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ABSTRACT
Mood or emotion information are often used search terms or
navigation properties within multimedia archives, retrieval
systems or multimedia players. Most of these applications
engage end-users or experts to tag multimedia objects with
mood annotations. Within the scientific community dif-
ferent approaches for content-based music, photo or multi-
modal mood classification can be found with a wide range
of used mood definitions or models and completely different
test suites. The purpose of this paper is to review common
mood models in order to assess their flexibility, to present
a generic multi-modal mood classification framework which
uses various audio-visual features and multiple classifiers
and to present a novel music and photo mood classification
reference set for evaluation. The classification framework
is the basis for different applications e.g. automatic media
tagging or music slideshow players. The novel reference set
can be used for comparison of different algorithms from var-
ious research groups. Finally, the results of the introduced
framework are presented, discussed and conclusions for fu-
ture steps are drawn.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Context
Analysis and Indexing, Abstracting methods, Indexing meth-
ods; I.5.2 [Pattern Recognition]: Design Methodology-
Classifier design and evaluation

General Terms
Algorithm, Design, Experimentation, Measurement

Keywords
multi-modal mood classification, image content analysis, mu-
sic information retrieval, evaluation
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1. INTRODUCTION
Digital music and photos get more and more involved

in everyones life based on the growing number of digital
cameras and the broad use of mobile digital music play-
ers. Within the scientific community and in first commer-
cial products, content-based image and audio classification
has become a wide-spread technique for a wide range of
applications e.g. in music genre detection, speech/music
analysis, spoken language analysis [1] and in the visual do-
main major in the determination of scene classes like land-
scape/city/party or daytimes day/sunset/night [2]. Espe-
cially mood tagging as search and exploration paradigm for
the access of music databases like moodlogic, lastfm, mag-
natunes as well as for the access of image databases like flickr
or gettyimages is quite common.
Typically music oriented publications concentrate on the
term mood, while publications in the image domain are using
the term emotion. Usually mood describes a longer human
feeling e.g. hearing a complete song. The term emotion
is often used in image oriented publications and describes
in principle the personal affectedness based on spontaneous
perception e.g. appearing images [3]. In this publication we
use the term mood as a general term for mood and emotion.
In principle this publication concentrates on different main
use cases: automatic multi-modal media tagging for photo
and music search and retrieval, navigation and visualization
of media archives and finally multimedia slideshow players
to enrich photo presentations by accompanying music as well
as to enrich music playlists by accompanying photos.
Following the defined use cases the purpose of this paper is
to find a mood model that fits all use cases, to develop a
generic framework for photo and music classification and to
set up a novel database for a comparable evaluation.
Therefore a review of common mood models as well as re-
lated work in this field is given in section 2. Based on a
selected two dimensional mood model, a generic classifica-
tion framework is presented in section 3 that considers an
universal classification of images and music within the same
framework. A reference database with publicly available im-
ages and music is created. In section 4.2 the selection pro-
cess and details on the selected media are presented. In
section 4.3 the results of the presented classification frame-
work using the novel reference database are presented and
discussed. Finally, in section 5 conclusions are drawn and
possible future work is depicted.
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2. RELATED WORK
Within this section we give a review and discussion of the

related work on single-modal and multi-modal mood classi-
fications as well as the used mood models and test suites. A
short summary describes the drawbacks of the referred ap-
proaches and leads to the advantages of the presented work.

2.1 Mood Concepts
In order to get a well working multi-modal mood classifi-

cation that meets the demands of its users, it is important
to find a suitable mood model. Looking at the research that
has been reported in this field, it becomes obvious that there
are two main groups of mood models. The first group con-
tains models that consist of listings of adjectives or nouns
and the second group contains dimensional models.
A common example for the first group is Kate Hevner’s Ad-
jective Circle [4] depicted in Fig. 1. It consists of 66 single

Figure 1: Kate Hevners Adjective Circle [4]

adjectives that are subdivided into eight groups. Chen et al.
[5] chose emotional states based on Hevner’s circle for their
emotion-based music visualization using photos. The eight
classes in the order of the numbers in Fig. 1 are called: sub-
lime, sad, touching, easy, light, happy, exciting and grand.
Farnsworth modified Hevner’s concept and arranged the ad-
jectives in ten groups [6].
Dimensional mood models consist of one or more dimensions
where each represents a special mood characteristic. A very
early approach has been presented by Wundt in 1896[7].
To some extent newer models are based on this concept.
Wundt’s mood space consists of the following three axes:
pleasure/ displeasure, arousal/ nonarousal and stress/ relax-
ation as depicted in Fig. 2(A). Another three-dimensional
approach is known as Albert Mehrhabians PAD. The dimen-
sions are: pleasure/ displeasure, arousal/ nonarousal and
dominance/ submissiveness [8].
Famous two-dimensional models are:
Thayer’s model: One axis visualizes the amount of stress,
the other the amount of energy[9], see Fig. 2(B).
Russell’s model: It uses pleasant/ unpleasant for one di-
mension and a composition of stress and alertness for the sec-
ond dimension. As a result the second dimension is spanned
from sleepy to aroused.
Tellegen-Watson-Clark-Model (TWC): The TWC mo-
del is quite similar to the other models but contains a 45◦
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Figure 2: Mood model of Wundt(A) and Thayer(B)

turn. Its dimensions are called high positive affect/ low posi-
tive affect and high negative affect/ low negative affect [10].
Reisenzeins model: Reisenzein possesses the pleasant/
unpleasant and arousal/ non-arousal dimensions of Wundt’s
model [11].
While summarizing the review of the different mood models
we found the following advantages and disadvantages for the
suggested approaches. The category-based models can be
easily used for tagging especially with a list of different ad-
jectives for the same mood which generalizes the subjective
perceptions of multiple users and gives a heavyset dictionary
for search and retrieval applications. The dimension-based
models also allow a percentage based assignment to a special
mood dimension which improves the applicability for navi-
gation and visualization use cases. A combination of both
approaches points to an appropriate consensus.

2.2 Classification Approaches
Within the scientific community different approaches for

single-modal and multi-modal mood classification were pub-
lished. Here a rough overview of selected publications is
given.

Music
Automatic mood classification for music is a comparatively
common technique. The used musical attributes are typi-
cally divided into two groups, timbre-based attributes and
rhythmic or tempo-based attributes. The tempo-based at-
tributes can be represented by e.g. an Average Silence Ratio
[12] or a Beats Per Minute value [13]. Lu [14] uses amongst
others Rhythm Strength, Average Correlation Peak, Av-
erage Tempo and Average Onset Frequency to represent
rhythmic attributes. Frequency spectrum based features like
Mel-Frequency Cepstral Coefficients (MFCC), Spectral Cen-
troid, Spectral Flux or Spectral Rolloff are also often used
e.g. in [15, 16]. Wu and Jeng [17] use a complex mixture of
various features: Rhythmic Content, Pitch Content, Power
Spectrum Centroid, Inter-channel Cross Correlation, Tonal-
ity, Spectral Contrast and Daubechies Wavelet Coefficient
Histograms. For the classification step in the music domain
Support Vector Machines (SVM) [15, 18, 19, 13] and Gaus-
sian Mixture Models (GMM) [14, 20] are typically applied.
Liu et al. [21] utilize a nearest-mean classifier.
The comparison of classification results of different algo-
rithms is difficult because every publication uses an indi-
vidual test set or ground-truth. E.g. the algorithm of Wu
and Jeng [17] reaches an average classification rate of 74,35%
for 8 different moods with the additional difficulty that the
results of the system and the ground-truth contain mood his-
tograms which are compared by a quadratic-cross-similarity.
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Image
Automatic mood classification for images is not that popular
as for music. All approaches use a variant of color and gra-
dient information for the image mood classification. Wang
et al. [22] use image brightness, color temperature (warm-
cool), saturation and contrast descriptions as features. Chen
et al. [5] use a non-uniform quantized histogram of the HSV
color space which is more suitable for human perception.
Yoo [23] uses the non typical color code space which is based
on Seons psychological evaluation of color patterns [24]. The
gradient information is estimated by different features e.g. a
Haar Wavelet Transformation [25], the Sum Of Gradients for
the sharpness [22], a Hough Transformation [26] or Canny
Edge Detectors together with Wavelet Coefficients [5]. Ad-
ditionally, Yoo uses a granularity of homogeneous regions as
Texture description.
The classification within the visual domain differs from the
audio domain. Usually, audio features are extracted from a
short audio frame, so a set of 100 training samples can be
generated e.g. by 3 seconds of music. Image features are
most often extracted as a single feature per image whereby
100 images result in 100 training samples. Therefore the
classifiers are optimized for small sample size problem or us-
ing a preprocessing for a feature reduction or a sample num-
ber increasing. Guo [26] uses a combination of a fuzzy neural
network to estimate a sequence of emotion semantemes and
afterwards a double hidden Markov model to classify the
mood. Wang [22] uses a Support Vector Machine of Regres-
sion which has the capability to generalize a small sample
set. Chen et al. [5] use a Bayesian classifier and an Affinity
Propagation Algorithm to label additional unknown images
to generate more trainings samples for a following SVM.
Wang [22] reports an average recognition rate of 86%, with
the speciality that 12 mood pairs are classified individually.
Therefore a random test would reach 50%.

Multi-modal
Automatic multi-modal mood classification describes a com-
bined or parallel analysis of music and images e.g.[25, 5]. In
addition to the described techniques the specialty of Cho’s
approach [25] is the interactive Genetic Algorithm that al-
lows user interaction and continuous learning and optimiza-
tion of classification parameters. This approach was de-
signed as a human computer interface for music and image
retrieval with user interaction. This procedure is not appli-
cable for the use cases of this publication.
Chen et al. [5] present an approach for music and image
mood classification with the application to generate an ac-
companying visualization for music. They adapt the 12
mood categories of Wu and create a ground-truth image
set for training with a varying number of images per mood
e.g. sad (11), easy (125), happy (62) or exciting (25). By
using a Bayesian classifier and unlabeled images the num-
ber of training samples was increased with the compromise
that this classifier has an accuracy of only 47% so that every
second additional trainings item is wrong. Supposably rea-
soned by that restriction the final evaluation was performed
as a user test to measure the user perception of coordination
(connection music/image), interestingness (presence style),
colorfulness (enrichment of audio by images) in compari-
son to a Microsoft Media Player visualization and a random
photo slideshow. This user test reveals an increased user ex-
perience of the mood based combination of music and photos
which is an important finding. Nevertheless it lacks an au-

tomatic and reproducable quantitative evaluation for com-
parison of ongoing development in other research groups.

2.3 Ground-Truth
One key challenge in the evaluation of mood classifica-

tion is to have a ground-truth that can be used by differ-
ent research groups to compare their results. The difficulty
of annotating mood lies in its subjectiveness in contrast to
technologies like face detection. Within the related work de-
scribed in section 2.2 different media sources are mentioned
e.g. private CD collections. Besides [27] who uses the US-
POP CD collection no reproducible music data is referred
to. For the image data usually downloads from the Internet
are taken but without a traceable reference. Besides the me-
dia sources, also the media types or genre are quite different
e.g. Classic[20, 19], Jazz [15] or film sound tracks without
singing voice [17]. Used types of images are paintings [28]
or photos of the daily life [5].
For generating the ground-truth by labeling the media data
with mood tags usually a small number of persons is in-
volved. This can be students [29] or experts [20, 30] and
sometimes people with different nationalities [16]. Chen et
al. [5] are using an online tagging system where 496 persons
labeled 398 images.

The commonality of all reviewed publications is the lack
of a golden standard for the ground-truth that allows a com-
parison of individual algorithms. Furthermore, a joint mood
concept for photos and music is missing which can be used
for tagging both, music and photos, and which allows all
kinds of the above described use cases. Especially a mood
model and an associated multi-modal classification approach
for visualizing music and image items in the same user in-
terface is missing.

3. MOOD CLASSIFICATION
Within this section the generic multi-modal mood classi-

fication framework is presented beginning with the selection
of an appropriate mood model.

3.1 Mood Model Selection
The mood concepts introduced in section 2.1 provide a

basis for the decision about which model is the best for our
multi-modal mood classification approach. Due to the fact
that there are numerous list-models with different numbers
of items and diverse moods it is difficult to determine which
concept refers to a complete and correct mood model. A di-
mensional approach is not automatically complete but it is
complete and logical inside its area or space. Based on the
mood area which is spanned by the mood dimensions the
number of individual mood categories can be decreased or
increased e.g. by choosing one or four moods per quadrant.
A one-dimensional model would not be sufficient because
e.g. the character of a high aroused state can vary from
positive arousal (joy) to negative arousal (anger). Finally,
the two-dimensional Reisenzein model has been chosen, be-
cause valence and arousal ”‘account for most of the indepen-
dent variance in affective responses” [31]. Three-dimensional
models increase the complexity without need and would ex-
pand a possible navigation user interface from a common 2D
to a non-intuitive 3D interface.
Also, numerous studies have shown that emotions selected
by audio or visual media can be mapped onto an emotion
space with the dimensions arousal and valence [31]. Another
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point that confirms the choice of this model is the fact that
attributes of activation/ deactivation and positive/ negative
quality are expressed by features in pictures or music.

Mood expression in Images and Music
The aspect of arousal/ non-arousal in a picture can be visu-
alized by color, saturation, lightness and the orientation and
character of lines. So called warm colors like red and orange
are more active than passive colors like blue and turquoise
[32]. Activity emerges from diagonal lines, whereas horizon-
tal lines do express calmness [33]. Pleasure/ displeasure is
expressed by the lightness of the color. Bright colors create
a positive and friendly mood whereas dark colors create a
gloomy impression [32].
High activation in music can be generated by fast tempo,
frequently variations of tempo, high dynamic changes, high
pitch range and bright timbre. Pleasure in music is created
by fast tempo [34].

unpleasant pleasant

arousal

non-arousal

aggressive euphoric

calmmelancholic

Figure 3: Reisenzein or valence/arousal model with
labeled affect area (derived from [31])

Mood Dimensions and Categories
Physiological experiments have shown that only a part of the
area of the two-dimensional valence-arousal model equates
a human emotion [31] as depicted in Fig. 3. This raises the
following questions: How many moods per quadrant should
be chosen? Should the number of moods per quadrant de-
pend on the size of the ”affect space”? From which point of
the area should the moods be picked? Because the answers
to these questions are quite complex a simplified approach is
to pick one mood per quadrant. Then the moods are named
by the extreme values of one quadrant. This should assure
that the single items are clearly distinguishable from each
other. The following four discrete moods (one per quad-
rant) have been chosen: aggressive, melancholic, euphoric
and calm (see Fig. 3).
The selection of the two dimensional mood model and its
four categories can easily be mapped into each other and
therefore keeps the feasibility for all defined use cases. Within
this publication we concentrate on the four categories of the
mood model.

3.2 Audio and Visual Features
In the field of multimedia information retrieval, features

are measurable properties representing the media objects
they are computed from. These descriptors have to meet
the requirements to be relevant with respect to human per-

ception while being robust and computable with reasonable
effort.

Audio
Audio low-level features like the MPEG-7 Audio Spectrum
Flatness descriptor [35], being directly extracted on frequency
bins, are the basis for state of the art robust audio identifica-
tion applications [36]. Since these low-level approaches lack
semantic information, mid-level features are able to provide
higher cognitive properties such as tempo, tonality, syncopa-
tion or melody grouping. Combining both kinds of features
is successfully adopted in the fields of music similarity com-
putation [37]. The presented strategy is pursued in this work
for classifying the mood of a piece of music as a high-level
semantic description. To represent the sound based musi-
cal attributes, the low-level features Normalized Loudness,
Audio Spectrum Flatness, Spectral Centroid, Spectral Crest
Factor and MFCC are combined with 3 MFCC based tim-
bral mid-level features. Four rhythmic mid-level features
based on Audio Spectrum Envelope represent the tempo
based musical attributes. Altogether a set of five low- and
seven mid-level features is used resulting in a total feature
vector dimensionality of 219. A feature vector is extracted
every 2.56 seconds representing an audio snippet of 5.12 sec-
onds length to ensure a high temporal resolution.

Visual
The visual descriptors mainly consist of low-level features
that cover the color and structure domain similar to algo-
rithms reviewed in 2.2. Due to peculiarities of the classi-
fication approach the overall feature vector dimension for
images should be less then the number of samples available
for training. Therefore, we developed a Color Histogram fea-
ture which is calculated in the Hue Saturation Value (HSV)
color space with an individual quantization of each chan-
nel to H-8, S-4 and H-4 bins, similar to the MPEG-7 Scal-
able Color Descriptor[35]. This feature covers the properties:
brightness/darkness, saturation/pastel/pallid and the color
tone/hue. To describe the structure or horizontal/vertical
frequencies we developed a Haar Wavelet feature which de-
scribes the mean and variance of the energy for each band.
Applying three wavelet decompositions for three orienta-
tions the feature vector dimension is 18. As an additional
color oriented feature we developed a Color Temperature
Histogram which is based on a first k-means clustering of all
image pixels in the LUV color space. Afterwards, the color
temperature of each centroid is calculated and a histogram
with 8 color temperature bins in the range from 1.500 to
20.000 Kelvin is setup. This feature describes the warm/cool
impact of images. The concatenated image feature vector
has a dimensionality of 42.

Dimension Reduction
A widely used method to improve discriminability among
classes while reducing the feature dimension is the Linear
Discriminant Analysis (LDA) [38]. This linear transforma-
tion maximizes the ratio of between-class variance to the
within-class variance thereby guaranteeing maximal sepa-
rability. The resultant N × N matrix T is used to map a
N -dimensional feature row vector x into the subspace y by a
multiplication. Reducing the dimension of the transformed
feature vector y from N to D is achieved by considering only
the first D column vectors of T (now N ×D) for multipli-
cation. Within our classification framework the number of
D will be optimized for the special classification tasks.
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3.3 Classification Models
There are two general classification approaches, a gener-

ative and a discriminative one. Both allow to classify un-
known multimedia objects into different classes with a cer-
tain probability depending on the training of the model and
the extracted features from the data.
Generative probabilistic models describe how likely a mul-
timedia object belongs to a certain class of multimedia ob-
jects. These models form a probability distribution over the
object’s features, in this case over the audio and image fea-
tures presented in section 3.2, for each class. In contrast,
discriminative models try to predict the most likely class di-
rectly instead of modeling the class conditional probability
densities. Therefore the model learns class boundaries be-
tween different classes during the training process and uses
the distance to the boundaries as indicator which class is the
most probable for the given data.
In the research community, there are different opinions about
what approach to pursue. Supporters of the discriminative
approach argue that ”one should solve the problem directly
and never solve a more general problem as an intermedi-
ate step.”[39]. In favour for the generative approach is the
fact that discriminative models do not take prior informa-
tion into account and that all classes have to be considered
simultaneously.[40]
For the proposed multi-modal mood classification, we in-
vestigate and evaluate both approaches. As a generative
probabilistic model, a Gaussian Mixture Model is used. The
discriminative classifier is a Support Vector Machine.

Gaussian Mixture Model (GMM)
For classifying a multimedia object by a GMM, one as-
sumes that the single objects are generated by a mixture of
Gaussian sources. By estimating the model parameters of
the GMM, information about which mixture models which
mood class can be obtained and can be used to separate
the multimedia objects. The Gaussian distribution repre-
sents a set of independent data samples by its mean µ and
variance σ2 using the Gaussian probability density function.
It is very useful to describe datasets with unimodal densi-
ties, but fitting a Gaussian to multi-modal datasets gives
a mean value in an area with low probability and an over-
estimated variance. The idea of mixture models is to use
a mixture of Gaussians, realized by linear superposition of
Gaussian distributions. Data samples are thought of as orig-
inated from various sources and each source is modeled by
a single Gaussian. Therefore, mixing coefficients P (c) are
introduced, that could be understood as prior probabilities,
in which every source is present. Regarding a mixture of M
Gaussians, the finite mixture density p(x) is described as:

p(x) =

M∑
i=1

P (ci)
1

σi
√

2π
e
− 1

2
(x−µi)

2

(σi)
2 (1)

The number of Gaussians M can be optimized within the
proposed framework.

Support Vector Machine (SVM)
A SVM attempts to generate an optimal decision boundary
(margin) between classes based on a set of labeled training
feature vectors. The hyperplane that separates the classes is
optimized in the sense that a maximum margin between the
plane and the classes is achieved. In this work the publicly
available library LIBSVM [41] is used which allows non-
linear hyperplanes for class separation. We utilize the Radial

Basis Functions (RBF) kernel:

K(x,y) = e−γ‖x−y‖2 (2)

The LIBSVM allows an optimization of the kernel parameter
γ and the penalty parameter CSVM during training.

3.4 System Architecture
This section gives an overview of the overall system ar-

chitecture used for the classification of audio and image me-
dia objects (Fig. 4). Due to the multi-modal approach,
the main design requirements are universality and flexibility
concerning the independence of media types and the selec-
tion of features and classification models. Both, the training

GMM & SVM

LDA

Media Objects
  Reference Set                         Test Set

Training

Dimension 
Reduction

Feature
Extraction

Model
Generation

Classification

Dimension 
Reduction

Feature
Extraction

Classification

Figure 4: System block diagram

and the classification step, are divisible into 3 independent
parts: feature extraction, dimension reduction and train-
ing/classification. The feature extraction is sufficiently de-
scribed in the sections above. Additionally, an optimization
step extends the training process.

Training
The feature extraction is done by a modular signal process-
ing engine that is configurable for any type of media. The
output is a binary file containing all extracted features for
each media object. During the training step, the feature files
for each class/mood are read by the system to perform the
LDA. The resulting transformation matrix is saved for the
use in the classification step while the transformed features
are processed by the different training modules to generate
the GMM and SVM models that are also saved for the clas-
sification step.

Classification
When defining the mood for an unclassified multimedia ob-
ject of interest, the appropriate features are extracted first.
After transforming the features into the LDA space, the clas-
sification with the GMM and SVM models is performed with
resulting probability values for each mood. The classifier
model probability values are normalized to a sum of 100%.
The mood with the highest probability is voted as classified
concerning its normalized probability as confidence C. In
our experiments we use a confidence threshold value Cthr
for rejecting classifications.

Optimization
Since the LDA and the different classification models come
along with a set of various parameters, the system is de-
signed to find an optimum parameter set in a 5-fold cross-
validation routine. Within this step, the main training set
is additionally divided into reference and test set according
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to a Monte Carlo method while knowing to which mood a
certain media item belongs. The test set is then classified
against the models generated from the reference set. In an
iteration loop, the LDA and classifier model parameters are
now altered within predefined limits to repeat the Monte
Carlo method in order find the optimum configuration.

approach D M γ CSVM
Image GMM 5 6 - -
Image SVM 5 - 0,00276 90,5
Audio GMM 4 4 - -
Audio SVM 5 - 2,8284 90,5

Table 1: Optimized parameters for all classifiers

Table 1 shows all optimized parameter values: feature di-
mension D of the LDA transformation (see section 3.2 ), the
SVM parameters γ and CSVM (Eq. 2) as well as the number
of Gaussians M within a GMM (Eq. 1).

4. EVALUATION
Both classifiers that were introduced in section 3.3 were

tested in our framework for their use in the application of
separating moods in images and music. For every mood
(aggressive, melancholic, euphoric and calm) a training and
a test run were processed while optimization was performed
within the training step.

4.1 Evaluation Measures
In order to measure the classification performance we use

three kinds of result preparations. Since we have no true
negative ground-truth we incorporate the number of correct-
classifications CC, the number of mis-classifications MC
and the number of rejected or unclassified test items UC.
The first measure is the overall accuracy for all moods with-
out rejecting: accuracy = CC

CC+MC
. The second prepara-

tion is the confusion diagram which shows the CC and MC
for each mood class and each approach without rejecting,
see Fig. 5. The third measure is the precision-recall (PR)
curve which covers the rejecting capabilities by utilizing the
varying threshold value Cthr for the normalized classifica-
tion confidence C to reject classifications. The parameter
Cthr varies between 25% and 95% with respect to a lowest
normalized confidence maximum of 25% using four classes
and only a small number of remaining classifications with
above 95% confidence. Precision and recall are calculated
as: precision = CC

CC+MC
, recall = CC

CC+MC+UC
.

4.2 Reference Set
Generating a reference set for multi-modal mood classifi-

cation was one of the key challenges and goals of this work.
We decided to utilize a two step mechanism for generating
the reference set, first collecting already tagged data and
second a personal review step to validate the tags. While
collecting data we concentrated on music and images files
that are publicly available on the Internet and most often
under creative commons license.
The images are completely taken from flickr (Photo com-
munity: flickr.com) using several search keywords per mood
e.g. aggressive: tension, anger, crude, evil, hell; euphoric:
color, active, great, euphoria; calm: mellow, calm, joyful;
melancholic: sad, contemplation. Based on that process we

generated a list of about 300 images per mood. For the music
collection we searched various online music platforms (e.g.
last.fm, tonspion.de ...) for freely available music, partly
direct from different band websites. We considered music
from a broad range of genres e.g. Electronic, Metal, Indie,
Pop, Reggae, Rock or Techno to get a mixture of popular
music with a high variance of characteristics.
For the personal review step three persons reviewed all pho-
tos and songs. If one person gave a veto the media item was
rejected. As a result of this procedure a collection of 100
music files and 100 photos for each mood are available. The
reviewing process underlied two requirements: only one song
per artist is chosen and images with a mood impact caused
by semantic aspects are avoided. These requirements were
not completely feasible. We got seven artists that are present
with two songs each and some images have partly semantic
impacts. Finally, we divided each mood set into a defined
training and a test set each with 50 media items.

4.3 Results and Discussion
In this section we present the results of the classifica-

tion experiments by discussing the three result preparations:
overall accuracy, confusion diagrams and PR curves.
The mean recognition rates of our framework are: GMM/
Audio - 48,5%, SVM/Audio - 48,5%, GMM/Image - 44%
and SVM/Image - 53,5%. These results seem to be worse
compared with examples of the reviewed approaches espe-
cially when keeping in mind that a random approach achieves
25%. On the other hand it suggests that our reference set is
very heterogenous. But this heterogeneity is needed to cover
the different interpretations of mood of various users. Sum-
marizing the overall results, each approach returns a correct
classification for every second query.
A more detailed examination of the heterogeneity allows the
confusions illustration depicted in Fig. 5. Especially for mu-
sic we can see worse results and a high confusion of euphoric
and calm moods which indicates a particular heterogeneity
of these mood data sets The best results could be achieved
for aggressive and melancholic music with an accuracy of
about 68% and 58% which let assume that these moods are
the most clear ones. We have to point out that the moods
euphoric and calm were three of four times more often mis-
classifed than correctly classified. During a random subjec-
tive verification of the false classifications we noticed that
many songs consist of different parts e.g. chorus and verse
with quite different mood impacts. This problem should be
concerned in future activies.
The image classification confusion is less than in music clas-
sification and the correct mood achieves the best results on
each set. Nevertheless, calm seems also to be more prob-
lematic and confusable with melancholic images. Note that
there is a low confusion of euphoric and melancholic images
which could be explained by their opposite impression.
The final examination of the results is considered in the PR
curve (Fig. 6), which depicts the recognition as well as the
rejecting performance of the classification approaches. The
diagram shows quite non-straight-line curves for each setup.
This indicates that the number of test data, 200 items per
setup, is not sufficient for a statistically reliable analysis and
also substantiates the thesis of the high heterogeneity of the
test data. Nevertheless, the typical curve with increasing
recall while decreasing precision and vice versa is identifi-
able. The overall best classification results seems be the

102



Aggressive Euphoric Calm
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SVM Audio

 

 

Aggressive Euphoric Calm Melancholic  
0

0.1

0.2

0.3

0.4

0.5

0.6

cl
as

si
fie

d 
gr

ou
nd

-tr
ut

h 
(c

or
re

ct
+c

on
fu

se
d)

 in
 %

GMM Audio

 

 

Euphoric
Calm
Melancholic

Aggressive Euphoric Calm Melancholic
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SVM Image

 

 

Aggressive Euphoric Calm Melancholic
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
GMM Image

 

 

Melancholic
Aggressive

0.7

ground-truth test sets 
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SVM/Image setting with the most often highest curve. A
final statement for a better classifier scheme, generative or
discriminative, cannot be given. But the PR curves and the
knowledge about the reference set implies better results by
a GMM in more heterogeneous data and by a SVM in more
homogeneous data.

5. CONCLUSION AND FUTURE WORK
A perfect mood classification is not yet possible and will

presumably never be possible due to the subjective impact of
mood to individuals. Nevertheless, this paper contributed a
review of various mood models and the selection of a univer-
sal dimension and category-based model. The mood model
allows an easy mapping of dimension and category model
type and a multi-modal use for all given use cases in this pub-
lication. A generic classification framework was presented
that has the capability to process images and music in a

parallel manner and allows an optimization of different sys-
tem parameters. A novel reference set for music and photo
mood classification was presented which can be used by dif-
ferent research groups for comparing their results. While
dividing the reference set into fixed training and test set
and applying the classification approaches in a well defined
way a baseline evaluation for multi-modal mood classifica-
tion for further comparisons could be achieved. Even if the
results show that the reference data are not enough or not
detailed enough annotated they can be used in combination
with the results at least as a baseline e.g. for a new task
within a multimedia retrieval benchmarking contest.
Summarizing the results, different topics in the field of multi-
modal mood classification need to be addressed in the future.
First, more mood specific features for music and photos are
needed. Additional classifiers should be integrated in the
classification framework. The evaluation workflow should
be extended to a Monte Carlo approach. Then multiple ref-
erence data combinations as training and test sets are setup
and more reliable results are generated through the usage of
the average recognition rate. Furthermore, the reference set
needs to be extended and more detailed annotated e.g. with
multiple moods per item or a segment-wise annotation for
music. Finally, investigation of user specifiable mood cate-
gories could lead to valuable applications by taking care of
individual mood perception of the users.
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APPENDIX
A. REFERENCE DATA SETS

The links to all reference items and the constellation of
trainings and test sets are available from the authors for
research and comparison. The media items cannot be pro-
vided.
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