A Set Theoretical Method for Video Synopsis
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ABSTRACT

A synopsis video presents a condensed video activities oc-
curring during different periods, based on moving objects
extracted in the spatial-temporal domain. How to place
different object tubes with least collision in limited video
length is crucial to synopsis performance but has not been
thoroughly studied in previous work.

In this paper, we address an important problem in video
synopsis, that of object start-time programming. We for-
mulate the problem in terms of set theory. An objective is
derived to maximize visual information in video synopsis.
After relaxing the problem to obtain a continuous one, the
problem can be efficiently solved via mean-shift. The result-
ing algorithm can converge to the local optimum within a
few iterations.

Categories and Subject Descriptors: H.3.1 [Informa-
tion Storage and Retrieval]: Content Analysis and Indexing—
Indexing Methods

General Terms: Algorithms

Keywords: video synopsis, object start-time programming,
set theory, mean shift

1. INTRODUCTION

Video synopsis, which generates a short video with the
most information of the original video, is a problem of great
interest in both research and industry. For example, a 24
hours surveillance video needs to be condensed into a short
period without losing any activity to support efficient brows-
ing and retrieval. This representation is significantly dif-
ferent from the traditional video summarization techniques
such as key frame representation [2, 11] and video skimming
[4, 5, 8]. The synopsis preserves the dynamic characteristic
of the original video and changes the relative time between
activities to reduce spatial-temporal redundancy.

Recently, there is a trend of using combination of ex-
tracted objects from different periods to represent synopsis
video [6, 7]. To create the final synopsis video, a temporal
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mapping of the object start-time from the original video to
the synopsis video should be founded with more objects and
less spatial-temporal overlap. Here, preserving the chrono-
logical order of events isn’t considered. We should have in
mind that video synopsis is just an index of the original
video for the convenience of browsing. One can go back in
the original video to know the details according to the syn-
opsis instead of considering the temporal consistency with
much computation complexity and spatial-temporal redun-
dancy.

Our work tries to tackle the object start-time program-
ming problem to maximize the visual information in the
synopsis video. To enable this, the total spatial-temporal
positions in the synopsis video are considered as a univer-
sal set, and each object tube can be considered as a set
too. Then the problem of visual information maximization
is translated to maximize the cardinality of the union set
between object tubes in the set theory. According to De-
Morgan’s law, the equivalent proposition is to minimize the
cardinality of the intersection set between the complement
sets of object tubes. So it can be expressed by a discrete
combinatorial optimization problem which can be solved by
continuous relaxation via mean-shift. The proposed algo-
rithm can converge to the local optimum within a few it-
erations. Experimental results illustrate the validity of our
method.

2. RELATED WORK

There are two main kinds of approaches in traditional
video summary: keyframe-based methods and videoclips-
based methods. In the former kind, a few key frames [2, 11]
are selected from the original video. The key frames are the
ones that best represent the video, however this representa-
tion loses the dynamic aspect of video. In the latter kind, a
collection of short video sequences [4, 5, 8] best representing
original video’s contents are abstracted. The dynamics of
the video remains, while the defect is less compact. In both
kinds above, each frame in the original video is either shown
completely or not shown at all in the synopsis video.

Recently, object-based approaches for video synopsis have
been presented in literature [6, 7]. Moving objects, repre-
sented in the spatial-temporal domain, are combined to cre-
ate the synopsis even if they have happened at different pe-
riods. Activity cost, collision cost and temporal consistency
cost are considered to construct energy function between
object tubes for the allocation of the tubes in the synopsis.
Simulated annealing is used for solving this problem. This
is a comprehensive description of object start-time program-



ming, however it suffers from the disadvantage of high com-
putation cost. As video synopsis is just an assistant tool to
help people know the outline of a video, you should find the
corresponding clip in the original video to get more infor-
mation. Thus, the temporal consistency cost can be ignored
when the computation complexity is reduced significantly
without considering this cost.

3. SET COMBINATORICS FOR SYNOPSIS

Suppose that we have got background images and moving
object tubes based on mixture Gaussian model [9] and ob-
jects tracking [10]. Examples of extracted background and
tube are shown in Fig. 1.

(a) background image

(b) extracted tube

Figure 1:
. tube.

In the following section,we first illustrate the importance
of object start-time programming in video synopsis. Then
we formulate this problem in set theory.

3.1 Importance of Object Start-time Program-

ming

A simple instance in Fig. 2 is given to show the impor-
tance of Object Start-time Programming. Fig. 2(a) shows
the original video. There are five object tubes. Each tube is
in one color. Here, for simplicity, we ignore tubes’ changes
in axis x. So the available information of the original video
is in 13 slices of time.

Now the task is to compact the tubes in 7 slices of time
with the most preserving information. A cuboid container
with the length of 7 units in Fig. 2(b) is a vivid representa-
tion of the synopsis’ boundaries. Object tubes are placed in
this container as many as possible with least overlapping.

Without any order exchange of the tubes, we can make
the synopsis like Fig. 2(c). As the yellow tube conflicts with
the red and blue tubes, the losing information is 9.5%. But
if we do some changes like Fig. 2(d), the visual information
reaches the maximum.

The importance of object start-time programming is illus-
trated from the above example. So the next problem is how
to formulate it.

3.2 Optimal Combinations of Set Elements

Suppose that the synopsis video has T frames with the
size of W x H. Therefore there are W x H x T spatial-
temporal positions marked by universal set I, such as Iz,
in Fig. 2(b). Here, u denotes one slice of time. Further, N
object tubes are extracted from the original video, and set
On,: denotes tube n with start-time in frame ¢, for example
the red tube can be denoted as O, in Fig. 2(c) and Og 4x
in Fig. 2(d). (z,y,2) € On,; means that tube n is visible
in spatial-temporal position (z,y, z), vice versa. Here, (z,y)

Examples of extracted background and
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unit of time slice
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(b) cuboid container for synopsis

(c) without exchanging (d) after exchanging

Figure 2: Visualization for importance of object
. start-time programming

are the spatial coordinates, and 0 < z < T — 1 is the frame
1D.

Then the problem of maximizing visual information can
be mathematically expressed as maximizing the cardinality:

N—-1
max | @]
t0,t1,tn_1 1=0

(On,t,, N I7)] (1)

where|-|denotes the cardinality of the set, and set-intersection
operation to I7 because only the tube’s information appear-
ing in the synopsis video is valuable. Using De-Morgan’s
law, maximizing the visual information is just equivalent
to minimizing the rest space without any visual objects, so
through set-complement operation the equivalent proposi-
tion is
min
0yt 15 st N1

N-1__

| N Ongt, NIr | (2)
n=0

where * denotes the complement of the set.

We use function {Fy 2 y(z2,¢t)|z,t = 0,1,...,T — 1} to de-
note On ¢, here (z,y) denotes the spatial location in a frame.
If (z,y,2) € On,t, Frnazy(z,t) = 1, vice versa. So expres-
sion( 2) can be reformulated as the following objective func-



tion:
T—1N-1

=2 D 110 Freyetn)]

z,y z=0n=0

E(to,tl,..., (3)

tN—1)

As the tubes can and only can shift along the temporal
axis, it satisfies

Fn7x7y(z7 t) = Fn,x,y(Z —1, O)
Where Fp 4,4(2,0) is defined as:

(4)

L,
0,

(ij Y, Z) S On,0~
otherwise.

Froy(2,0) = { (5)

In this way, the problem of object start-time programming
is translated into a combinatorial optimization problem with
TN feasible solutions in Eq.( 3 ).

4. FINDING OPTIMAL SOLUTIONS

In this section, we present a method for solving the com-
binatorial optimization. We seek to optimize Eq.( 3 ) by
continuous relaxation.

4.1 Continuous relaxation

Function F,, » 4(z,0) can be optimized by convolution with
Gaussian kernel as follows:

T—1
2
fray(2,0) = Z Fray(k, 0)67&“7’6) (6)
k=0
where s > 0 is the scale coefficient, and will be interpreted
in Sect. 4.2. _
Similar to Eq.( 4 ), we define fy, » (2, tn) with continuous
variable z and discrete variable t,, as follows:

J?n,x,y(zv tn) = fney(2 = tn,0) (7)

In the same way, function F, o y(z,t,) with respect to t,

is continuous, and then followed by replacing f in Eq.( 7)
and f in Eq.( 6 ):

T—1

2
fn a:,y(z Je —stn =)
0

oy (2,tn) (8)

Jj=
T—

1
2
Jrww(z =3 O)e_s(tn -
0

J
T—1T-1 o Y
Fn,z,y(k,())e_s(z_]_m e_S(tn—J)

0

£l
I

§=0

Continuous objective function similar to discrete function
Eq.( 3 ) can thus be defined as:

T-1N-1
E(t07t1,...,tN71) :ZZ H[M_f’ﬂxz:y('z?tn)] (9)
z,y z=0 n=0
T-1T-1 2
where M = max > S e sGTiTR) T gms(tn D? is the

0<2,tn <T—1,20 =0
maximum of fr zy(2,tn).

In the above continued process of Function Fy, 4,y (2,tn),
variable z and t,, except x or y are continuous. The reason
is that object tubes can only shift along the temporal axis,
and only variable z and t,, are defined in the temporal axis.
On the other hand, object tubes can’t shift along the spatial
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axes, so variable z and y defined in the spatial axes can’t be
continuous.

4.2 Algorithm

Fixing to, t1, ..., ti—1, tit1, ..., tN—1, the start-time ¢; of tube
¢ that minimizes Eq.( 9 ) is obtained by solving the gradi-
ent equation of E(to,t1,...,tn—1) as the following fixed point

iteration:
T=1 N st — )2 .
Ci(j)e " 77
m+1 7=0
it = = (10)
> Cilj)e ("
=0
where
T—1 o
= J]IM=frwu(z.ta)] D Fiay(k,0)e*E7I707
T,Y,z nFEi k=0

(11)

Notice that the iteration ( 10 ) is essentially a mean-shift
optimization algorithm [1]. Denote by {t;" }m=1,2,.. the se-
quence of successive start-time locations of the tube i. As
the kernel e*(ti—4)” ,8 > 0 has a convex and monotonically
decreasing profile, the sequences {t;" }m=1,2,... converges, as
proved in [1]. 1/4/s is the bandwidth of the kernel.

While this deterministic algorithm is fast, it finds a lo-
cal optimum. To improve this, an annealing type of algo-
rithm could be incorporated into mean-shift, such as using
an adaptive annealing robust estimator [3]. This algorithm
performs robust estimation (a mean-shift like algorithm) of
the peak of a distribution by varying or annealing the kernel
parameter and approximately finds the global peak.

S. EXPERIMENTAL RESULTS

We tested our method using two video streams. As the
frame rate is not constant from different video streams, we
use the number of frames rather than the absolute time in
the presentation.

5.1 Video Data

The first video as in Fig. 4 is taken in a hall under constant
lighting condition by a static camera with 320 x 240 pixels in
size. 35 tubes with the total length of 1961 frames are con-
tained in the original video and condensed into 100 frames
in the synopsis video. Fig. 4(a) shows the original images
with sparse objects. In the synopsis process, each tube’s
initial start-time is scaled from the original start-time in or-
der to preserve the chronological order of events as much as
possible.

The second video as in Fig. 5 is taken in a car park under
varying lighting condition with 352 x 288 pixels in size. 20
tubes with the total length of 327 frames are contained in
the original video and condensed into 40 frames in the syn-
opsis video. Fig. 5(a) shows the original images with sparse
objects.

5.2 Results and Performance

Some synopsis images are shown in Fig. 4(b) and Fig. 5(b).

The performance is evaluated in terms of information rate
and computing time. We define the information rate(/R) to
measure the synopsis efficiency in each frame, as follows:

IR— the number of pixels occupied by objects

the total number of pixels (12)
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Figure 3: information rate between SA and our algorithm

Higher information rate means more visual information can
be seen in the synopsis.

We compare our algorithm with the simulated annealing
method used in [6] (using our own implementation). There,
the temporal consistency cost together with the activity and
collision cost are considered. However, in our experiment
only the activity and collision cost without temporal consis-
tency are computed. This is because the latter one disagrees
to the former ones in most cases.

The results are shown in Fig. 3. All the information rate
curves are below 0.5 for the reason of all the objects’ absence
in some regions in the original video. The results show that
our method has higher information rate than the simulated
annealing based method in most frames.

Our algorithm converges after two cycles in 4 minutes for
the first experiment and two cycles in 2 minutes for the
second one. In contrast, simulated annealing is well know
to be slow (but not reported in [6]).

6. DISCUSSIONS

This work presents a set theoretical formulation for video
synopsis, and provided an efficient algorithm which can find
a local solution within a few iterations. Currently, the neigh-
borhood information among pixels in each tube has not been
fully utilized, as the tube can only move along the tempo-
ral axis and so each pixel itself rather than its neighbor-
hood is considered. So in the future work, how to make use
of tube’s neighborhood information for the purpose of the
search speed will be taken into account.
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(b) images from the synopsis video

Figure 4: Experiment with the hall video.

(b) images from the synopsis video

Figure 5: Experiment with the car park video.
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