarchical patterns of movement.  

                                                                 
1 This differs from STM in [2] which is limited by size, not time, 
and thus allows comparisons between events that occur arbitrarily 
far apart in time. 
2 Because of noise in the data, relations are based on soft 
intervals.  E.g., A meets B iff (end of A)-α < (start of B) < (end of 
A)+α. 

Once the algorithm has examined all the frames in the dataset it 
cycles through each observed composite event and checks if that 
event is significant.3  Similar to [2], we use the phi statistic to 
measure the significance of an event.  For each composite event, 
we create a 2-by-2 contingency table that describes how often 
different sub-events of the composite were observed in that 
temporal relation.  For example, in the contingency table shown 
in Table 1, A represents how often a table event occurred during a 
washer event, B represents how often a table event occurred 
during any other type of event, C represents how often a non-
table event occurred during a washer event, and D represents how 
often any non-table event occurred during any non-washer event. 

Table 1. Contingency table used to calculate 
significance of event during(table,washer) 

during washer ¬ washer 

table A B 

¬ table C D 

 

Phi can now be calculated using equation 1, in which χ2 is the chi 
square statistic calculated from the contingency table and N is the 
table’s total.  The phi statistic provides a measure between 0 and 
1 of the strength of the association between the sub-events in a 
composite event and can be tested for statistical significance as 
with a Pearson r.  In order for a composite event observed by our 
system to be considered significant, its phi must both be greater 
than some value rho as, as well as, significant above a threshold 
alpha. 

N

2χφ =     (1) 

In the experiments presented here, the algorithm was set such that 
each iteration produced significant patterns of increasingly higher 
orders (e.g., the 1st iteration produced 1st order patterns, the 2nd 
produced 2nd order patterns, etc.).  After all iterations are 
completed, the output of the program is a set of significant 
                                                                 
3 Like [2], the algorithm can learn events online by checking for 
significance after each frame.   
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hierarchical patterns of movement discovered from the 
unannotated data. 

Having described how a lexicon of hierarchical patterns is 
discovered, we now present a method for using the lexicon to 
represent events for classification. 

4. CLASSIFYING EVENTS 
As is the case in many domains, successful classification of 
events depends upon the choice of representation for the data.  
Here we describe a method in which video events are represented 
using the lexicon of hierarchical patterns of movement described 
above.  We treat video content classification as a discriminative 
problem and train a classifier using a small training set of labeled 
events.  In a discriminative classification framework, each event 
in the training set is represented as a compact vector of features.  
The hierarchical patterns of movement that are observed in video 
events are used as features for representing those events.   

For each event in the training set, all movement events that occur 
within it are examined (e.g., [fridge-movement while [sink-
movement before counter-movement]]), and if that event is in the 
lexicon of significant patterns learned above, it is used as a 
feature.   

This examination is easily achieved using the same framework 
employed to discover significant patterns.  The algorithm 
described above (Figure 4) was modified such that, instead of 
counting all observed movements, it only counts those that were 
previously learned to be significant.  In this way, the learned 
lexicon acts as a filter for removing unreliable features that may 
be noisy and uninformative.  Further, it allows for a massive 
reduction in the feature space; for, by not filtering the movement 
events, feature vectors can suffer an exponential explosion in size 
(see Section 5 for more details). 

One of the benefits of using the hierarchical patterns of movement 
as features is that the structure inherently captures a great deal of 
valuable information.  For example, even though a given pattern 
(e.g., [fridge-movement while [sink-movement before counter-
movement]]) may not be useful for classification in itself, it may 
be the case that a sub-element of that pattern (e.g., [sink-
movement before counter-movement]) is informative for 
classification.  Fortunately, researchers have developed methods 
to capture this type of structural information using tree kernels 
[3], a dynamic programming technique that affords an efficient 
means of comparing hierarchically structured representations of 
data. 

Just as the phrase structure of sentences can be represented using 
syntactic trees, we represent video events using hierarchical 
patterns of movement.  For each event in the training set, all 
significant observed patterns of movement that occur within the 
event are parsed out and joined together under one dummy root 
node.  In this way, each event can be re-described as one tree 
feature (see Figure 5), which is used to train a Support Vector 
Machine using a tree kernel.  By treating event classification in 
this way, we are able to exploit a large dataset of unannotated 
data to generate features for a small dataset of annotated data.  In 
the following section, we evaluate the performance of this 
framework.  

 

Figure 6.  Significant patterns of movement are displayed on 
examples of different event types.  Each significant pattern is 
given a unique color, showing the different distributions of 
patterns for each event class.  Time scales are not equivalent 
between event exemplars. 

5. EVALUATIONS 
5.1 Data 
We evaluate our approach using a subset of the HSP data: the first 
two months (approximately 1450 hours) of video data collected 
by the kitchen camera.  Hierarchical patterns of motion were 
learned from this unlabeled corpus. The algorithm was run for 
four iterations, such that each iteration produced patterns of 
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Table 2.  Example outputs of the pattern mining algorithm are shown for four hierarchical orders of pattern along with their phi 
statistic and the frequency with which they were observed in the unannotated data. 

Pattern phi Freq 
1st Order Patterns   
equals(TABLE)( COUNTER_TABLE): 0.081 9147 
equals(COUNTER_TABLE)( WASHER): 0.064 8339 
2nd Order Patterns   
equals(before(SINK)( COUNTER_FRIDGE)) (before(TABLE)(COUNTER_SINK)): 0.055 53 
starts(equals(TABLE)(COUNTER_TABLE)) (FRIDGE): 0.059 1443 
3rd Order Patterns   
equals(overlap(before(COUNTER_SINK)(FRIDGE)) (before(DOOR)(WASHER))) (before(STOVE)(COUNT_TABLE): 0.050 14 
equals(overlap(before(COUNTER_SINK)(FRIDGE)) (before(COUNTER_FRIDGE) (SINK))) (finishes (before(DOOR) 

(WASHER))(COUNTER_TABLE)): 
0.198 
 

20 
 

4th Order Patterns   
meet(overlap(overlap(during(COUNTER_SINK)(STOVE)) (during (COUNTER_SINK)(SINK))) 

(during(COUNTER_FRIDGE) (STOVE)))(during(COUNTER_FRIDGE) (STOVE)): 
0.057 
 

120 
 

meet(before(during(COUNTER_FRIDGE)(STOVE)) (during (STOVE)(during(STOVE)(COUNTER_FRIDGE)))) 
(starts(STOVE)(COUNTER_SINK)): 

0.063 
 

150 
 

successively greater order (initial results did not indicate 
improvement beyond 4th order).  The learning algorithm has 3 
parameters: a short term memory (STM) size, an alpha to control 
the level of significance, and a rho to control the strength of the 
association between sub events.  In these experiments the 
parameters were set as follows: STM=300 frames (~50 sec), alpha 
=0.95, rho=0.05.  Further, there are other parameters used to 
threshold the activity ribbons into binary low level events.  These 
include a motion threshold (set to .15) and a low pass filter 
window (set to 3).  Both of these sets of parameters were 
optimized on a small held out validation set.  The total number of 
unique patterns of activity discovered by the algorithm using 
these settings is as follows: 38 1st order patterns, 115 2nd order 
patterns, 245 3rd order patterns, and 418 4th order patterns.  Table 
2 shows example patterns of each order.  

In order to evaluate these patterns’ usefulness for event 
classification, a small set of training instances (approximately 130 
minutes) was hand labeled.  This set consisted of three event 
classes in the following distribution: 13 examples of making 
coffee, 9 examples of putting away the dishes, and 13 examples of 
getting a drink.  Figure 6 shows multi-variate time series graphs 
for a subset of these events in which all significant patterns have 
been uniquely colored.  All classification tests were done using 
leave one out cross validation.  Held out validation sets were used 
to optimize the parameters of a tree kernel SVM implementation 
from [12]. 

5.2 Experiments and Results 
Figure 7 shows a comparison of the event classification 
performance for the system trained using the learned 1st order 
patterns versus the learned 2nd order patterns.  These results are 
compared against two baselines: 1) the results of a classifier that 
always chooses the most frequent class; and 2) the results of a 
simple 1st order Hidden Markov Model (HMM) trained on the 
multi-variate time series data of motion in each region of interest 
(i.e., the same time series used to generate the hierarchical 
patterns upon which the SVM is trained).  The HMM baseline 
system employed a mixture model of two Gaussians and had the 
number of states set using cross-validation.  The figure shows that 

the 2nd order pattern system outperforms both baselines as well as 
the 1st order system.  While this result is significant for the simple 
frequent baseline (p>.05), because of small sample sizes, no other 
differences are significant.   

Table 3 and 4 show the confusion matrices for the system trained 
on 2nd order patterns and the HMM baseline.  For both systems, 
confusion is greatest for the putting away the dishes events.  This 
confusion is not surprising as such events match a great many 
significant patterns, many of which are also seen with the other 
two event types.  This can be observed in Figure 6 as well, where 
the coloring of making coffee events (mostly red and green) 
differs from the coloring of getting drink events (mostly purple 
and blue), while putting away dishes events share colors of both. 

Figure 8 shows a comparison between the system trained on 
varying orders of patterns, from 1st order to 4th order, against the 
system trained in the same manner (i.e. using hierarchical patterns 
of movement and tree kernel SVM) but without using the lexicon 
of significant patterns as a filter.  Again, results of choosing the 
most frequent class are presented as a baseline.  Results are not 
available for the unfiltered system using patterns of 3rd order and 
above because their feature representations were too large for the 
SVM implementation used.  Although not the case for strictly 
significant patterns, there is an exponential increase in the number 
of observed patterns of motion as the order of patterns examined 
increases.  Thus, while only 77 2nd order patterns were used in the 
filtered system, 9057 2nd order patterns were used in the unfiltered 
system.  The data sparsity that follows from this elucidates the 
consistent advantage of the filtered over the unfiltered system 
shown in Figure 8.   

Finally, Figure 9 shows the performance of a hybrid system in 
which the hypothesized class from the HMM model (i.e. either 
making coffee, putting away dishes, or getting drink) is used as a 
feature, along with the hierarchical pattern features, in the tree 
kernel SVM.4  Both the SVM with pattern only features and the  

                                                                 
4 The SVM implementation supports combining Tree Kernels 
with standard Radial Basis Kernels (see [12]). 
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Figure 7.  Comparison between event classification 
systems using significant patterns (1st and 2nd order) as 
features for a tree kernel based Support Vector Machine 
and two baselines: always choosing the most frequent 
class, and a simple Hidden Markov Model (hmm) 
implementation. 

Figure 8.  The system using only significant patterns of 
movement is compared t. a system using all observed 
patterns as features.  Performance is given as a function 
of the order of patterns used and most frequent baseline 
is repeated.  
 

HMM by itself are presented for comparison.  Results are 
displayed for multiple orders of patterns.  The figure shows that, 
although performance of the hybrid system is only minimally 
better than using the pattern features alone, there is consistent 
improvement across all orders of pattern.  

DISCUSSION 
The results of these evaluations show that the lexicon of 
hierarchical patterns of movement mined using the algorithm 
presented in section 3 is useful and informative for event 
classification.  Figure 7, demonstrates that using 2nd order 
patterns as features for a discriminative model of event 
classification outperforms both a simple most-frequent baseline as 
well as a more traditional HMM approach.  Further, Figure 8 
shows that this result does not hold when all possible 2nd order 
patterns are used, but rather, is dependent upon using only those 
patterns in the lexicon learned by the method described in section 
3.  These findings validate our methodology for learning this 
lexicon and confirm the value of the temporal information 
encoded in the hierarchical patterns of movement.  

The usefulness of these patterns for event classification stems 
from two distinct types of information that they encode: fine 
grained temporal relations and global information about events.  
First, by abstracting to the level of events as opposed to lower 
level observations of motion, the patterns allow for the encoding 
of more fine-grained temporal relations than traditional HMM 
approaches.  Although both methods can capture relations such as 
before, only by representing both the starting and endpoints of 
motion can temporal relations such as overlap and during be 
represented (see [1]).   

Additionally, hierarchical patterns of movement have the ability 
to capture global information about an event.  Unlike HMMs that 
only encode local transitions between states, hierarchical patterns 
can capture temporal relations between movements that are not 

locally apparent.  For example, the 2nd order pattern [sink-
movement before [counter-movement before stove-movement] 
represents a relationship that exists between movements at the 
sink and the stove, a long distance relationship that is not 
expressible in dynamic models such as HMMs.  The usefulness of 
this global information is evidenced by Figure 8, which shows the 
large difference in performance between the system using 1st 
order patterns, which do not encode global information, and the 
systems using higher order patterns, which do.  

 

Table 3.  Confusion matrix for Support Vector Machine 
trained on 2nd order significant patterns 

[hyp->] Coffee dishes drink Recall 

Coffee 13 0 0 1 

Dishes 3 5 1 0.55 

Drink 0 2 11 0.84 

Prec. 0.81 0.71 0.91  

 

Table 4.  Confusion matrix for Hidden Markov Model 
baseline 

[hyp->] Coffee dishes drink Recall 

Coffee 10 3 0 0.76 

Dishes 2 6 1 0.66 

Drink 2 1 10 0.76 

Prec. 0.71 0.6 0.9  

 

Although capable of encoding the temporal and global 
characteristic of events, other useful sources of information are 
not captured by hierarchical patterns of movement.  Unlike the 
HMM, which explicitly models the amount of motion in each 
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region, the hierarchical patterns abstract away such amounts into 
strictly binary values (i.e. either there is movement in a region, or 
there is not).  This movement information may be quite useful for 
classification, however, as evidenced by Figure 7 which shows 
greater performance for the HMM baseline compared to the 
system using only 1st order patterns (neither of which encode any 
global information).  This suggests that a useful direction for 
future work is to examine methodologies for integrating the 
benefits of these two information sources.  

Figure 9 shows results of a preliminary step toward achieving 
this.  Although the method is extremely simple (i.e. using the 
output of the HMM as a feature in the tree kernel SVM) and the 
results are not yet significant, the hybrid system shows a 
consistent improvement in performance using each order of 
hierarchical pattern.  Although not definitive, these results suggest 
that a fruitful area of future research will lie in finding more 
sophisticated techniques for combining dynamic models of event 
classification with the global information in hierarchical patterns 
of movement.  

Another area of future work that we are exploring is the effect of 
running the algorithm over low level events that are more 
sophisticated than simple region movements (e.g., object 
tracking).  Importantly, changing the nature of the low level 
events that the algorithm examines does not necessitate any 
change in the algorithm itself, i.e., the algorithm is agnostic to the 
nature of the events it operates on.  This flexibility suggests that, 
as the low level events become more informative, so too will the 
hierarchical patterns that are mined from them.   
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Figure 9.  Comparison of Support Vector Machine (SVM) 
trained using 2nd order patterns against baseline Hidden 
Markov Model (HMM) and a hybrid model in which the 
output of the HMM is given as a feature to the SVM using 
pattern features. 

6. CONCLUSION 
We have presented a methodology for automatically learning a 
lexicon of hierarchical patterns of movement from unannotated 
video data.  These hierarchical patterns encode fine-grained 
temporal relations and capture global information about events.  

In order to validate our methodology, we present a discriminative 
approach to event classification in which the lexicon of 
hierarchical patterns is used to represent events for a tree kernel 
Support Vector Machine.  Evaluations indicate that the patterns 
are informative and suggest that accurate event classification 
systems may be achieved by incorporating the local information 
encoded in dynamic models of event classification with the global 
information captured in automatically learned lexicons of 
hierarchical patterns of motion.  

The utility of hierarchical patterns does not end with video event 
classification.  Another area of our research examines how such 
patterns can be used to aid human search through video data.  We 
are examining the effectiveness of incorporating the multi-variate 
time series representations into a user interface in order to provide 
users with a static view of large amounts of dynamic video data.  
By coloring these time series with mined patterns (as in Figure 6), 
users will be able to more easily hone in on significant periods of 
movement, facilitating users’ ability to search through large 
amounts of video data. 

In addition to data visualization, the methods described here may 
also facilitate the learning of language to describe video events.  
Recent work in the cognitive sciences has stressed the importance 
of hierarchical representations of events in models of situated 
word learning [4].  The approach described here provides a way 
to learn such hierarchical structures automatically, allowing for 
the event representations learned from the HSP video data to be 
mapped to the speech classified in the HSP audio data.  The 
development of such models would advance work on the 
cognitive modeling of human language development as well as 
research on Natural Language Interfaces for searching video data.  
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