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Distributed Classification of Traffic Anomalies
Using Microscopic Traffic Variables
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Abstract—This paper proposes a novel anomaly classification
algorithm that can be deployed in a distributed manner and uti-
lizes microscopic traffic variables shared by neighboring vehicles
to detect and classify traffic anomalies under different traffic
conditions. The algorithm, which incorporates multiresolution
concepts, is based on the likelihood estimation of a neural net-
work output and a bisection-based decision threshold. We show
that, when applied to real-world traffic scenarios, the proposed
algorithm can detect all the traffic anomalies of the reference test
data set; this result represents a significant improvement over our
previously proposed algorithm. We also show that the proposed
algorithm can effectively detect and classify traffic anomalies even
when the following two cases occur: 1) the microscopic traffic
variables are available from only a fraction of the vehicle popu-
lation, and 2) some microscopic traffic variables are lost due to
degradation in vehicle-to-vehicle (V2V) or vehicle-to-infrastruc-
ture communications (V2I).

Index Terms—Distributed traffic monitoring, freeway segments,
incident precursors, microscopic traffic variables, traffic anoma-
lies detection, vehicle to infrastructure (V2I), vehicle to vehicle
(V2V).

I. INTRODUCTION

THE FIRST step in detecting the possible emergence of
traffic incidents is to identify traffic anomalies, which are

defined in this paper as traffic patterns that do not conform to
expected behavior [1]–[3]. Once the detected abnormal traffic
pattern has been identified, information with regard to its po-
tential impacts can be disseminated to individual drivers and
traffic management centers, such as the Advanced Traveler In-
formation System and Advanced Traffic Management System,
so that the appropriate proactive strategies for minimizing the
response times, clearing the roadways, and recovering traffic
conditions back to normality can promptly be set in place.
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Recent advances in vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) wireless communications have increased
the potential of real-time measuring and processing of micro-
scopic traffic variables from vehicles in a distributed manner.
Distributed monitoring in this paper refers to the process by
which traffic anomalies are detected and classified by local
vehicles themselves and/or roadside infrastructure based on
local traffic information on the road segment of interest, without
the need to send traffic information to a traffic management
center. We will refer to these local vehicles and/or roadside
infrastructure as nodes in the remainder of this paper.

Recent studies have attempted to develop algorithms to de-
tect traffic anomalies that lead to traffic disruptions, commonly
referred to as incident precursors [4]–[6], an incident that is
a nonrecurring major traffic disruption whose occurrence is
usually unexpected and random [7]. However, because most of
these algorithms are based on macroscopic traffic variables de-
rived only from roadside infrastructure, such as loop detectors,
their effectiveness largely depends on the relative location of
the anomaly with respect to the loop detectors. If a disruption
takes place far from the loop detector location, the anomaly
may not be detected, or a long delay may occur before the
anomaly is identified. On the other hand, microscopic traffic
information that is obtained from vehicles has the advantages
of coverage and sensitivity to support distributed anomaly
detection schemes. The results presented in this paper and in
previous findings [1], [8] strongly suggest that algorithms that
can use available microscopic traffic variables for anomaly
detection and classification are worth developing. In this paper,
we present a novel algorithm that can detect traffic anomalies
in a distributed manner.

To use microscopic traffic information in a distributed man-
ner, an algorithm has to, at the very least, possess the following
properties. First, the algorithm needs to be deployable on a
local node, where there may be limited local storage and
communication capabilities. Second, an anomaly detection and
classification algorithm not only needs to detect different types
of traffic anomalies but should also minimize the false-alarm
rate (FAR) and hence reduce emergency response costs. Third,
an early warning signal has to be available as fast as possible
to give enough lead time to operations/management personnel
to initiate appropriate emergency responses before the anomaly
evolves into a major traffic disruption. Here, we note that
previously proposed algorithms have been assessed on maxi-
mizing the detection rate (DR) but not properly tested on FAR
and mean time to detection (MTTD) [4]. Last, the algorithm
should be adaptable to different traffic conditions such as a
low-flow low-speed condition during rush hours and a low-flow
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high-speed condition during daytime periods. Most of the exist-
ing algorithms use a prespecified time window (5 min in [4] and
8, 3, and 2 min in [6]), which is chosen to maximize the differ-
ence between traffic variables under anomalous conditions and
those under normal conditions. We have shown in [1] and [9]
that the effectiveness of an anomaly detection algorithm of this
type is highly dependent on the choice of the size of its time
window. That is, longer time windows are needed to capture
changes under low-flow high-speed conditions, and vice versa.
Therefore, to be deployable, an anomaly detection algorithm
based on microscopic traffic variables needs to identify differ-
ent types of traffic anomalies under different traffic conditions.

In this paper, we propose a novel anomaly detection and
classification algorithm that uses microscopic traffic variables
and exhibits significant performance improvement over the
algorithms presented in [1]. Unlike other previously reported
approaches [4], [6], where a particular interval prior to inci-
dents has to be selected to calibrate the models, the proposed
algorithm can be trained over different ranges of intervals prior
to incidents and can then be deployed to monitor different time
periods of the day to detect traffic anomalies. We also assess the
potential of deploying the algorithm in V2V and V2I environ-
ments, where only a fraction of individual vehicle information
might be available at a given time due to limitations in the
transmission mediums and/or loss of data due to transmission
delays [10].

This paper is organized as follows. A review of related
studies is provided in Section II. Section III describes the as-
sessment framework, and the proposed detection methodology
is presented in Section IV. In Section V, we use real-world data
to demonstrate the effectiveness of our proposed algorithm in
the detection and classification of anomalies, and final remarks
and future work are outlined in Section VI.

II. RELATED WORK

A. Anomaly Detection and Classification Using Macroscopic
Traffic Variables

Macroscopic traffic variables that represent aggregated be-
havior of vehicles are derived using an analogy with fluid
dynamics, and the relationships between these variables are
described in the classical Lighthill–Whitham–Richards model
[11]. Basic macroscopic traffic variables, derived from induc-
tive loop detectors, notably flow and occupancy, have exten-
sively been employed for traffic incident detection, focusing on
detection after a major disruption of traffic has occurred [7],
[12]. Recently, a number of studies have suggested that it is
worth attempting to detect traffic anomalies prior to the occur-
rence of an incident [4], [6]. The majority of these studies have
shown that measurements of speed deviation can be used as
precursor signals of a traffic incident. Unfortunately, one of the
main problems with all these approaches is that measuring the
variation of speed at a specific location lacks the microscopic-
level characteristics that could capture individual vehicle
interactions over time; the spatial–temporal microscopic char-
acteristics will be lost once the vehicle passes the detector
location.

B. Anomaly Detection and Classification Using Microscopic
Traffic Variables

Microscopic traffic variables describe individual vehicle be-
haviors and their interactions and are known to provide fine-
grained information about individual vehicles ([11], [13]).
However, few studies have employed microscopic traffic vari-
ables for anomaly detection. The study in [14] is among the
first to use relative speed and intervehicle spacing to derive a
reliability model for freeway traffic flow, but the model itself is
used with macroscopic traffic variables, e.g., flow and density,
and no algorithm is suggested for anomaly detection.

Relative speed, intervehicle spacing, intervehicle time gap,
and lane-change tracking are microscopic traffic variables that
have been used for anomaly detection [15]–[17]. In [15], lane-
changing fractions that were estimated from loop detectors
are used for incident detection, but the effectiveness of this
approach depends on the loop detector locations. In VGrid
[16], each vehicle uses only its local information to deter-
mine whether it is in a queue and, if so, communicate this
information to other vehicles. A more recent system called
WILLWARN uses onboard sensors to measure microscopic
information (e.g., wheel speed and reduced friction) to de-
tect possible hazards [18]. However, the information shared
among vehicles is normally restricted to hazard-warning mes-
sages. Both VGrid and WILLWARN are not explicitly as-
sessed in terms of FAR as to whether they can effectively use
shared microscopic traffic variables for anomaly detection and
classification.

Recently proposed anomaly detection systems, i.e., VII-
SVM, VII-ANN [19], and NOTICE [17] have been designed to
use the speed profile and lane-changing behavior of individual
vehicles. However, to obtain such fine-grained information,
these systems require a specific infrastructure that consists of
sensors and wireless transceivers that are uniformly installed
on each road segment [17], [19] and/or on each lane [17]. Such
requirements are likely to limit the deployment of VII-SVM,
VII-ANN, and NOTICE, because they are not scalable with
typical traffic-monitoring systems.

We recently proposed two algorithms that use the variability
of microscopic traffic variables from V2V and V2I commu-
nications for anomaly detection, even when the information
is available only from a fraction of vehicles on the segment
[1], [9]. In [9], the algorithm uses relative speed and lane-
changing trajectories to detect anomalies that were caused by
blocked lanes, and this algorithm outperforms the algorithm
in [15] under low vehicle density. We have also shown that
the algorithm in [1] can detect anomalies in a real-world data
set and outperforms the algorithms in [4] and [15], but its
performance misses certain anomalies that occur under high
vehicle density.

III. ANALYSIS FRAMEWORK

In this paper, we introduce a distributed traffic-monitoring
framework that can be supported by the information shared
among neighboring vehicles. This information would enable
the calculation of microscopic traffic variables statistics to
detect and classify anomalies on a short road segment (e.g.,
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Fig. 1. Transient anomaly caused by a pedestrian on the shoulder of a freeway
segment.

100–200 m [20]) and within a short time interval (e.g., 5–30 m
[21]). The relevant information (e.g., instantaneous speed and
position) would be measured by vehicles that share information
through automotive navigation systems and wireless commu-
nications [16], [22]. Alternatively, the microscopic traffic in-
formation could be inferred from currently available roadside
infrastructure, e.g., video closed-circuit television surveillance
cameras [23].

In the proposed framework, an anomaly detection model
H = {F,C,D} is stored and can be locally activated when
vehicles are present on the segment of interest. H generally
consists of the following three entities, which have been trained
with historical data: 1) F denotes a feature extraction model;
2) C denotes a classification model; and 3) D denotes a
decision-making model. The parameters of model H can be
downloaded by the vehicles on the segment or used by a local
roadside infrastructure itself for anomaly detection. The input
to the model consists of the microscopic traffic variables that
can be calculated and shared among individual vehicle and the
closest vehicle(s) downstream whose information is available at
the time of interest.

In this paper, we consider the following two types of anoma-
lies: 1) transient anomalies, and 2) disruption precursors. Tran-
sient anomalies are defined as deviations of traffic patterns that
may be followed by minor disruptions to the traffic flow. One
example of a transient anomaly is shown in Fig. 1, where an
unexpected appearance of a pedestrian on the freeway shoulder
causes distraction and a temporary drop in speed. Disruption
precursors are defined as traffic patterns that may lead to a
major disruption of the underlying traffic flow. This type of
anomaly has received much attention, primarily in cases where
it is associated with accidents [4], crashes [6], or congestions
[5], [7]. Fig. 2 shows an incident that has evolved from a lane
blocking and disrupts the traffic flow. The aim in this paper is to
develop an algorithm that can identify the onset of both types of
traffic anomalies as the first step toward detecting, classifying,
and predicting the impact of the incident so that an appropriate,
proactive, neutralizing, and coordinated set of actions can be
initiated.

Fig. 2. Disruption precursor caused by a truck that blocked a lane.

Fig. 3. Proposed anomaly detection and classification methodology.

IV. METHODOLOGY

A. Overview of the Proposed Algorithm

The proposed algorithm is based on the observation that a
traffic anomaly can be detected by monitoring the changes in
the behavior of individual vehicles (e.g., deceleration and lane
change), which would be reflected in changes in the variability
of the observed microscopic traffic variables [1]. More recently,
it has also been suggested that microscopic traffic variables
analysis could be used to identify incident precursor phases [8].

The proposed anomaly detection scheme can be divided into
major blocks or stages, as depicted in Fig. 3. The process starts
with the feature extraction stage, which performs the conversion
of the original traffic variables into features that are abstract
representation of those variables and contain all the essential
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information for the detection task. In this paper, the feature
extraction step is based on the use of a wavelet-based filter. For
that purpose, each variable is initially decomposed into low-
and high-frequency components. Then, the small coefficients
of the high-frequency components that are less correlated with
the original microscopic signals are removed, and finally, the
filtered signal is reconstructed. In the next block, referred to
as feature classification, every new measurement of the mi-
croscopic variables is assigned to a specific class according to
the characteristics of the reconstructed filtered signals. In this
paper, a multilayer feedforward neural network (MLFFNN) is
selected for the feature classification model based on the pre-
vious performance [24], [25]. The reconstructed time series of
microscopic statistics are then used as inputs for the MLFFNN.
The outputs of MLFFNN represent degrees of likelihood
between 0 and 1, and hence, a threshold is needed to discover
and classify an emerging anomaly pattern. Here, we use a
bisection-based decision threshold [26], which is optimized
over different traffic conditions to enhance the adaptability of
the proposed algorithm. An alarm is raised if the MLFFNN out-
puts exceed the bisection-based decision threshold for a certain
number of consecutive samples [persistency (PT)]. Finally, the
alarm times and the outputs from MLFFNN are used to classify
the detected traffic anomalies.

B. Inputs Description

The microscopic traffic variables used in this paper for
anomaly detection are listed as follows.

• Intervehicle spacing: si,n = xi−1,n − xi,n, where xi,n is
the position of a vehicle i at time n;

• Relative speed: vi,n = wi−1,n − wi,n, where wi,n is the
speed of a vehicle i at time n;

• Interarrival time ai: The interarrival time is defined as
the difference between the arrival time to the beginning
of a segment of interest of a vehicle i and of the previous
vehicle i− 1 that has arrived;

• Interdeparture time di: The interdeparture time is defined
as the difference between the arrival time to the end of a
segment of interest of a vehicle i and the arrival time of the
previous vehicle i− 1.

We select as statistics of interest the standard deviations
of relative speed, interarrival time, and interdeparture time of
vehicles to track changes in variability. To further enhance
the learning capabilities of the algorithm under different traf-
fic conditions and with different vehicle density, we select
the mean of intervehicle spacing to track changes in vehicle
density [27].

C. Feature Extraction

The effectiveness of the anomaly detection algorithm is first
determined by the representativeness of the features and how
efficiently they can be extracted and identified. Our analysis
with a real-world data set in [1] has shown that some anomalies
may have weak amplitudes, and in some cases, the boundary
between normal and anomalous behavior cannot clearly be
distinguished. In addition, changes that are associated with

anomalies can occur under different time scales, depending
on the underlying traffic conditions. Because we intend to
deploy the algorithm in nodes that might have limited storage
and communication capabilities, the feature extraction model
has to be minimal. Hence, the process of feature extraction is
performed by the use of wavelet transforms, which is a well-
known technique for the analysis of signals with multiscale
behavior [2]. Discrete wavelet transform (DWT) is chosen,
because it can represent information signals with orthogonal
wavelet basis, which minimize the number of associated rep-
resentative coefficients [28]. Furthermore, DWT can represent
the original signal using wavelet detail coefficients (fine-scale
information) and approximation coefficients (coarse-scale in-
formation), which would enhance the ability to extract changes
in microscopic traffic variables associated with different time
scales. In the proposed scheme, DWT is used to individually
filter relevant components of the four input microscopic traffic
variables described in Section IV-B. The output of the filtering
process is the reconstruction of each of these microscopic traffic
variables using only the approximation coefficients and the
wavelet coefficients that are highly correlated with the original
signal.

Based on the DWT framework, a signal y(n) is decom-
posed into levels of approximations and details to form a
multiresolution analysis of the signal as follows: y(n) =∑

k aJ,kφJ,k(n) +
∑

m≥J

∑
k dm,kψm,k(n), where J , m, k ∈

Z, aJ,k denotes the approximation coefficient at resolution J ,
dm,k denotes the wavelet coefficient at resolution m, φJ,k(n)
is a scaling function, and ψm,k(n) is a wavelet function at
resolution m. The coefficients aL,k and dm,k are computed
as follows: aJ,k = 〈y(n), φJ,k(n)〉, dm,k = 〈y(n), ψm,k(n)〉m,
k ∈ Z, where the operator 〈.〉 denotes the inner product in
the space of square integrable functions J2(R). The dyadic
DWT assumes scaling functions φ and wavelet functions ψ of
the following form: φm,k(n) = 2m/2φ(2mn− k), ψm,k(n) =

2m/2ψ(2mn− k)m, k ∈ Z. In particular, DWT is used to
obtain the approximation coefficients aL,k and wavelet coef-
ficients dm,k, whereas the process of reconstructing the signal,
given such coefficients, is called the inverse DWT. In practice,
the dyadic DWT can be implemented in a computationally
efficient manner using the dyadic filter tree algorithm [28].

D. Feature Classification

Identifying anomalies can be a difficult task due to possible
nonlinear relationships between patterns of microscopic traffic
variables and classes (normal, transient anomaly, and disruption
precursors) [1]. These relationships could become even more
complex when there is a change in the underlying traffic condi-
tion, because a sample of microscopic traffic variables that are
associated with one class in one traffic condition may belong
to another class in another traffic condition. To capture such
nonlinear relationships, an MLFFNN is selected for feature
classification, because once properly trained, MLFFNN has
often been found to perform well in classifying traffic patterns
when deployed on site [24], [25], [29].

For a classification problem, the primary task of MLFFNN is
to learn a classification function as follows: C : Y → O, where
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Y = {yin} is a set of input to the ith node in the input layer
of MLFFNN, and O = {okn} is an output vector from the kth
node in the output layer at time n [30]. Let wij denote the
weight for the connection from node i in the input layer to
node j in the hidden layer and vjk denote the weight for the
connection from node j in the hidden layer to node k in the
output layer. A sigmoid function, SIG(x) = 1/(1 + e−x), is
used as a transfer function in the nodes in both the hidden and
output layers, which can be represented as

zjn =SIG

(∑
i

wijyin

)
(1)

okn =SIG

⎛
⎝∑

j

vjkzjn

⎞
⎠ . (2)

Based on the preliminary assessment of the algorithm with
the training data set, MLFFNN with two hidden layers is chosen
for feature classification. Let m0, m1, m2, and m3 denote the
number of neurons in the input layer, the first hidden layer, the
second hidden layer, and the output layer of the proposed algo-
rithm, respectively. Because there are four microscopic traffic
variables for input, the input layer consists of four neurons, i.e.,
m0 = 4. The number of neurons in each hidden layer is chosen
as a function of the number of microscopic traffic variable
inputs, with the aim of balancing between not having too few
neurons (e.g., the capability to model nonlinear mapping) and
not having too many neurons (e.g., the problems of excessive
time-consuming and having too many local minimums). We
choose the same set up as shown in [25] and [31], where
m1 = m2 = 3 ∗m0 + 1. Each element in the output of the
MLFFNN, {o1n, o2n}, is set to be between 0 and 1, which would
require a decision-making threshold to classify whether the
output corresponds to an anomaly.

E. Decision Algorithm for Anomaly Detection

It is crucial that, during the training process, the proposed
algorithm can examine a range of possible output values to
find an optimal decision-making threshold for assessing the
outputs of MLFFNN. We employ a threshold-varying bisection
method in [26], which can be summarized as follows. During
the training process, a range of thresholds [α, β], 0 ≤ α ≤
β ≤ 1 is considered, where the goal is to find a threshold γ
that minimizes the cost function fγ . At each step, fα, fβ ,
and f(α+β)/2 are compared. If f(α+β)/2 < min(fα, fβ), then
the algorithm selects γ = (α+ β)/2 and exits; otherwise, it
repeats the previous step, but with a bisected threshold range
[(α+ β/2), β] if fα > fβ or [α, (α+ β/2)] if fα ≤ fβ . The
bisection process is repeated until the minimum cost function
is reached, i.e., fγ < min(fα, fβ), or the current lower bound
is at least ε less than the current upper bound, i.e. β − α ≤ ε.
In the latter case, the algorithm selects γ = β − ε as its final
threshold, which is used to assess the raw decision output from
MLFFNN. In the proposed scheme, a lower bound of α = 0.3
and an upper bound of β = 0.7 are chosen, because a larger
initial interval (e.g., [0.1, 0.9]) could cause the bisection method
to select the threshold γ that is too biased toward a training set

dominated by a particular traffic condition (e.g., too close to 0.1
or 0.9) [26].

To enable the decision algorithm to select a threshold γ
that maximizes the DR and minimizes the FAR, we use the
cost function fγ = w × FARγ + (1 − w)× (1 −DRγ) for
the modified bisection, where FARγ = FAR, and DRγ = DR
when a threshold γ is used. Hence, the term 1 −DRγ cor-
responds to the number of missed detections. The choice of
w (0 ≤ w ≤ 1) depends on whether maximizing the DR or
minimizing the FAR is more important, which subsequently
depends on practical considerations and the purpose of the
observations. In this experiment, the value of 0.5 is chosen for
w to balance between maximizing the DR and minimizing the
FAR.

The raw decision output from MLFFNN, as shown in Fig. 3,
consists of two separate signals, {o1n, o2n}, whose binary combi-
nation, at time n, determines whether an anomaly has occurred,
as well as the type of the detected anomaly: {0, 0} for normal
traffic patterns, {0, 1} for transient anomalies, and {1, 1} for
disruption precursors. For the anomaly detection decision, PT
is used to determine the number of consecutive samples of the
raw decision output, {o1n, o2n}, that exceed the threshold. The
alarm is raised if at least one element of {o1n, o2n} consecutively
exceeds the threshold for a number of PT samples.

F. Decision Algorithm for Anomaly Classification

The classification decision function is based on the as-
sessment of the likelihood that an anomaly corresponds to a
transient anomaly or a disruption precursor. In the proposed
algorithm, the assessment of likelihood is performed on each
raw decision output of the MLFFNN, which is modeled as a
classifier whose value represents likelihood [32]. The likeli-
hood combination techniques in [32] are originally proposed to
combine outputs over space from different NNs. In this paper,
we apply the same concept to combine the raw decision output
over time from the same NN, i.e. for a given time n, the raw
decision output {o1, o2}n is itself a classifier. The classification
decision function f(η) can be formalized as shown in (3), where
the raw decision outputs of MLFFNN are monitored from the
time of detection n0 to n0 + η, where η denotes a classification
interval, i.e., {o1, o2}n0

, {o1, o2}n0+1, . . . , {o1, o2}n0+η

f(η) = argmax
c

n0+η∑
n=n0

wc
nf

c
n, c = 1, 2. (3)

The weight wc
n is the weighted average of the likelihood

f c
n, i.e., wc

n = f c
n/(

∑
c=1,2 f

c
n). The likelihood f c

n is calculated
from the raw decision outputs {o1n, o2n}. Recall that the raw
decision output o1n nearer to zero indicates more likelihood of
transient anomaly, whereas the raw output o1n closer to one
indicates more likelihood of disruption precursors. Hence, f c

n is
calculated as follows: f1

n = (1− o1n)× o2n, and f2
n = o1n × o2n.

G. Distributed Deployment of the Proposed Algorithm

The proposed algorithm is designed such that the anomaly
detection and classification functions are performed in a dis-
tributed manner by neighboring vehicles and/or by a local
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Fig. 4. Example of distributed deployment of the proposed algorithm.

roadside infrastructure based on the locally collected infor-
mation. Fig. 4 shows an example of how microscopic traffic
information of individual vehicles can be used by the proposed
algorithm to detect traffic anomalies on the road segment of
interest. In this example, the proposed algorithm is used by
vehicle 7 to identify traffic anomalies based on microscopic
traffic information from downstream vehicles 1–6. In this set-
ting, each vehicle learns microscopic traffic variables of other
vehicles by exchanging information about itself with other
vehicles in the neighborhood. In the figure, vehicle 6 collects
and sends to vehicle 7 microscopic traffic variables {yi, i =
1, . . . , 6} (speeds, positions, arrival, and departure times) of
other vehicles on the segment, where the mean of intervehicle
spacing and the standard deviations of relative speed, interar-
rival time, and interdeparture time are calculated based on the
received microscopic information. The anomaly detection and
classification model H for the road segment is downloaded by
vehicle 7 from, for example, a roadside infrastructure.

V. PERFORMANCE EVALUATION USING

REAL-WORLD DATA

A. Performance Evaluation Parameters

Let np,q be the time that the pth alarm is raised for an
anomaly recorded at a time point nq . The alarm is considered
true if nq,p ∈ [nq, nq + nb], ; otherwise, it is considered a
false alarm, in which case nb denotes a detection interval used
for evaluation purposes only and should not exceed anomaly
duration. Given M anomaly cases in the experiment, the per-
formance evaluation parameters that we consider are the DR,
MTTD, and FAR, i.e.,

DR =
Number of anomalies detected

M
(4)

MTTD =

∑M
p=1(nq,p − nq)

M
, nq,p ∈ [nq, nq + nb] (5)

FAR =
Number of alarms not in [nq, nq + nb]

Total number of alarms
. (6)

B. Descriptions of the Data

To assess the algorithm, we chose a real-world freeway
segment in which the microscopic traffic variables can also

be obtained from a video surveillance camera (see Figs. 1
and 2). The road segment that we studied is part of a free-
way network that links Bangkok to the northern provinces
of Thailand. During the five-month period of data collection,
the free-flow maximum and average speeds on this freeway
segment were found to be 120 and 80 km/h, respectively.
The nearest junctions are approximately 1.2 km upstream and
1.5 km downstream. Recurring traffic congestion occurs during
morning rush hours, between 7 and 9 A.M., where congestion
usually originates at the downstream junction and propagates
upstream to the freeway segment studied during these periods.
We note that these recurring congestions are not included as
anomaly cases in this paper.

1) Calculation of Traffic Variables: The image processing
software used on this camera to track individual vehicles has
been developed by a team of researchers and is reported in
[23]. The object-tracking accuracy of this camera has been
estimated to be approximately 80%. Although the proposed
algorithm was initially assessed using data from video camera,
it can also be deployed with the support of a vehicular ad hoc
network (VANET)-based information-sharing system in which
individual vehicle tracking is performed by automatic vehicle
location systems [e.g., Global Positioning System (GPS)], real-
time location systems (e.g., radio frequency ID), or inertial
navigation systems (e.g., dead reckoning), and the information
can be shared using wireless communication technologies such
as cellular GPRS, radio wave, or infrared [16], [22], [33]. A
recent study in a simulated environment reported in [34] has
shown that vehicular speed can be estimated using onboard
vehicle data, with error as low as 10.5%.

On the image frame of the camera, as shown, for example,
in Fig. 2, virtual entrance and exit lines were drawn at the
beginning and end of the segment, respectively. For a vehicle
i, {tini , touti , wemp

i } was recorded, where tini is the time that
the vehicle crossed the entrance line, tout is the time that the
vehicle crossed the exit line, and wemp

i is the speed of vehicle
i, calculated as wemp

i = Segment Length/(touti − tini ). We note
that the accuracy of individual vehicle speed will not have a sig-
nificant impact on the performance of the proposed algorithm,
because it does not rely on measurements of individual vehicles
to detect anomalies (see Section IV-B).

The interarrival time is calculated as aemp
i = tini − tini−1,

whereas the interdeparture time is calculated as demp
i =

touti − touti−1. For a sampling interval of τ (in seconds), the

averages of the interarrival time (aemp
mτ ) and the interdeparture

time (demp
mτ ) and the standard deviations of the interarrival

time (σemp
a,mτ ) and the interdeparture time (σemp

d,mτ ) of the

sampling interval mτ can be calculated as follows: aemp
mτ =

(
∑I

i=1 a
emp
i )/I , σemp

a,mτ =

√
(
∑I

i=1((a
emp
i )2 − (aemp

mτ )2)2)/I

for (m− 1)τ ≤ tini < mτ , and demp
mτ = (

∑I
i=1 d

emp
i )/I ,

σemp
d,mτ =

√
(
∑I

i=1((d
emp
i )2 − (demp

mτ )2)2)/I for (m− 1)τ ≤
touti < mτ , where m = 1, 2, 3, . . ..

Because the camera cannot yet directly measure spaces
between individual vehicles, the average intervehicle spacing
is instead calculated from the average interdeparture time
and average speed as follows: semp

mτ = demp
mτ × wemp

mτ , where
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wemp
mτ = (

∑I
i=1 w

emp
i )/I . A relative speed observed by ve-

hicle i to its leading vehicle i− 1 is calculated as vemp
i =

wemp
i−1 − wemp

i for touti > touti−1. Then, for a sampling interval

of τ (in seconds), the average (vemp
mτ ) and standard devia-

tion (σemp
mτ ) of relative speeds of the sampling interval mτ

can be calculated as follows: vemp
mτ = (

∑I
i=1 v

emp
i )/I , and

σemp
mτ =

√
(
∑I

i=1((v
emp
i )2 − (vemp

mτ )2)2)/I for (m− 1)τ ≤
touti < mτ , where m = 1, 2, 3, . . ..

2) Obtaining Anomaly Cases: The real-world data set used
in this paper was collected by the camera under different traffic
conditions daily from 6 A.M. to 6 P.M. over a five-month period
from August to December 2008, plus an additional two months
of video postprocessing to visually identify anomaly cases. The
period of five months obtained sufficient anomaly cases for per-
formance evaluation. The average number of vehicles detected
that pass the freeway segment is approximately 30 000 vehicles
per day; therefore, there are approximately 5 000 000 records
for the five-month period of data collection. For evaluation
purposes, anomalies that took place were independently logged
by a team of transportation researchers using video images from
the camera at the target site. The video images were used to log
anomalies that were identified as disruption precursors when
they were associated with major traffic disruption; otherwise,
the anomalies were recorded as transient anomalies. There are
26 anomaly cases in the data; 9 cases were transient anomalies,
and 17 cases were disruption precursors. These anomalies
took place under various traffic conditions such as low-flow
high-speed, high-flow high-speed, and low-flow low-speed
conditions.

Based on video images, transportation researchers were also
asked to log the start and end times of the anomaly cases. Each
anomaly case consists of a set of timestamps {T a

s , T
i
s , T

i
e},

where T a
s denotes the time when a traffic anomaly is recorded

(e.g., a pedestrian and a lane-blocking truck are observed in
Figs. 1 and 2, respectively), T i

s denotes the times when a traffic
incident is recorded to take place, and T i

e denotes the end time
of traffic incident or when traffic has recovered. For transient
anomalies, only T a

s and T i
e are recorded, because incident

occurrence is not observed. The duration of traffic anomalies
analyzed in this paper ranges from 5 min to 45 min. In the
performance evaluations in Section V-D and V-E, an anomaly is
considered detected if an alarm is raised by the algorithm within
[T a

s , T
i
s ] for disruption precursors and [T a

s , T
i
e ] for transient

anomalies. Then, the MTTD is calculated as the average of the
difference between the alarm time and T a

s .

C. Benchmark Anomaly Detection and
Classification Algorithm

We chose the algorithm proposed in [1] as our benchmark,
because it has been shown to outperform the algorithms in [4]
and [15]. The benchmark algorithm combines decision with
regard to temporal changes in the variances of microscopic
variables such as relative speed and interarrival and interdepar-
ture of vehicles, with spatial changes related to upstream and
downstream traffic patterns. An alarm was activated using a
weighted-vote scheme.

TABLE I
PERFORMANCE COMPARISON RESULTS OBTAINED BY AVERAGING 20

EXPERIMENTS FOR DIFFERENT VALUES OF PT

D. Anomaly Detection Assessment

The experiment reported in this section is conducted using
a cross-validation technique. Anomaly cases in our data were
separated into disjoint training and testing sets; the training set
consists of 12 anomaly cases, and the testing set consists of 14
anomaly cases. The training set was used to train the MLFFNN
and find the optimal threshold by the bisection method in the
proposed algorithm, whereas the testing set was used for per-
formance evaluations. In each experiment, the anomaly cases
in the training and testing sets were randomly selected from the
26 anomaly cases in our data set. Furthermore, to reflect real-
world operational conditions, each algorithm was continuously
assessed from 6 A.M. to 6 P.M. and for each day of the data set.

Table I shows performance evaluation results for the DR,
FAR, and the MTTD, obtained by averaging over 20 exper-
iments. The detection interval nb of each anomaly case in
(4)–(6) is the recorded duration of that anomaly case, which
is found to be between 5 and 45 min.

The proposed algorithm detects a relatively higher number
of anomalies with a much smaller FAR than the benchmark
algorithm. Furthermore, the proposed algorithm detects anoma-
lies that are missed in [1]. We note that the missed anomaly
cases took place while there was already a high flow of
vehicles (≥ 2000 vehicles/h) on the segment and where the
boundary between the variability of relative speed associated
with normal and anomalous traffic conditions cannot clearly be
distinguished.

The proposed algorithm successfully classifies anomaly
cases that cannot be detected by the benchmark algorithm
[1], and this is reflected in the slightly higher MTTD values
shown in Table I. These anomalies are associated with a high
volume of vehicles on the freeway segment, where the vari-
ability of the microscopic variables is bounded by the lack
of room to maneuver vehicles. Consequently, it takes longer
for the proposed algorithm to detect subtle changes in micro-
scopic variability. Furthermore, we note that MTTDs shown in
Table I are the average detection delays of traffic anomalies
and not the average detection delays of traffic incidents. All
the anomalies included in the test data set are detected before
the actual (independently recorded) traffic incidents time are
logged and/or before the observed traffic patterns settled back
to, for example, normal free-flow conditions. Further analysis
on these real-world data sets shows that the alarm times of the
proposed algorithm are, on the average, triggered 13 min before
the occurrence of incidents, which should still give enough time
to initiate an appropriate response.
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Fig. 5. DRs and FARs under different PoAs.

E. Anomaly Detection With Partial Coverage of
Vehicle Information

1) Anomaly Detection With Partial Availability of Data
From Vehicle Population: The statistics of microscopic traffic
variables are calculated from a percentage of the vehicles
population I = PoA ∗ Itotal, where PoA is the percentage of
availability, and Itotal is the total number of vehicles on the
segment. Fig. 5 shows that the DR and FAR when the proposed
algorithm has access to PoA range from 10% to 100%. The
proposed algorithm can detect all anomaly cases with the FAR
less than 20% for 50% ≤ PoA ≤ 100%. Because the average
vehicle density Itotal was observed to be between 6 and 20
vehicles/lane, the results in Fig. 5 shows that the proposed
algorithm can still identify anomalies in the real-world data
set, even when the microscopic traffic information is available
only for 50% of vehicles on the segment, (i.e., for I as low as
three vehicles per lane). As PoA is further reduced to the range
≤ 40% (i.e., I ≈ 2 − 3 vehicles/lane), the information is no
longer sufficient to identify all traffic anomalies. Hence, to keep
the DR and FAR at acceptable levels, the proposed algorithm
has to particularly be trained for low PoA with a sufficient
number of anomaly cases.

2) Anomaly Detection With Aggregated Information: In this
experiment, a ratio-based aggregation algorithm adopted from
the TrafficView system [10] is employed to form clusters of ve-
hicles where microscopic traffic variables of individual vehicles
are locally aggregated according to the availability of medium
access control (MAC) payload size, the amount of microscopic
traffic information, and the relative distances of vehicles with
respect to one another.

In the ratio-based algorithm, a cluster is formed, where every
vehicle makes itself known to other vehicles, and the upstream-
most vehicle in the cluster is selected as a cluster head. The
cluster head determines if the remaining MAC payload size
R is enough for dissemination of microscopic traffic variables
individually. If the size R is not enough, then local aggrega-
tions are needed, and subclusters are formed according to the
relative distance between each vehicle to the upstream cluster
head. An example of how microscopic traffic variables are
aggregated when the available MAC payload size is reduced
to 0.3R is shown in Fig. 6. Let us hypothetically assume that
0.1R is needed to transmit a microscopic traffic variable of
each vehicle so that the available bandwidth can accommodate
only a single vehicle information from each subcluster. In
this example, vehicle 6 acts as a cluster head, which col-

Fig. 6. Example of distributed deployment of the proposed algorithm under
information aggregation using, for example, the method in [10].

TABLE II
ASSESSMENT OF THE PROPOSED ALGORITHM UNDER DIFFERENT PoA

AND PERCENTAGES OF MAC PAYLOAD AVAILABILITY (R)
IN THE REAL-WORLD DATA SET

lects the aggregated information from the two downstream
subclusters, vehicles {1, 2, 3} and vehicles {4, 5}. Let yi
denote a microscopic traffic variable measured by vehicle i
and si denote intervehicle spacing between vehicle i and the
closet vehicle downstream. The aggregated microscopic traffic
information sent to vehicle 7 would be the weighted average
{y1,2,3, y4,5, y6}, where y1,2,3 = (

∑3
i=1 si,6yi)/(

∑3
i=1 si,6),

y4,5 = (
∑5

i=4 si,6yi)/
∑5

i=4 si,6), and si,6 =
∑6

j=1 sj . Then,
vehicle 7 would use {y1,2,3, y4,5, y6} to calculate the micro-
scopic statistics.

Table II shows the DR and FAR when the proposed algorithm
is applied to detect anomalies in the real-world data set.1

The MTTD is not shown in this table, because it is found
to have consistent values of approximately 8–9 min for every
combination of PoA and R analyzed. The DR and FAR are
averaged over ten experiments, where in each experiment, the
anomaly cases in the training and testing sets are randomly
selected from the 26 anomaly cases in our data set.

Table II shows that the proposed algorithm detects anomalies
with more than 90% DR and FAR less than 20%, even when
PoA is as low as 40% and only 50% and 30% of MAC payload
(0.5R and 0.3R) are available (information obtained from only
two to thre vehicles). It is also shown that the reduction of the
MAC payload size does not have a significant impact on either
the DR or the FAR. However, when PoA = 10%, as previously

1 The MAC payload size R is set to be 2313 B for an 802.11b-based wireless
network, and the average size for a single vehicle record is 50 B, as shown in
[10].
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TABLE III
ASSESSMENT OF THE PROPOSED ALGORITHM ON THE REAL-WORLD

DATA SET, WITH PACKET TRANSMISSION DELAYS, PoA = 50%, AND

MAC PAYLOAD SIZE = 0.5R. THE TIME WINDOW SIZE IS 300 S. EXP
REFERS TO THE EXPONENTIAL DISTRIBUTION, AND GP REFERS

TO THE GENERALIZED PARETO DISTRIBUTION

TABLE IV
CLASSIFICATIONS ON REAL-WORLD DATA FROM 200 EXPERIMENTS,
CC = CORRECTLY CLASSIFIED, MC = MISCLASSIFIED, η = 5 min.

highlighted, most anomaly cases cannot be detected, because
microscopic traffic variables are obtained from a single vehicle.

3) Anomaly Detection With Packet Transmission Delay: In
this experiment, a packet transmission delay is generated from
a probability distribution. If the generated packet transmission
delay exceeds a time window L, the microscopic traffic in-
formation of that vehicle is assumed lost. We use not only an
exponential distribution but, as suggested in [35], also include
a generalized Pareto distribution in our tests to generate packet
transmission delays.

It is shown in Table III that the proposed algorithm performs
relatively well, because it detects traffic anomalies with more
than 85% DR, even when the mean packet transmission delay
(302.9 s) exceeds the time window size. We can see that
the FAR increases when the mean packet transmission delays
exceed the time window size, because there is not enough
microscopic traffic information to distinguish between normal
and anomalous traffic patterns. These results again highlight the
importance of setting the time window size L to be at least equal
to the expected mean packet transmission delay.

F. Anomaly Classification Assessment

Once an anomaly is detected by a vehicle on a particular
freeway segment at time n0, a node (a vehicle or a roadside
infrastructure) within the freeway segment would continue to
gather more information from the vehicles on the segment and
monitor the raw decision outputs {o1n, o2n} from the MLFFNN
until n0 + η, where η is the classification interval. For the
results presented in this section, η is set to 5 m, which is found
to give enough classification accuracy in our analysis using the
training data set. The classification decision is then made based
on the criteria described in Section IV-F.

The classification results in Tables IV and V are derived
based on subset of 200 experiments that were selected at
random, where in each experiment, the training and testing
sets are randomly selected from the 26 anomaly cases in our

TABLE V
CLASSIFICATIONS ON REAL-WORLD DATA FROM 200 EXPERIMENTS

WITH DIFFERENT PoA AND PERCENTAGE OF MAC PAYLOAD

AVAILABILITY (R), CC = CORRECTLY CLASSIFIED,
MC = MISCLASSIFIED, η = 5 min

real-world data set. In Table IV, anomaly cases are considered
correctly classified (CC) if the proposed algorithm can identify
their types within the logged duration, i.e., [T a

s , T
i
s ]. The mis-

classified cases (MCs) show the number of anomalies that are
incorrectly identified by the proposed algorithm.2 The proposed
algorithm can correctly classify all anomaly cases, whereas the
benchmark algorithm [1] misclassifies three transient anomaly
cases as disruption precursors. In fact, these cases were iden-
tified as distractions on the shoulder of the freeway due to the
unexpected appearance of pedestrians in two cases and disabled
vehicles in another case (see Fig. 1). These anomaly cases are
misclassified by the benchmark algorithm in [1], because the
distractions increase the variability of both the relative speed
and the covariance between the interarrival and interdeparture
times, which subsequently cause the weighted combination of
both temporal and spatial alarms to exceed its classification
threshold. In contrast, the algorithm proposed in this paper does
not rely on any particular threshold, because it compares only
the likelihood of the detected anomaly being transient anomaly
and the likelihood of being disruption precursor.

We further assess the performance of the proposed algorithm
under different PoA coverage and when traffic variables are
aggregated according to different percentages of MAC payload
availability R. It is shown in Table V that, even when both PoA
and MAC payload availability are reduced, all transient anoma-
lies and most of the disruption precursors can still be CC. We
note that the MCs are disruption precursors that occurred under
moderate vehicle density, where the persistence of variation of
microscopic traffic variables causes the proposed algorithm to
misclassify these disruption precursors as transient anomalies.

VI. CONCLUSION

This paper proposed a novel anomaly classification algorithm
that can be deployed in a distributed manner and utilizes
microscopic traffic variables shared by neighboring vehicles
to detect and classify traffic anomalies under different traffic
conditions. The algorithm uses multiresolution concepts and is
based on the likelihood estimation of the outputs of a feedfor-
ward neural network and a bisection-based decision threshold.

2 In [1], we refer to a disruption precursor as an incident precursor. For the
benchmark algorithm, the three misdetected cases of incident precursors are
excluded from classification evaluation.
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The algorithm monitors the change of variability in relative
speed, interarrival time, and interdeparture time to capture
traffic anomalies. Furthermore, to adapt to underlying traffic
conditions, the average intervehicle spacing is monitored.

The algorithm’s performance on a real-world data test set
presents a significant improvement with respect to the FAR
and DR over the benchmark algorithm proposed in [1]. The
preliminary results are very encouraging, because they suggest
that the algorithm’s level of adaptability and resilience to loss
of information as a result of low PoA or degradation in commu-
nications performance is high. For the data set under analysis,
it can also detect anomalies, on the average, 13 min prior
to the occurrence of traffic incidents, therefore significantly
increasing the time available to initiate appropriate responses.

There are various aspects worth further consideration. One
aspect is to design a model that can incorporate information
about traffic anomalies from several road links to infer possible
impacts on the entire road network. Another aspect is an exten-
sion to urban arterial, where changes due to traffic signals and
its effect in traffic patterns will need to be considered. It would
also be interesting, from a traffic management point of view,
to classify traffic anomalies according to physical causes (e.g.,
lane blocking [9]) to provide more information for incident
management. The inclusion of spatial information from other
detectors (e.g., cameras on neighboring segments) to locate
the bottlenecks and investigate the existence of synchronized
flow [36] is also worth investigating. Finally, a more exhaustive
assessment of selected VANET technologies and associated
protocols with respect to transporting and processing large-
scale traffic and sensing information, has yet to be assessed in
real-world scenarios and is suggested for further investigation.

APPENDIX

COMPLEXITY ANALYSIS FOR IMPLEMENTATION

The main computational complexity of the proposed algo-
rithm consists of the computations (e.g., additions and multi-
plications) in the DWT and MLFFNN in Fig. 3, whereas the
computational complexity of decision functions for anomaly
detection and classification blocks are marginal, because they
mainly consist of comparisons. The computational complexity
of the DWT depends on the input window size L and the
number of coefficients in the wavelet and scaling filters K.
The number of additions and multiplications is originally found
to be 2K(L+K − 1) using a shift-register in the well-known
Pyramid algorithm, but with a more recently proposed method,
it is possible to reduce the number of additions and multiplica-
tions to K ∗ L [37].

For the MLFFNN block, it is assumed that the proposed
algorithm has been properly trained and the computational
complexity is calculated only when the MLFFNN part of
the proposed algorithm is downloaded and implemented on a
node. The computational complexity of MLFFNN is mainly
composed of the number of additions, multiplications, and
transfer functions, which subsequently depends on the number
of neurons in each layer of the neural network. The number of
multiplications, additions, and transfer functions as functions
of the number of neurons are m0m1 +m1m2 +m2m3, m1 +

m2 +m3, and m1 +m2, respectively [38] (see Section IV-D
for selections of m0, m1, m2, and m3).

For the benchmark algorithm [1], the computational com-
plexity mainly depends on the eigenvalue decomposition block,
whereas the complexity of the Bayesian change detection and
the weighted vote scheme blocks are relatively marginal, be-
cause they mainly consist of closed-form models and com-
parisons. The eigenvalue decomposition is commonly obtained
by implementing singular value decomposition (SVD). Each
small eigenvalue in the input window size L can be calculated
by performing SVD on a matrix of size m×m, where m
is the number of microscopic traffic variable inputs, and it is
well known that the complexity of computing SVD is O(m3).
Therefore, the computation of L small eigenvalues would in-
volve a complexity of approximately L ∗O(m3).

Our preliminary analysis shows that, compared to the bench-
mark algorithm [1], the computational complexity for the im-
plementation of the proposed algorithm is, indeed, higher due
mainly to the computations in MLFFNN. However, a number
of experiments in the literature have illustrated the feasibility
of deploying neural networks in software [21], [39].
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