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ABSTRACT 
There are many ways to build a predictive model from data. 
Besides the numerous classification or regression algorithms to 
choose from, there are countless possibilities of useful data 
transformation prior to modeling. To assist in discovering good 
predictive analytics workflows, we introduced recently a 
collaborative analytics system that allows workflow sharing and 
reuse. We designed a recommendation engine for the system to 
enable matching of analytics needs with relevant workflows stored 
in repository. The engine relies on meta-predictive modeling of 
traffic-analysis workflow-characteristics. In this paper, we present 
a feasibility study of applying this collaborative analytics system 
to predict traffic congestion. Different ways to build predictive 
models from traffic dataset are pooled as shared workflows. We 
demonstrate that through dynamic recommendation of workflows 
that are suitable for the real-time varying traffic data, a reliable 
congestion prediction can be achieved. The promising results 
showcase that systematic collaboration among data scientists 
made possible by our system can be a powerful tool to produce 
very accurate prediction from data.  

Categories and Subject Descriptors 
H.2.8 [Database Applications]: Data mining  
D.4.8 [Performance]: Modeling and prediction  
J.7 [COMPUTERS IN OTHER SYSTEMS]: Real time  

General Terms 
Design, measurement, experimentation, verification  

Keywords 
Prediction/information markets, reputation and recommendation 
system  

1. INTRODUCTION 
A key issue to achieve accurate prediction is to find the most 
suitable modeling given a dataset. For example, in making 
product recommendation, Amazon.com could use different 

predictive models for new and regular customers. Off-the-shelf 
analytics suites offer numerous classification and regression 
operators for predictive modeling. In addition, the steps prior to 
applying classification/regression (e.g. data preprocessing) also 
affect the accuracy of prediction. Thus, the problem is of finding 
the right workflow, which is combinatorial. This problem 
becomes more critical in applications where data rapidly change. 
Predictive models then need to be regularly rebuilt so that 
prediction stays aligned with the current state of data. The 
application investigated in this paper is traffic congestion 
prediction for one of Singapore’s main expressways, the Pan 
Island Expressway (PIE). The data involved are real-time (traffic 
and weather patterns streams) and dynamic (e.g. peak hour vs. 
normal hour), suggesting the need to rebuild predictive models to 
cater for the changing data characteristics. While it is possible to 
use the same predictive modeling despite data change, there is a 
merit in adapting to new data to get better accuracy [4], as 
supported by our experimental results. For this purpose, there is a 
need to pool predictive analytics workflows for selection. In [9], 
we proposed a collaborative analytics system for RapidMiner 
users to collectively share their workflows into a common 
repository. In this short paper, we present a feasibility study of 
applying this system for the PIE traffic congestion prediction.  
Related works exist on leveraging collective analyses to address 
complex analytics tasks. Learning Experiment Database [21] 
publicly shares classifiers’ accuracies on benchmark datasets, 
while myExperiments and Galaxy allow sharing of workflows 
developed from suites like Taverna and RapidMiner [3]. Users of 
these systems have to manually select workflows that are deemed 
suitable. Meta-mining builds models based on data characteristics 
to find accurate classifier [4]. Our work uses meta-miner as one of 
its components, but focuses on building a complete system for 
sharing and reuse of workflows. Automatic on-the-fly workflow 
construction [10] has the benefit of not limiting the search space 
to existing workflows in a repository. However, this search space 
can be very large. In contrast, in our collaborative analytics 
approach, the search space is limited to workflows contributed to 
the repository and recommendation is done rapidly by workflow 
selection. Future technology could see combination of automated 
and collaborative workflow construction/selection. On traffic 
prediction, ARIMA [5] can be efficient and accurate but limited 
to linear patterns and not sensitive to rapid variations in traffic 
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flow. Related techniques include exponential smoothing [2], 
regression [1, 20], state-space method [16, 19], maximum 
likelihood [13]. Artificial neural network (ANN) [14] and support 
vector regression (SVR) [6] are applied to capture non-linear 
patterns. Hybrid ANN models [7, 18] generally perform very well. 
However, most ANN and SVR-based models have high 
computational complexity. Our collaborative analytics can 
leverage these individual solutions and select the most suitable 
one for a given dataset. 
We contribute a new workflow recommendation framework by 
matching analytics needs with a collection of predictive models. 
Figure 1 shows the framework with traffic congestion prediction 
application. The aim is to predict the time length of traffic 
congestion in a road segment.  

 
 

By demonstrating the feasibility of collaborative analytics on real-
world traffic application, we pave the way for future researches 
that promote dynamic analytics system leveraging community-
driven method contributions.  

2. PROPOSED METHOD 
The framework in Figure 1 uses traffic patterns from a day before 
the current time, t, until t-5 minutes as training data. Instead of 
training the data by a single classifier/regressor, the system 
consults a repository of past predictive modeling workflows to 
search for a reasonable workflow. A new predictive model is then 
built by applying the recommended workflow on the training data. 
Prediction is made by applying model on data instance at t. The 
repository is a collection of classifier-based workflows designed 
for traffic data. We now detail the key elements of the framework.  

2.1 Data  
Traffic data were obtained from the traffic.smart@OneMotoring 
portal [11] which serves its data through the onemap.sg map 
server. In addition, rainfall intensity on the road was obtained 
from the Singapore NEA marine services weather radar webpage 
[15]. Reverse data engineering was performed to synchronize the 
traffic and the rainfall data, which come in the form of images. 
The dataset features used are: 1)road segment, 2)traffic intensity 
(congested, slow, or clear), 3)east side neighboring segment 
traffic, 4)west side neighboring segment traffic, 5)rainfall 
intensity, 6)hour of day, and 7)congestion duration (i.e. the time it 
takes “congested” or “slow” to become “clear”). Congestion 
duration becomes the label of predictive models. For the purpose 
of classification, the originally continuous label was discretized 

into 3 categories with bin sizes automatically decided based on 
the frequency of the records. The repository of existing analyses 
was populated by workflows processing historical data from 13-
17 May 2011. Each day contributed 2 datasets: AM and PM, for a 
total of 10 historical datasets. 

2.2 Workflows  
The repository of existing analyses is populated by 38 workflows 
representing the different ways predictive modeling can be 
performed to analyze traffic data. The 38 workflows fall into 5 
main categories (as shown in Table 1).  

Table 1. Five categories of workflow 

Workflow template Description 

Per-segment model (batch)  One model per segment, use all data at once  

Per-segment model 
(incremental)  

One model per segment, use one data at a 
time  

Global model (batch)  One model for all segment, all data at once  

Global model (incremental)  One model for all segments, one data at a time  

Time-series  Based on traffic trend per segment  

For per-segment models, a predictive model is developed for each 
road segment based on the training data specific to that segment. 
For global models, one predictive model is built based on training 
instances regardless of road segments. In the batch models, 
classification is performed by considering all the training dataset 
simultaneously. An incremental model is initially built using a 
50% sample of training dataset. The remaining 50% training 
instances are then randomly used individually to incrementally 
update the model. For time-series workflows, predictive models 
are built in a per-segment way, with training data in the form of 
univariate time-series on congestion duration. Prediction is made 
by performing regression with time-window of 10 data points. 
Finally, variations of workflow from each of the 5 categories are 
derived by substituting the classification/regression operators with 
alternative operators in RapidMiner. The non-time-series 
workflow categories use classification instead of regression so 
that the prediction output is in the form of time ranges. For the 
time-series, it is not natural to make prediction by classification, 
and therefore it is left as a regression problem.  
These five workflow categories are not the only ways to build 
predictive model from the traffic data. Other variations, such as by 
replacing the classifiers in the non-time series workflow 
categories by a regressor, will be investigated in the future. 

2.3 Recommendation engine  
Given a training data, the recommendation engine needs to find 
from the repository, workflows that can produce good predictive 
models. To realize this, there is a need to define features that 
capture the workflow characteristics pertaining to historical data 
in the repository and the query training data. With these features, 
a meta-regressor can be built to predict a workflow’s performance 
on the query training dataset, which in turn can be used to decide 
which workflow to recommend.  
A natural choice to characterize a workflow pertaining to the 
historical data is by using its accuracies across the different 
historical datasets. Such an approach however cannot be used to 
characterize the query training data without actually executing the 
workflows on the query training data. If the latter is performed, 

Figure 1. Process flow of proposed method  
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there is no longer need for the recommendation engine as the best 
workflow has been discovered by brute force.  
To sidestep this issue, characterizing a workflow by using “proxy” 
accuracies is adopted. First each dataset (historical and query 
training dataset) is characterized by the landmarking approach. In 
a landmarking approach, simple classifiers are chosen as 
landmarkers and their classification accuracies on the query 
dataset become features. We follow the justification and approach 
taken by [17] and selected seven landmarker classifiers: 1K 
nearest neighbor, linear discriminant, worst node, decision node, 
average node, naïve bayes and randomly chosen node. Given a 
query training dataset, its top 3 neighboring historical datasets can 
then be found from the similarities measured based on the 
landmarking features. A workflow’s characteristics pertaining to 
the query training dataset are then defined as the workflow’s 
accuracies on the top 3 neighboring historical datasets. The same 
approach is used to derive the workflow characteristics pertaining 
to each individual historical datasets.  
With the workflow characteristics defined, a support vector 
regression [8] is then used to predict the accuracy of a workflow 
when run on the query training dataset. Figure 2 shows in 2 stages 
the steps used by the recommendation engine.  

 
Figure 2. Steps used by the recommendation engine 

3. RESULTS AND DISCUSSIONS 
3.1 Experimentation Methodology  
The East-bound direction of Pan Island Expressway was 
considered for our showcase. Three query training datasets were 
made available: for 1st and 2nd June, and 25th November 2011. 
RapidMiner version 5.1.011 was used for predictive model 
design, execution, and evaluation. Prediction accuracy was used 
as an evaluation measure (i.e. specifically for classification, F-
measure was adopted).  

Fine-tuning of predictive model parameters is done by looking up 
from the public Learning Experiment Database (LED) [12]. By 
comparing landmarking features, a dataset from LED that is 

closest to ours is found. Then, the most optimal parameters for all 
the different predictive models recorded in LED are extracted. 
There is however no guarantee that LED has captured the truly 
optimal parameters. Another issue is that there are only a few 
predictive models with optimal parameters recorded in LED. For 
those that are not, default parameters of RapidMiner were used.  

The preparation step in the experiment is to have the 38 
workflows evaluated against each of the historical datasets to 
obtain their accuracies. Then, all historical and query training 
datasets are passed through the landmarking module to generate 
their respective sets of 7 landmarker classifiers. The accuracies 
and landmarker classifiers information is used to generate the sets 
of workflow characteristics pertaining to a query training dataset, 
as shown in STAGE 1 of recommendation engine in Figure 2. In 
STAGE 2, a support vector regression returns top-5 ranked 
workflows in terms of predicted accuracy. STAGEs 1 & 2 are 
repeated for each query training dataset.  

Finally, to judge the performance of the recommendation engine, 
all workflows are evaluated against each query training dataset to 
obtain the actual accuracies. The accuracy reflects 
classification/regression accuracy of the selected workflow using 
5-fold cross-validation. With this, we examine how the 
recommended workflows stack against the others.  

3.2 Results and Discussions 
Table 2 lists the recommended workflows together with their 
actual accuracies when subsequently evaluated against their 
respective query training dataset. Figure 3 shows the accuracy of 
the top recommended workflow against the distribution of 
accuracies of all the 38 workflows. The recommendation engine 
returns an accuracy that is well within the vicinity of that of the 
best performer. This result shows that collaborative analytics can 
be a powerful tool to select from a pool of candidate workflows a 
reasonably effective workflow to yield very accurate prediction 
from data.  

Table 2. Workflows returned by recommendation engine 

Date Workflow Actual accuracy 

1 June 

Time-Series Neural Net 0.845 

Time-Series Opt SVM 0.723 

Batch Global SVM LIBSVM 0.455 

Batch Global Rule Induction 0.418 

Batch Global Opt SVM LIBSVM 0.455 

2 June 

Time-Series Opt SVM 0.797 

Time-Series SVM 0.754 

Time-Series Neural Net 0.797 

Batch Global k-NN 0.568 

Batch Global Rule Induction 0.552 

25 Nov 

Time-Series Opt SVM 0.722 

Time-Series Neural Net 0.770 

Time-Series SVM 0.782 

Batch Global Opt SVM LIBSVM 0.493 

Batch Global SVM LIBSVM 0.450 
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It is interesting to observe that time-series type of workflows 
feature prominently on top of the list of recommendations. This 
suggests that by focusing on the trend of the traffic on a particular 
road segment, time-series workflows seem to be most effective. 
This is in contrast to non-time-series workflows which also 
consider rain and neighboring segments’ traffic condition. This 
extra information seems to be noise as it contributes negatively to 
the accuracies of the models. 

 
Figure 3. Accuracies of the 3 top recommended workflows 

compared to the accuracy distribution  
 

4. CONCLUSIONS  
We have presented a feasibility study on predicting traffic 
congestion by collaborative analytics. Instead of the conventional 
approach of building a fixed set of models to make the prediction, 
our approach leverages collectively shared predictive analytics 
workflows to dynamically apply the most reasonable models for 
given characteristics of data. To automate the workflow updating 
process, we have proposed a recommendation engine based on 
characterization of data and workflows. Our results show that our 
collaborative analytics can recommend workflows that give 
accurate prediction of traffic congestion. This signifies the 
potential of engaging systematically the community of data 
scientists to support very accurate data-backed prediction.  

Extensive experiments to test the robustness of collaborative 
analytics are currently ongoing. Some interesting directions 
include adding semantic descriptions for data/workflow 
characterization and developing a sustainable model to involve 
the community in collective sharing of analytics workflows.  
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