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Abstract. Using machine learning for predicting traffic is described in
the context of a competition organized using the TunedIT platform.
A heuristic is proposed for reconstructing the route of a car in a street
graph from a temporal stream of its coordinates. A resilient propaga-
tion neural network for approximating the average velocity on a given
street from irregular time series of instantaneous velocities of cars passing
through that street is discussed.
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1 Introduction and overview

The increase of population density and of the relative amount of car owners,
makes traffic jams an important problem of modern societies. Traffic jams are
a major source of discomfort of drivers, but also the cause of an increased number
of traffic accidents, especially in large cities. In appreciation of this problem,
a competition promoting research on predicting traffic was organized in June
2010 by Tom-Tom, a company producing automotive navigation systems [8].
While the competition consisted of three separate problems, the one analyzed
in this paper is the third one, concerning predicting average car velocities on
selected streets from instantaneous velocities of a selected group of cars driving
through the city. The problem is stated in detail in section 2.

The spatio-temporal character of the data available in the competition raises
a range of interesting sub-problems, from which the most immediate one is the
problem of finding a cars route through a street graph from a temporal sequence
of geographic coordinates retrieved from its GPS. An effective solution is dis-
cussed in section 3, consisting of combined usage of the well-known R-Tree data
structure (subsection 3.1) and a heuristic developed by the authors for estab-
lishing the lane through which the car is driving (subsection 3.2).

Another sub-problem, due to the discrepancy between the kind of data avail-
able and the quantity that has to be predicted, is that of reproducing the aver-
age velocity on a given street from instantaneous velocities of the cars passing
through it in a given time window. This was modelled as a regression problem
and solved using a neural network trained with the resilient back propagation
algorithm, as is discussed in section 4.
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Furthermore, experiments were carried out to assess the error of different
neural network architectures when performing this task. The results of those
experiments are presented in section 5, together with a comparison between the
accuracy of prediction obtained in this work and other results from the contest.

2 Problem statement

The overall basis for the competition is a traffic simulator based on cellular
automata written by Pawe l Góra from the University of Warsaw [2]. In this par-
ticular problem, in a simulation of traffic in Warsaw, one percent of the drivers
possesses cars equipped with a navigation system that is connected to the In-
ternet and every ten seconds sends out a notification to some hypothetical
central server. This notification is build from three parts: from the unique iden-
tifier, geographic coordinates and instantaneous velocity of the car. The goal of
this challenge is to use a stream of such notifications from the first 30 minutes
of a one hour long time window to predict velocities on one hundred selected
streets of Warsaw, in two 6 minute time periods, one starting now and another
24 minutes from now.

To make this task possible, a training set was made available. The training set
was generated by doing 50 ten-hour long simulations and had information about
average velocities on each of the hundred selected streets in each consecutive six
minute time window and the complete stream of all the notifications emitted by
the selected 1% of the cars. Data is highly voluminous: 500 hundred hours of
simulation with 10 time windows per hour and 100 streets selected makes up for
500 000 average velocity values and there is more then 135 million notifications.

The test set, that was used by the competing teams to generate the final
solution consisted of streams of notifications from first 30 minutes of each hour
of another 50 ten-hour long simulations - altogether around 65 million notifi-
cations. Two files describing the structure of streets in Warsaw as a directed
graph were also made available, with one file describing the nodes of the graph
as points specified by geographical coordinates and the second file describing
connections between nodes. The second file also contained information about
the length, number of lanes and the allowed maximal velocity on a given street.
The structure of the training and test sets is best summarized using a picture:

Fig. 1. Information available in the problem
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The solution had to be a vector of predicted values of average velocity of cars
passing through each of the hundred selected streets, for two prediction periods,
for each hour of the simulation from the test set, so with 2 ·100 ·10 ·50 = 100 000
values altogether. The submissions were ranked using the root mean square
error function of time required to travel through 1km of a given street, obtained
through transforming the predicted and actual velocity values:√√√√ 1
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n - number of predictions, x - predicted velocities vector, x̄ - actual velocities vector

As one can see, the problem is in supervised learning, however, because of the
unusual semantics of the data, it is impossible to directly use classic supervised
learning techniques. The reasons for this, as well as proposed solutions, will be
discussed in further sections.

3 Interpreting data from the navigation system

3.1 Searching for the street

The first problem comes from the fact that the prognosis of interest is to be
generated for particular streets, in fact even for particular lanes, while the ar-
riving notifications that form the basis for the prognosis come from particular
geographic points specified by a latitude and longitude. Because of that, a way
to map the notifications to the streets and lanes they come from is needed. The
problem can be formulated more strictly as follows:

Given a sequence of consecutive car positions in the form of its geographic
coordinates and a directed planar graph representing the structure of the streets
in the city, find the edges of the graph through which the car has driven.

The problem is illustrated by Figure 2, with X(k) being the function de-
scribing the position of the car in the kth second of the simulation. Since the
following conditions hold:

– the structure of the street graph is given

– streets are divided into straight-line segments

– geographic coordinates for small distances can be treated as points in a
Cartesian space

It follows that it is possible to check if a given geographic point lies on a
given street by calculating the geometric distance between this point and the
line segment equivalent to the street. However, with the street graph having
over 20 000 nodes and over 35 000 edges, and with the operation of locating the
street to be repeated for each of the several million notifications, it is not viable
to check all the edges for each notification.
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Fig. 2. The problem of interpreting data from the navigation system

There is a wide range of so-called space-partitioning data structures that
address problems of a similar kind. In particular, R-trees [3], standing for rect-
angular trees, turned out to be very well suited for solving this problem. R-trees
are a variant of B-trees in that every node in both an R-tree and B-tree can
have up to some fixed number k of child nodes, where k is chosen upfront and is
the same for the whole tree. Structuring the tree in this manner has important
advantages in database applications, which traditionally have to a large extent
stored data on hard drives - k can be chosen in a way that makes it possible
to store all the objects in a given tree node in the same disk block, which can
reduce the amount of hard drive seeks needed to load a group of somehow related
objects being the result of a query executed using the tree.

However, while B-trees store objects ordered by some arbitrary comparison
criteria, R-trees order the objects in such a way that objects geometrically close
to each other have a common parent node with the least possible number of
edges between any of the nodes and the common parent. When an R-tree is
constructed from a collection of objects represented by rectangles on a plane,
those objects are stored in the leaves of tree and an arbitrary node A in the
tree is the parent of another node B, if the hyper-rectangle represented by A
contains in itself the whole of the hyper-rectangle represented by B.
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This structure makes it possible to effectively execute the following kinds of
queries:

– for a given rectangle R, finding all the objects lying in R
– for a given rectangle R, finding all object which area partially or fully over-

laps the area of R
– for a given rectangle R and a number k ∈ N , finding the k objects nearest

to R

Those assumptions are common to all R-trees, however there are various
different ways of doing the detailed construction of an R-tree, giving raise to
various R-tree variants like Hilbert R-trees, R+-trees or R*-trees . Each of them
offers different performance both in terms of asymptotic complexity and in real-
world measurements. In this work, Priority R-Trees [1] were used, which give the
strongest performance guarantees in terms of asymptotic complexity and have
very good real-world benchmark results.

In the solution to this problem, each of the streets in the street graph of
Warsaw is circumscribed by a rectangle with its sides parallel to the respective
axes of the coordinate system. For each notification, a query is posed on the R-
tree for all the rectangles containing the point from which the notification was
sent. In the worst case, when this point lies in the rectangle of more then one
street, this query results in a couple of possible streets from which the notification
could came from and the precise result has to be found by checking the distance
between the notification and each of the streets. If the street under consideration
is a two-lane one, the decision from which of the lanes did the notification come
from is still left to be done and has to be made in a different manner, described
in the next subsection.

3.2 Searching for the lane

If only one position of a car is considered at a time, there is no way to find out
on which of the lanes of a two-lane street the car is, because those two lanes are
represented in the street graph as oppositely aligned edges between the same
nodes, so that they both lie on the same straight line - every point lies in equal
distance to both of them and there is no other information that could be used
to find the lane.

To solve this problem, it is necessary to consider fragments of car routes
instead. This was accomplished by loading the notifications into a hash table,
where the key was the unique id of one of the cars and the value was the list
of notifications sent by the car, ordered from the oldest to the most recent one.
Next, two notifications have to be considered at a time: the one for which the
lane is to be established and the next notification that was sent from different
geographic coordinates - if the car is stopped and sends consecutive notifications
from the same position it is impossible to distinguish the lane. Is important to
note that this next notification does not have to come from a street connected
to the street from which the previous one came from. Such case, serving as an
example here, can be seen in Figure 3.
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Fig. 3. The problem of finding the lane from which a notification came from

The car is known to drive through one of the edges of the graph connecting
some points (equivalent to nodes in the graph) A and B, in some time instant t
being at some point P , geometrically positioned on the line segment connecting
points A and B. In the next time instant t′, the car is at point P ′, not laying on
this segment. In this situation, the answer to the question if the car is moving
from point P towards point A or if it is moving towards point B is sought.
To answer this question, three vectors have to be considered: the D vector,
connecting points P and P ′, the X vector, connecting points P and A and
finally the Y vector, connecting points P and B. The D vector represents the
ideal direction in which the car should move to quickest reach its target (the point
P ′) if the structure of the street graph is ignored, and the X and Y vectors the
possible routes which the car could really take. Considering the high frequency
of the notifications, one can with high probability assume, that the driver always
chooses the route along the vector that is the least rotated with respect to the
D vector, because this is the fastest way to go from point P to P ′. This heuristic
is equivalent to the intuitive reasoning which a person interpreting a picture like
3.1 typically does subconsciously. The α and β angles can be computed using
the cosine theorem.

This way of finding the lane the car was driving through is of course only
a heuristic and it is not hard to come up with situations in which it can fail.
There is no 100% sure way of reconstructing the route of the car through a street
graph on the basic of a discrete stream of notifications where the time periods
between notifications are of significant length. The higher the frequency of the
notifications, the higher the accuracy of this heuristic through.
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This part of the solution to the problem of interpreting data from the GPS
was independently developed by the authors. Although R-trees are a very well
known data structure and a widely used one in the domain of Geographic In-
formation Systems (GIS), its usage for this problem also turns out not to be
obvious. From the publications that were published after the competition about
the winners solutions, the work [4] used an ad hoc grid-based method for finding
the road from which a notification came and it contains no mention of consider-
ing different lanes, while [7] acknowledged the existence of the lane problem, but
did not propose any solution, claiming no significant impact on the accuracy of
the final prediction. In this research, identification of the lane using the heuristic
proposed improved the final accuracy of prediction about 10%. The approach
chosen also resulted in low preprocessing times, with allocating the notifications
to the streets and lanes taking only about 20 minutes, while [4] describes a less
precise process (without taking lanes into consideration) taking more then 20
hours. While such absolute times cannot be compared directly due to the differ-
ences in hardware and implementing environment used, a difference of almost
two orders of magnitude can seldom be attributed only to those differences, but
rather to the usage of more efficient algorithms.

4 Approximating the current average velocity

4.1 Problem context

By using the methods described in the previous chapter, the sequence of noti-
fications send out from each of the streets during the 30 minutes that are the
basis for the prediction is established. Unfortunately, this data is hard to use
directly because of its irregularity and sparseness. To better understand those
difficulties, it is valuable to analyze a sample situation from the simulation:

Streets are described by consecutive letters of the alphabet, the bold street
G is the one for which prediction is to be made, while Xk(t) is the position of
the car with id k, with k ∈ {1, 2, 3}. Cars number 1 and 2 begin their journey
at points lying near the G street. Car number 1 starts on the L street, sends out
the first notification in the zeroth second of the simulation, in under 10 seconds
passes through the I street to arrive on the G street in the tenth second of the
simulation and send out a notification. The car number 2 arrives on the N street
in the tenth second of simulation, drives through the K street, sending out a
notification from it, drives through the J street without sending a notification
and in the thirtieth second of the simulation sends out a notification from the G
street. In the twentieth second of the simulation there was no car on the G street
and thus there does not exist a notification from this time. The car number 3
arrives in the area pictured around the sixty fifth second of the simulation on
the M street, then sending out a notification in the eightieth second from the G
street. As it can be seen, even through each car sends out a notification every
ten seconds, for the selected streets there are notifications available only for the
tenth, thirtieth and eightieth seconds of the simulation. Information is irregular
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Fig. 4. Irregularity of the data available for each of the streets

and for this reason it can not for example be interpreted as classical time series
for the purpose of prediction.

It is also important to keep in mind that only one percent of the drivers
in the simulation has cars equipped with a navigation system. Due to the con-
stant movement of cars, the set of streets from which notifications are available
changes in each time instant and is a small subset of the set of all streets. Ad-
ditionally, since the notifications are only sent every ten seconds and the edges
of the graph often represent short, few meters long segments, frequently two
consecutive notifications do not come from connected edges of the graph (like
the car number 1 driving through the I street).

Due to those imperfections of the data available, it is necessary to first recon-
struct the approximate time series of the current velocities in the five consecutive
six minute time windows, before it will be possible to do any prediction at all.
To this end, a neural network based model was constructed, approximating the
average velocities in a given six minute time window on a given street. based
on the stream of notifications from that street and from this period. Because
frequently there is no notification at all on some streets for a particular time
period, a simple algorithm for filling out the time series was developed as well.
In this manner a regular time series of approximate velocities in the consecutive
six minute time windows is reconstructed for each of the streets selected for pre-
diction. This makes it potentially possible to apply traditional methods of time
series prediction to this problem.
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4.2 Design of a neural network for the problem

Every classical, feed-forward neural network, in particular based on perceptrons
represents a particular function, being a combination of the non-linear activation
functions of the individual neurons constituting the network. The architecture
of the network, that is the number of its inputs and outputs, the number of the
hidden layers and the kind of activation functions used, determines the class of
functions that the neural networks is capable of approximating. As one can see,
both the choice of the architecture of the network, as well as of the method of
training, is critically important in the process of designing a model of a particular
phenomena. Equally important is the choice of features that will serve as inputs
of the network, as the correlation between them and the desired neural network
output finally determines the possibility and accuracy of solution of a given
problem.

The natural start of the neural network design process is thus the choice of the
features that will be used as the inputs of the network. For each six minute time
window, for which the approximate current velocity is sought, there is a variable
number of notifications available that forms the basis for this approximation.
However, the neural network has a fixed number of inputs, it is thus necessary to
summarize the data in some way by a fixed number of parameters, correlated as
much as possible with the current average velocity on the given street. An obvious
candidate set of features is the set of summary statistics: the average, standard
deviation, median, minimum or maximum of the sequence of notifications.

Less obvious is the fact, that the results of the network are much improved
by using an input which has the higher value the lower is the average value of the
notifications from the time window in concern. This is important in the frequent
case, when the number of notifications is very low (1-3) and their value is low
as well, while the average velocity on the street stays quite high, which is often
the case for rarely frequented streets which do not experience traffic jams at
all, yet for which a few low notifications still can happen, because the car with
the navigation system can park or just start driving. Since the neural network
output depends on the overall activation of the inputs, using only features like the
average or standard deviation of the stream of notifications it is hard to optimize
the weights of the network to yield a high output in this case, while still keeping
good accuracy in the more usual cases. A particularly good feature to address
this problem turned out to be the ratio between the amount of notifications with
very low velocity values (below 5 km/h) to the amount of all notifications.

The next design decision concerned the number of hidden layers and neurons
in each of the layers. According to theoretical results, a single hidden layer with
2d+ 1 units for d inputs is enough to approximate a continuous function and its
derivative with arbitrary precision [5]. A similar architecture turned out to be
most successful in this problem; attempts to increase or decrease the number of
hidden units increased the approximation error.

Finally, because of failed attempts to train the network using the classical
method of back propagation, the network was trained using the less known re-
silient propagation technique, which augments the back propagation method



Machine Learning for Traffic Prediction 451

with a heuristic that makes the training process much less likely to get stuck
in a local minima [6]. Of course, the input data also had to be normalized, and
additionally some outlier filtering was applied.

5 Experiments and results

To choose the final best network architecture, an experiment was carried out
comparing neural networks with different sets of features as inputs. Because
only the training set contained both the notifications and the corresponding
values of average velocity for the consecutive six minute time windows, it was
divided for the purpose of the experiment into two parts, one used to train the
model, second one used to measure the approximation error. The results of the
experiment are shown in Table 1.

All the neural networks were subjected to 15 000 training epochs. The A
network turned out to be the best in this experiment, but when using the full
training set the B network performed slightly better and was chosen as the
optimal one.

The final result of the approach outlined in this paper, generated by training
the chosen network on the whole training set and treating the approximated
current velocity as the prognosis for both prediction periods, in comparison to
other competitors, is shown in the table below. As one can see, the correct
approximation of the current velocity was enough to score a good place in the
competition:

Place in the competition Name/nickname RMS error

1 hamner 6.7719

2 trafficlab 7.4556

3 Andrzej Janusz 7.5779

4 dleshem 8.6653

- Result from this paper 9.1563

5 amrkabardy 9.6284

6 Ed Ramsden 12.9057

7 dmlab 13.0690

8 arson 13.6606

9 tinygray 15.1965

10 Tri Kurniawan Wijaya 16.6041

11 Baseline 18.0649

12 xiaohui li 18.0649

13 LouisDuclosGosselin 18.0649

14 xiao 18.0649

15 Javafish 18.0649
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Table 1. Comparison of accuracy of different neural network models for
approximation of the current velocity

Approximation method RMS error1

Neural network A with inputs:

1. Average of velocities from notifications
2. Number of notifications

9.9240

Neural network B with inputs:

1. Average of velocities from notifications
2. Ratio of low velocity notifications to the number of all notifications

10.0171

Neural network C with inputs:

1. Average of velocities from notifications
2. Standard deviation

10.3385

Neural network D with inputs:

1. Median of velocities from notifications
2. Ratio of low velocity notifications to the number of all notifications

10.0778

Neural network E with inputs:

1. Median of velocities from notifications
2. Standard deviation

10.1794

Neural network F with inputs:

1. Average of velocities from notifications
2. Number of notifications with velocities below 5 km/h
3. Number of all notifications

10.5004

Neural network G with inputs:

1. Number of all notifications
2. Average of velocities from notifications
3. Median of velocities from notifications
4. Standard deviation
5. Lowest velocity
6. Highest velocity

10.8365

1 According to equation 1.
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6 Conclusions

In summary, the following results were established:

– An efficient, precise way of reconstructing a cars route from its consecutive
coordinates was developed, basing on existing algorithms and data structures
with proven correctness and known computational complexity. For compar-
ison, solutions [4, 7] use ad hoc methods that do not guarantee reasonable
performance and ignore the lane problem altogether.

– A resilient propagation neural network model for approximating the average
car velocity on a street in the given time window from a sequence of instan-
taneous velocities of the cars driving through that street was constructed.
More specifically:
• Effectiveness of neural networks in this application was shown
• The set of features, number of hidden layers and neurons and method

of training were established in a way guaranteeing good approximation
precision
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