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I. INTRODUCTION

It is Friday afternoon. You have a blind date at San
Francisco at 8:00pm. Since you don’t want to give a bad first
impression, you plan to leave early enough not to be late for
the appointment. However, the traffic on 101North on every
Friday is real heavy and unpredictable. Although it takes only
50 minutes to get there on other weekdays, it might take from
1.5 hours to 3 hours. So, when should you leave for SF to
minimize the wasted time and meet the appointment schedule?

This question above is commonly encountered by travelers,
so they want an accurate travel time prediction. Adding to
this case, accurate travel time prediction is also essential
for traffic information and transportation systems such as
vehicular navigation systems in cars or traffic boards on the
roads to provide efficient route information. Furthermore, with
this information, we can prevent unnecessary traffic jams with
such a scheme as load balancing. In this project, we try to
predict a travel time from one place to another in a freeway
using machine learning algorithms.

There are several research papers dealing with this topic.
Especially, J. M. Kwon et al [3] and X. Zhang et al [2] form
a good starting point. These previous works provide several
travel time prediction algorithms using linear regression. For
these algorithms, inputs for linear regression are historical data
of traveling times and current states of highways. However,
the authors for these papers did not consider other important
factors such as what day of the week and which season
of the year. By considering additional important factors, we
expect to improve the accuracy of prediction. The purposes of
this project are twofold; first, we evaluate existing algorithms
presented in relevant research papers; second, we develop new
algorithms to enhance the accuracy of prediction.

For evaluation and development of travel time prediction
algorithms, we need several types of data including an average
speed of each freeway for different times, days, and months.
These data are available to public at Freeway Performance
Measurement System website [1]. This website provides his-
torical and real-time freeway data from freeways in the State
of California collected by sensors installed on major highways.

II. PROBLEM STATEMENTS

As in [2],the travel time prediction problem is defined as
follows: The route for traveling comprises L segments of

freeway with length S1, ..., SL. In each segment, there is a
sensor for measuring the average speed of bypassing vehicles,
v(l, τi), where τi is the time for measurement. It is assumed
that for the prediction at time t, the speed data, v(l, τi), are
available for τi < t−∆, where ∆ is a fixed positive time-lag.
The objective of this project is to predict the travel time of this
route with this information. More formally, we should find a
function g such that

T̂ (t) = g(V (t,∆)), (1)

where T̂ (t) is a time predict for travel that starts at time t
and V (t,∆) = [v(i, τi), l = 1, ..., L, τi ≤ t −∆] denotes the
collection of data available for predicting T (t), the real travel
time. The performance metric for prediction is the percentage
prediction error defined as

γ(t) =
|T (t)− (̂T )(t)|

T (t)
. (2)

III. PREDICTION METHODS

Travel time algorithms differ in choosing the predictor
function g(V (t,∆)) in (1). In this project, several prediction
methods are evaluated including the time-varying coefficient
linear model of [2].

A. Historical means(HM)

Historical mean (HM) uses the mean of the training set at
time t as the predictor for travel time. Formally,

T̂HM (t) =
1
|D|

∑

d∈D

Td(t).

B. Current time predictor(CT)

For current time predictor(CT) method, the travel predictor
is obtained by assuming the speeds of all segments at time t
remain the same as the speeds at t−∆ throughout the entire
travel. Formally,

T̂CT (t) =
L∑

l=1

Sl

v(l, t−∆)
. (3)
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C. Time varying linear regression(TVLR)

In this method, the travel time predictor is expressed as

T̂TV LR = α(t,∆) + β(t,∆)T̂CT (t), (4)

where alpha(t,∆) and beta(t,∆) are time-varying constant,
and TCT (t) is the current travel time predictor of the previous
segment.

D. Time varying linear regression per segment(TVPS)

In TVLR, the predictor is obtained by considering the
current time predictor of the entire route as the key feature. For
time varying linear regression per segment(TVPS), the current
time predictor of each segment plays a role as a feature. So,
linear regression coefficients, alpha and beta, are calculated
for each segment separately so that travel time prediction is
conducted on each segment. Then, predictors for all segments
are summed up to form the whole predictor as

T̂TV PS(t) =
L∑

l=1

T̂TV LR(t, l)
L∑

l=1

α(t, l) + β(t, l)T̂CT (t, l).

E. Algorithm considering Days in a Week

In the previous papers [2] and [3], the authors obtained
α(t,∆) and β(t,∆), and predicted T̂ (t) assuming the traveling
time characteristics of Fridays are the same as those of Mon-
days, for example. However, as shown in Fig. 1, the statistical
characteristics for each day in a week differ significantly.
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Fig. 1. Means and variances of travel time for a trip from University Avenue
to San Francisco with Highway 101N.

The new algorithm exploits this difference in such a way
that the coefficient for each day is obtained by training on a
subset of S that contains only the same days in a week. More
formally, αD(t,∆) and βDt, ∆ minimize

εSD
(αD(t,∆), βD(t,∆))

=
∑

sn∈S

(
T (t, sn)− α(t,∆)− β(t, ∆)

)2
,

where D ∈ {SUN, MON, TUE, WED, THU,FRI, SAT}
and SD = {si ∈ S; sn collected on D day in a week}. Once
obtained, αD(t,∆) and βDt, ∆ is used to predict the travel
times only for D days.

IV. DATA ACQUISITION AND PREPROCESSING

A. Data Acquisition

We get the data from the Freeway Performance Measure-
ment System website[1]. For this milestone report, trip starts at
University ave to San Francisco on highway 101N. There are
68 VDSs(Vehicle Detection System) in the route. The speed
data measured by VDSs for every 5 minutes. That website
supports exporting data as excel or text file, and we used ’unix’
command in Matlab and ’wget’ command in Unix to get data.

B. Preprocessing

Before training our model, preprocessing the travel time
from the data is necessary. To calculate the whole travel time
taken from University ave to San Francisco, the travel time
is summed over all small segments between VDSs. However,
two problems should be addressed before getting the travel
time. First, the entire route should be re-segmented to reflect
the real speed of the vehicles. Second, the fact that the time
is also discretized should be considered.

For the first problem, re-segmentation, consider the seg-
mented route in Fig. 2. x1, ..., xL are the locations of sen-
sors(e.g. VDS in PeMS) that measure the vehicle speed. The
issue here is to decide how v(l, t), the speed measured at
xl, can be used. It is reasonable to assume that the speed
measure at xl represents the average speed of segment from
(xl−1 + xl)/2 to (xl + xl+1)/2 as shown in Fig. 2. So,
the segment lengths Sl, l = 1, ..., L associated with speeds
v(t, l), l = 1, ..., L, should be calculated as

S1 = (x1 + x2)/2− x1,

Sl =
xl + xl+1

2
− xl−1 + xl

2
, for l = 2, ..., l − 1,

SL = xL − (xL−1 + xL)/2 .

Then, by assuming that v(t, l) remains the same when the
vehicle is in the segment l, we can calculate the travel time
for this segment.
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Fig. 2. Re-segmentation of the route

Once, re-segmentation is done, there remains the problem of
discretized time. This problem stems from the fact that sensors
measure the speeds with some time interval, δt. δt = 5 minutes
for PeMS. So, if a car enters segment l at time t and stays at
the same segment more than δt, it speeds should be changed
to be v(t+δt, l). Figure 3 illustrates this issue. The horizontal
axis and the vertical axis are discretized so that the space-time
is divided into small grids. The blue line represents the path
of a vehicle. In each grid, the speed remains constant so the
slope of the line is constant. The travel time can be computed
the time when the path reaches the end of the last segment.
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Fig. 3. Calculation of travel time for discretized time

As the authors in [2] argue, the travel times computed with
this preprocessing is not significantly differ from the real travel
times. So, we use the outputs of this preprocessing for training
and testing of the prediction methods.

V. NUMERICAL RESULTS

In this section, we compare the four prediction methods in
III, and apply the method considering days-in-a-week effect.

A. Test environments

As mentioned in the previous section, for numerical results
the trip starts at University ave and ends at San Francisco on
highway 101N. The training set consists of the trips of 209
days from April 1st to October 26th. For each day, there are 6
trips, the starting time of which is in every 5 minutes between
17:30PM to 17:55PM. We set the training and test time like
this because this time slot shows the most dynamic traffics due
to commuter traffic. For this trip there are 68 VDSs, which
means L = 68. The data in PeMS shows the speeds for each
lane in the highways. We assume that the speeds for the second
lane represent the average speeds of vehicles. The test set of
the prediction methods consists of 63 days.

B. Test result

Figure 4 shows the relative error averaged over test set with
∆ = 30 minutes for different days in a week. As seen in
the figure, we have two different results for weekdays and
weekend. For weekdays, TVPS outperforms other methods,
and CT follows. The performances of HM can be considered as
lower bounds due to its simplicity. For weekend, CT performs
better than TVPS, which is the reverse of the results for
weekdays. Recall that CT perform well when the traffic patter
varies slowly. Hence, for weekends, when no commuter traffic
exists, CT outperforms other methods.

Although TVPS performs well in weekdays, its performance
is problematic for weekend. For TVLR, the performance
is worse with relative errors more than 10%. This issue
can be addressed by using methods considering days-in-a-
week effect. In Fig. 5 the performances of TVPS and TVLR
considering days-in-a-week effect, denoted by TVPS(d) and
TVLR(d), are added to Fig. 4. As shown in the figure after con-
sidering days-in-a-week effect, both TVPS(d) and TVLR(d)
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Fig. 4. Results without considering days-in-a-week effect, ∆ = 30min.

outperform CT. Here, the relative error of CT remains the
same since days-in-a-week effect is inherently reflected in CT.
As the figure shows, the average relative error is below 10%
for TVPS(d) and TVLR(d). It should be noted that TVPS
involves more computational complexity than TVLR by factor
of L. Therefore, it is desirable to use TVLR(d) since with less
computational complexity it shows comparable performance
to that of TVPS(d),which has the best prediction power.
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Fig. 5. Results with considering days-in-a-week effect, ∆ = 30min.

Figure 6 shows the effect of different values of ∆ to the
average relative errors of three scheme. Two things can be
observed from the plot. Fist, the average relative errors of CT,
TVLR(d), and TVPS(d) increase as ∆ increases. Second, the
performances of three methods get closer to all another as ∆
increases.
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Fig. 6. Relative error vs. Delta.

VI. CONCLUSION

In this project, the problem of predicting travel time is
addressed. As predictors, four methods are presented and
one suggestion, ’days-in-a-week’ effect, for improving the
performance is made. As shown in the evaluation results with
the route from Univ. Avenue to San Francisco on highway 101
North, considering ’days-in-a-week’ reduces prediction error
significantly. Furthermore, TVLR(d) is suggested as a useful
method with its good performance and simplicity.

To further improve the accuracy of prediction, it can be
considered using other models such as the linear model using
link flow and occupancy. We can also try to consider other
factors that affect travel time such as the traffic information
for the crossing highways.
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