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Matrix factorization techniques for
recommender systems

Overview of the topics

- the benefits of using recommender systems
- content filtering vs collaborative filtering

- basic matrix factorization

- learning algorithms

- refining the minimization problem

- outlook on the netflix prize
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Why do users need recommender
systems?

- users of electronic retailers or content providers
face a large number of choices
—matching users with most appropriate items
raises user satisfaction and loyalty
- recommender systems analyze patterns of user
interests to provide personalized
recommendations
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Content filtering

- both users and products get a profile

- user profiles might include age, demographic or
answers given to a suitable questionnaire

- product profiles include attributes describing its
nature (e.g. movies have genre, actors, release
date)

— based on these profiles, user/product is
matched
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Collaborative filtering

- relies on past user behavior (e.g. ratings,
purchase history)

- no explicit profiles are necessary

- instead relationships between users and
products are used to identify new user-product
associations
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Content filtering vs collaborative
filtering (1/2)

Aspects in which content filtering is superior:

- content filtering does not suffer from the cold
start problem as it collects data about product
and user beforehand to generate profiles

- collaborative filtering has to address its cold start
problem, because new users/products start
without any information about them
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Content filtering vs collaborative
filtering (2/2)

Aspects in which collaborative filtering is

superior:

- it is domain free

- can address data aspects that are difficult to
profile, because they are too elusive

— generally more accurate than content filtering

- easier model to expand with biases/implicit data,
etc.

- content filtering needs external information about
product/user which might be difficult to obtain

08.11.2016 Niklas Rowohl, Matrix factorization techniques for recommender systems 8



Collaborative filtering:
Neighborhood method

- centered around relationships between users or
items

- user/user relationship: highly rated items by
users with similar taste are suggested for one
another

- item/item relationship: similar items to the items
a user liked are suggested to the user
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Collaborative filtering:
L atent factor models

- users and items are characterized by some (20
-100) characteristics based on rating patterns
— each item and each user gets a vector which
includes these characteristics (user vectors
have preferences for certain characteristics of
an item, item vectors the characteristics
themself)
- the user vector is denoted as o the item vector

as q
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Basic matrix factorization

- Consider a item/user matrix R that contains the
ratings user u gave to item |

— obviously does not every user rate every
product

— we try to estimate the ratings not given in
R by using user and item vectors p and q

R=~QT -P=R

Where () contains the item vectors ¢; and P the user vectors p,.
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Computing the item/user matrix with
estimated ratings

Result: Item/user matrix with estimated ratings
input: N user vectors p,, M 1tem vectors g;

1 for u=1 to u=N:u++ do

for i=1 to i=M:1++ do
3
ot = * P
4 end
5 end
6 Fill the item /user matrix R with the estimated ratings ry;
7 return R

Algorithm 1: How to compute the estimated ratings
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How do we estimate the entries of
the user and item vector?

- as we have seen, computing the item/user
matrix with estimated ratings is rather simple
once we know the user and item vectors P and q

- we need to learn these vectors by analyzing the
observed data
— minimize the error between the estimated
ratings and the known ratings
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Minimizing the error in the

training set
- K'is the set of explicitly given ratings r  of

user u to item |

- A is a constant and controls the extent of
regularization to avoid overfitting

— the goal is to minimize the error in the
training set K and not to overfit the
training data in doing so

min Yy (rui— g - pu)” + M@l + [pull®)
(u,i)EK
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The problem of overfitting

- Overfitting occurs when a model based on
training data describes the random error or
,2background noise” of the training data

— doing so makes the model fail in predicting

data outside of the training data
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Learning algorithm

- learning algorithms are algorithms designed to
solve the minimization problem

- there are multiple approaches to finding the
minimum, in this presentation two approaches
are presented and compared
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Stochastic gradient descent

- basic idea: start at a random point — compute
the gradient on that point — shift to a new point
In the opposite direction of the gradient — repeat
procedure at the new point until the new point is
,good enough”

- how far can we shift the new point and what is
the gradient in this case?
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Stochastic gradient descent
algorithm (1/2)

Result: Updated feature in the item vector, updated preference
in the user vector
input: one user vector p,, one item vector ¢;, feature k that 1s
trained, real rating ry; from user u for item i, learning rate
Irate
1 Error function: e,; = ryi — q*;-r - Pu
9 Squared Error with regularization is therefore: 2. = (rui — g2 - pu)®

3 Partial derivatives with regard to feature k:

el 2

_.—M = 2. (Tui — f."i:r “Pu)t (—Gik) = —2 ey qik
Pk

oy D

r [y . T , ' :

T 2« (ryi — q; " Pu)  —Puk) = — 2l Pk
Gk

4 Updating the item and user vector:
New _Puk = Puk + 2 - lrate - e, - g

new_gi. = gik + 2 - lrate - ey - Puk

5 return p, and g; with updated k-th entry new_py. and new_g;.
Algorithm 1: How to train a feature k using stochastic gradient

descent
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Stochastic gradient descent
algorithm (2/2)

- Irate stands for the learning rate (also called step
size) of the algorithm and makes sure that the

algorithm converges
— can be chosen rather arbitrarily or with the

Armijo algorithm
- In one iteration we calculate the error and then
update the k-th entry in our vectors by going into
the opposite direction of the partial derivates of

the error function
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Alternating least squares (ALS)

- because the minimization problem relies on two
vectors (user vector and item vector) to be
trained, we cant simply do a least squares
approach as usual

— however by fixing one of the vectors and only
optimizing the other, we can fall back into the
standard least squares approach

- then we alternate between which vector is fixed
and which gets optimized
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Pseudo code for ALS

Result: Optimized user and 1tem vector
input: N user vectors p,, M 1tem vectors ¢;, set /X with the
traming data r,;

1 while Y. (ry — ¢' - pu)? + M||pull* + ||@||?) is not small enough

do
2 Fix g; and solve the least squares regression with regards to p,.
3 Update the p,s accordingly.
4 Fix p, and solve the least squares regression with regards to g;.
5 Update the ¢;s accordingly.
6 end

7 reterng.p. i =1 .. . Mue=1_..N
Algorithm 1: How to solve alternating least squares
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Stochastic gradient descent vs ALS

- while in general stochastic gradient descent runs
faster, there are at least two circumstances in
which ALS is superior

1. parallelization: ALS can be parallelized,
because each user and each item vector can be
computed independently of other user/item factors
2. non sparse rating matrices: stochastic gradient
descent loops over all of the training data. If there
IS a lot of training data, this can make the
algorithm quite slow, while ALS can handle this
case
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Refining the model

- the formulas used to compute the estimated
rating and to train the model can be expanded

— Adding biases: Users are more or less critical
In their ratings, products are better/worse

— Implicit data: i.e. Purchase history can be
used to gather further information about a user

— Temporal dynamics: user behaviour/bias or
item bias might change with time

— Confidence in the training data: Different
levels of certainty can be applied to ratings
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Netflix Prize competition

- in 2006 Netflix released a training set of 100
million ratings made by 500,000 users on more

than 17,000 movies
— the item/user matrix has about 8.5 billion

entries, but only 100 million of them are filled

with a rating
- Netflix had a training set of about 3 million

ratings on which they calculated the root mean

squared error
— the first team to beat Netflix' own

recommender system by 10% on the test set
wins 1 million $
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How to win the Netflix Prize
competition

- using the methods aforementioned and
factorization models Yehuda Koren's team was
the frontrunner in 2007 and 2008 and finally won
in 2009
— factorizing the user-movie matrix given by

Netflix allowed the team to gain the most
descriptive characteristics-preference
dependencies
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Conclusion

Content filtering does not allow a look at user behaviour
and only relies on profiles

Collaborative filtering focuses on user-user, item-item
(neighborhood method) or user-item (latent factors)
Interdependencies

Latent factors lead directly to matrix factorization which
allows us to fill in the sparse rating matrix with estimated
ratings

T
d

T

ne item/user vectors are estimated by a learning
gorithm

ne latent factor model is easy to expand
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Back up slides

Every slide after this one is not part of the
presentation, but may offer some insight to a topic
only briefly discussed in the presentation.
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Neighborhood method:
User/user relationship example (1/2)

User/movie matrix filled with ratings from 1 to 5 (1=not liked,5=liked).
Ratings from Matthias are only known for ,Finding Nemo®.

What other movies could be predicted to be liked by Matthias?

Finding Nemo | Spiderman Star Wars The Hobbit
Jannis 5 2 3 4
Verena 2 3 5 1
Miriam 4 2 1 5
Matthias 5 ? ? ?

08.11.2016
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Neighborhood method:
User/user relationship example (2/2)

Verena and Matthias' rating doesn't match, so we can ignore her.
Jannis, Miriam and Matthias however do match. That is why we can
assume that Matthias will like the movies Jannis and Miriam liked (in
this example: Matthias will probably like ,The Hobbit").

Finding Nemo | Spiderman Star Wars The Hobbit




Example for overfitting
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The left graph shows training data being estimated by different estimation methods

While the green line has the lowest mean squared error on this training data (right-hand graph, grey line), it doesnt seem to correctly
reflect the ,true” function as it gets influenced too much by random error made in the training set.

Therefore the mean squared error of the green line in the test data is actually bigger than the error made by the other estimations
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Stochastic gradient descent with regularization

Result: Updated feature in the item vector, updated preference
in the user vector

input: one user vector p,, one item vector ¢g;, feature k that is

trained, real rating ry; from user u for item 1, learning rate
Irate, regularization constant A
1 Error function: ey = ry; — qf - Py
2 Squared Error with regularzation is therefore
en; = (rui — @ - pu)® + Alpl® + llail]?)
3 Partial dertvatives with regard to feature k:

e i o

5‘;; =2 (rai— @ ~Pu) - (—ik) + 2 - Pur = —2 - € - Qi + 2 - pup
e S

r_m =2 (rui — t]f.'-r ‘Pu) - (—Puk) + 2\ - qik =

it

—2 €yi * Puk + 2X - gik
4 Updating the 1tem and user vector:

new_Puix = Puk + 2+ Irate - (ey; - G — A+ Puie)

new_gi = Gk + 2 « lrate - (ey; « Puk — A~ Gike)

5 return p, and g; with updated k-th entry new_py. and new_g;;

Algorithm 1: How to train a feature k using stochastic gradient
descent and considering regulanzation
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Adding biases

- expanding the model by 3 types of biases:
1. userbias: b

2. Item bias: b,
3. overall average rating: p

fm — M —l_ bg, _l_ bu, _I_ 6]3 | pu

min Z (Tui = o= by — by — @ - pu)* + M|lpu|® + ||@s|]* + 55 + 52)
P, q*,Dx ek
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Additional input sources (1/2)

- additional information can be gathered through
implicit feedback or known user attributes (age,
gender, etc) and refine our model

- helps with the cold start problem and with users
not willing to give explicit ratings
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Additional input sources (2/2)

(Normalized) Implicit feedback:

4\?( u..) | =03 Z T;

Known user information:

¥
acA(u)
N Z T 1 Z Ua

1eN(: acA(u)

= fu=p+b+b+q - (pu+

N(u) is the set of items user u showed implicit pl‘@f(ﬁl‘(?:ll(:(—i’f for. x; is
the vector associated with item 1, A(u) is the set of attributes that
correspond with user u, y, corresponds corresponds to each attribute

to describe a user/item association.
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Temporal dynamics

- specifically the user bias, item bias and the user
preference can change over time
— modeling these parameters as functions over
time, change our model from a static to a
dynamic one

Fui(t) = po+ bi(t) + bu(t) + Qz, - Pu(t)
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Inputs with varying confidence
levels

- massive advertising for a certain item might
iInfluence ratings not correctly reflecting its
longterm ratings
— how sure can one be in given ratings?

- our model can reflect the confidence in ratings

by giving user/item pairs weights (c )

ul

min Z Cui(Twi — ft — by — b — q? cpu)? + A | p.H,_H2 + || g H2 + hi - h'f)

P gk, b )
(u,i)EK
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Introduction

* The PMF model that is basically based on the assumption that users
who have rated similar sets of movies are likely to have similar
preferences.

* This model scales linearly with the number of observations and, more
importantly, performs well on the large, sparse, and very imbalanced
Netflix dataset. It also emphasize the regularization concept which
solve all ill-posed problems or prevent any overfitting.



Current techniques

* There are many different approaches and algorithms in collaborative-
filtering techniqgue, some of them are based on low-dimensional
factor.The idea behind such models is that attitudes or preferences of
a user are determined by a small number of unobserved factors.

* A variety of probabilistic factor-based models has been proposed
recently, in addition to low-rank approximations based on minimizing

the sum-squared distance can be found using Singular Value
Decomposition (SVD).

e SVD finds the matrix # — U7V of the given rank which minimizes the
sum-squared distance to the target matrix R.



Current techniques

Unfortunately all of the mentioned techniques have a lot of
disadvantages and drawbacks. i.e.

* Performance

* Scalability

* Sparseness (because of users who have few ratings records)
Except for the matrix-factorization-based ones none of the above
mentioned have proved an accurate predictions.



PMF technique

* PMF is a simple probabilistic linear model with
Gaussian observation noise.

* Given the feature vectors for the user and the
movie, the distribution of the corresponding rating
IS: ) )

p(R;;|U;, V;, 0%) = N (R;;|U V;, 0?)

 The user and movie feature vectors are given

zero-mean spherical Gaussian priors:

N
p(Uloy) = [[N(Ui0,081). p(V]oy) HN 20,02 1)

=1

<+ Q)

Je

j=1,....M




PMF technique

* Maximize the log posterior over movie and user features with fixed
hyperparameters.

* Equivalent to minimizing the sum-of-squared-errors with quadratic
regularization terms:

N M

N M

_ T2 | AU C 02 Ay 9

E EZZ"U(H?J‘ — r"lfj V.-i'} { ?Z || tr""i ||i"ru { ?Z || V:}? ||}}-".r'r;'.~
i=1 =1

i=1 j5=1

where Ay = 07 /07, \v = 0%/oy, and || - ||, denotes the Frobenius norm.

* Find a local minimum by performing gradient descent in U and V.
* If all ratings were observed, the objective to the SVD objective in the
limit of prior variance going to infinity.



PMF technique

* Instead of using a simple linear-Gaussian model, which can make
predictions outside of the range of valid rating values, the dot
product between user- and movie-specific feature vectors is passed
through the logistic function g(x) = 1/(1+exp(-x)), which bounds the

range of predictions:
N M Iy
p(RIU,V,0?) = | | | | [NV (Ri;|9(UV5), fﬁ}]
i=1j=1
* We map the ratings 1,...,K to the interval [0,1] using the function t(x)

= (x - 1)/(K - 1), so that the range of valid rating values matches the
range of predictions our model makes.



PMF with adaptive prior

e Capacity control is essential to making PMF models generalize well.
* The simplest way to control the capacity of a PMF model is by
changing the dimensionality of feature vectors.

* The complexity of the model is controlled by the hyperparameters:

Inp(U, V,0?%,0p,0v|R) =Inp(R|U,V,d%) + Inp(U|@y) + Inp(V |0y )
Inp(Oyr) + Inp(By) + C,

* the noise variance 02 and the parameters of the priors.

* Find a MAP estimate for the hyperparameters after introducing
priors for them.

* Find a point estimate of parameters and hyperparameters by
maximizing the log-posterior.



PMF with adaptive prior

e Can use more sophisticated regularization methods than simple
penalization of the Frobenius norm of the feature matrices.

* priors with diagonal or full covariance matrices and adjustable
means, or even mixture of Gaussians priors.

* Using spherical Gaussian priors for feature vectors leads to the
standard PMF with AU and AV chosen automatically.

* selection of the hyperparameter values worked considerably better
than the manual approach that used a validation set.



Constraint PMF

* Once a PMF model has been fitted, users with very few ratings will
have feature vectors that are close to the prior mean, or the average
user, so the predicted ratings for those users will be close to the
movie average ratings.

* Two users that have rated similar movies are likely to have
preferences more similar than two randomly chosen users.

* We are introducing a way of constraining user-specific feature
vectors that has a strong effect on infrequent users.



Constraint PMF

e Let W € RDxM be a latent, so the feature vector for oy
user i is: l
)\

Ay

M :
Lik Wi

S k=1
L?: _}/f I M

j=L...M

—1 / 1k
where | is the observed indicator matrix with lij taking on value 1 if user i rated movie j and 0 otherwise.

* This should be performing better on infrequent user.




Constraint PMF

 We now define the conditional distribution over the observed
ratings as:

| N M MW R
p(RIYV.o?) = [T VRl + EESEEE ),
1=17j=1 k=1 11

* We regularize the latent similarity constraint matrix W by placing a
zero-mean spherical Gaussian prior on it:

M

TW ) = H J\“r( ‘r"l"}{;

k=1

p(W 0, 031).




Constraint PMF

U Ow
Oy Oy , | |

I
i=1,....N i=1,...,N

=1...M j=1,....M

o g

* The left panel shows the graphical model for Probabilistic Matrix
Factorization (PMF). The right panel shows the graphical model for
constrained PMF.



Experimental result and conclusion

* According to Netflix, the data were collected between October 1998
and December 2005 and represent the distribution of all ratings
Netflix obtained during this period. The training dataset consists of
100,480,507 ratings from 480,189 randomly-chosen, anonymous
users on 17,770 movie titles. As part of the training data, Netflix also
provides validation data, containing 1,408,395 ratings. In addition to
the training and validation data, Netflix also provides a test set
containing 2,817,131 user/movie pairs with the ratings withheld.



Experimental result and conclusion
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Left panel: Performance of SVD, PMF and PMF with adaptive priors, using 10D feature vectors, on the full Netflix validation data.

Right panel: Performance of SVD, Probabilistic Matrix Factorization (PMF) and constrained PMF, using 30D feature vectors, on the
validation data. The y-axis displays RMSE (root mean squared error), and the x-axis shows the number of epochs, or passes,
through the entire training dataset.

08.11.2016

Mohamed Emara ,Probabilistic Matrix Factorization

53



Experimental result and conclusion
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e Left panel: Performance of SVD, Probabilistic Matrix Factorization (PMF) and constrained PMF on the validation data. The y-axis displays
RMSE (root mean squared error), and the x-axis shows the number of epochs, or passes, through the entire training dataset. Right panel:
Performance of constrained PMF, PMF, and the movie average algorithm that always predicts the average rating of each movie. The
users were grouped by the number of observed ratings in the training data.
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Experimental result and conclusion
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* Left panel: Performance of constrained PMF, PMF, and the movie average algorithm that always predicts the average rating of each movie.
The users were grouped by the number of observed rating in the training data, with the x-axis showing those groups, and the y-axis
displaying RMSE on the full Netflix validation data for each such group. Middle panel: Distribution of users in the training dataset. Right
panel: Performance of constrained PMF and constrained PMF that makes use of an additional rated/unrated information obtained from the
test dataset.
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Conclusion

* In this paper we presented Probabilistic Matrix Factorization (PMF) and its two
derivatives: PMF with a learnable prior and constrained PMF. We also
demonstrated that these models can be efficiently trained and successfully
applied to a large dataset containing over 100 million movie ratings.

* Efficiency in training PMF models comes from finding only point estimates of
model parameters and hyperparameters, instead of inferring the full posterior
distribution over them. If we were to take a fully Bayesian approach, we would
put hyperpriors over the hyperparameters and resort to MCMC methods [5] to
perform inference. While this approach is computationally more expensive,
preliminary results strongly suggest that a fully Bayesian treatment of the
presented PMF models would lead to a significant increase in predictive
accuracy.
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General information

* NMF decomposes a matrix V € RY*! into 2 matrices W € RY*" and

H € RY*T, All three are positive matrices.

NMF
V— V =WH

* Matrix W contains , basis-vectors” (features).
* Matrix H contains weightings (importance of basis)
* The non negativity property produces sparse matrices

e Used in computer vision, document clustering, audio signal
processing and recommender systems
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Example 1
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Example 2

Topic importance
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NMF without sparseness constraints

* NMF is used for parts-based approximative linear representations of
non-negative data

* It is called , parts-based” because the basis-vectors represent features
of the initial data. Can be seen as ,building-blocks”.

* Thus the information of the initial matrix is split into its different
features

* Due to sparseness the resulting decomposed Matrixes are easy to
interpret and further computational methods are easy to apply

* Sometimes more sparseness is required to improve the solution



Which matrices should be chosen?

* W and H must be chosen, such that the reconstruction error WH =V
is minimal.

e Often the squared error (euclidean distance) is used
2
*EW,H) =V -WHI?=%,;;(V;; — WH);;)

* Algorithms for minimization:
* Gradient algorithm
e Multiplicative algorithm (simpler implementation, also good performance)



Sparseness

e Sparseness means, that only few units of a large set are effectively
used to present a data-vector. Most are zero or close to zero.

* There exist many different sparseness measures.
* Normalized scale: sparseness € [0,1]

V-3 |x;|/ |2 xf

Jn—-1
* Measurement for amount of “energy” which is packed in a few
components: R - R

 Example: sparseness(x)= , n=dim(x)



Definition: NMD with sparseness constraints

Given a non-negative data-matrix V € RY*T matrixes W € R*™ H €
RY*Tmust be found, such that E(W, H) = ||V — WH]||? is minimized
under optimal constraints

* Sparseness(w;)=S,, ,Vi €N
* Sparseness(h;)=S; ,Vi €N

»h; and w; are not constrained = free to fix any norm of eighter one
»W or H sparse? Depends on specific application/experiment



Pseudo code(1/2)

1. Initialize W and H to random positive matrices

2. If sparseness constraints on W apply, then project each column of
W to be non-negative, have unit L, norm, but L; norm set to
achieve desired sparseness

3. If sparseness constraints on H apply, then project each row of H to
be non-negative, have unit L,-norm, and L;{-norm set to achieve

desired sparseness



Pseudo code(2/2)

4. lterate:

i. If sparseness constraints on W apply,
e SetW:=W — uy,(WH —V)HT

* Project every column of W to be non-negative, have unchanged L,-norm, but L; norm
set to achieve desired degree of sparseness

ii. Else take standard multiplicativestep W :=W @ (WTV) @ (WHHT)
iii. If sparseness constraints on H apply,
e SetH:=H— uyWI(WH —-V)

* Project each row of H to be non-negative, have unit L,-norm, and L; norm set to achieve
desired degree of sparseness

iv. Else take standard multiplicativestep H := H Q@ (W'V) @ WTWH)



Algorithm to find the closest non-negative vector(in
euclidean sense) with given Ly{and L, norm

o Lam2xi .
1. SEt Sl e xl + dlm(x) ,VI,
2. Set / = { }
3. lterate )
1 . .
I, Set m; = dim(x)_siZe(Z)llfl ¢ Z
0 Jifi€Z

i. Sets:=m+ a(s—m), where a > 0is selected such that the resulting s satisfies the L, norm
constraint. This requires solving a quadratic equation.

iii. If all components of s are non-negative, return s, end
iv. else

a) SetZ:=ZuU{is; <0}

b) Sets; =0,Vie Z

— 2Si—Ly
c) Calculate ¢ := TSm0 —size @)

d) Sets;:=s;—cVi€&Z
e) Restart by setting m; in i.)




Iterations of algorithms depending on
dimension

—t
o

iterations required

- PN W k= 00 O N 0

1 10 100 1000 10000
dimensionality

Amount of iterations such that the projection algorithm converges. The
solid line shows the average, the dotted lines are the maximum and
minimum amount of iterations. (Worst scenario: desired sparseness 0.9,
initial sparseness 0.1)



Comparing NMF and NMF with constraints

* NMF with constraints is similar to the NMF
* Both create a positive sparse decomposition of an initial matrix
* In the one with constraints the sparseness can be chosen

 This offers the chance to experiment with different levels of
sparseness to gain a better solution depending on what the matrixes
are needed for

* In many experiments the NMF with constraints produced a better
solution



Using NMF on ORL image database
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Features learned from ORL face image database using NMF with sparseness constraints. When increasing
the sparseness of the basis images, the representation switches from a global one to a local one.
Sparseness levels were set to (a) 0.5, (b) 0.6, (c) 0.75
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Comparing the different methods

* The MF and PMF have the same goal

* While MF and PMF tried to fill the initially sparse matrix, the NMF was about
setting a specific degree of sparseness on the decomposed ones.

 The NMF with constraints changes the values itself by setting a specific degree of
sparseness

* The MF and PMF defined sparseness as empty spaces in the matrices, while the
NMF defined them as zero or close to zero

* The NMF only used positive values in the matrices. In the MF and PMF there
were also negative ones allowed

* The MF and PMF use stochastic gradient descent, while the NMF uses the
gradient descent and multiplicative algorithm

» All approaches use the euclidean distance to minimize the error



Back up slides

Every slide after this one is not part of the presentation, but may offer
some insight to a topic only briefly discussed in the presentation.



Current research

* Algorithms: calculation of global minima of factors and factor
initialization

 Scalability: Methods to factorize huge matrices
* Online: Updating factorization without recomputing the matrixes

* Collective factorization: factorization of multiple interrelated matrices
for multiple-view learning

* Cohen and Rothblum 1993 problem: Does a rational matrix always
have a NMF of minimal inner dimension whose factors are also
rational? No!



Different norms
Ly = lxlly = X141l
Ly =l = 2[5 x?
e L, = llxll, = Jz P

* X is a vector, N is the dimension of xand p € N




What do data-matrixes include

* Given data: T measurements and N scalar-variables

vt =YY" wihi =Wht,vte{1,..,T}

* v are data-vectors, w; are basis-vectors and h; are weightings

* If many measurements exist, it becomes V = WH

* Thus a factorization of an initial data matrix can be approximated

e Examples:
1. w;=movie information-vector, h;=user-vector (Movie-rating)
2. w;=picture information-vector, h;=intensity-vector (Image-construction)
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