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Matrix factorization techniques for 
recommender systems

Overview of the topics 
- the benefits of using recommender systems
- content filtering vs collaborative filtering 
- basic matrix factorization
- learning algorithms
- refining the minimization problem
- outlook on the netflix prize
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Why do users need recommender 
systems?

- users of electronic retailers or content providers 
face a large number of choices
→matching users with most appropriate items 

raises user satisfaction and loyalty
- recommender systems analyze patterns of user 

interests to provide personalized    
recommendations
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Content filtering

- both users and products get a profile
- user profiles might include age, demographic or  
  answers given to a suitable questionnaire
- product profiles include attributes describing its    
  nature (e.g. movies have genre, actors, release   
  date)

→ based on these profiles, user/product is         
    matched
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Collaborative filtering

- relies on past user behavior (e.g. ratings,            
  purchase history)
- no explicit profiles are necessary
- instead relationships between users and              
  products are used to identify new user-product     
  associations
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Content filtering vs collaborative 
filtering (1/2)

Aspects in which content filtering is superior:

- content filtering does not suffer from the cold        

  start problem as it collects data about product      
  and user beforehand to generate profiles

- collaborative filtering has to address its cold start 
  problem, because new users/products start          
  without any information about them
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Content filtering vs collaborative 
filtering (2/2)

Aspects in which collaborative filtering is 
superior:
- it is domain free 
- can address data aspects that are difficult to        
  profile, because they are too elusive
→  generally more accurate than content filtering
- easier model to expand with biases/implicit data, 
  etc.
- content filtering needs external information about 
   product/user which might be difficult to obtain
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Collaborative filtering:
Neighborhood method

- centered around relationships between users or   
  items 
- user/user relationship: highly rated items by         
  users with similar taste are suggested for one      
  another
- item/item relationship: similar items to the items   
  a user liked are suggested to the user
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Collaborative filtering:
Latent factor models

- users and items are characterized by some (20    
  -100) characteristics based on rating patterns
  → each item and each user gets a vector which   
      includes these characteristics (user vectors      
      have preferences for certain characteristics of  
      an item, item vectors the characteristics            
      themself)
- the user vector is denoted as p

u
, the item vector   

  as q
i
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Basic matrix factorization

 - Consider a item/user matrix R that contains the 
  ratings user u gave to item i

  → obviously does not every user rate every      
       product

    → we try to estimate the ratings not given in    
         R by using user and item vectors p

u 
and q

i
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Computing the item/user matrix with 
estimated ratings
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How do we estimate the entries of 
the user and item vector?

- as we have seen, computing the item/user            
 matrix with estimated ratings is rather simple         
 once we know the user and item vectors p

u
 and q

i

- we need to learn these vectors by analyzing the   
  observed data
  → minimize the error between the estimated 

   ratings and the known ratings
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Minimizing the error in the 
training set

- K is the set of explicitly given ratings r
ui
 of        

  user u to item i

- λ is a constant and controls the extent of         
  regularization to avoid overfitting

→ the goal is to minimize the error in the 
 training set K and not to overfit the  
 training data in doing so
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The problem of overfitting

- Overfitting occurs when a model based on           
  training data describes the random error or           
  „background noise“ of the training data  
→ doing so makes the model fail in predicting        
    data outside of the training data
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Learning algorithm

- learning algorithms are algorithms designed to     
  solve the minimization problem
- there are multiple approaches to finding the          
  minimum, in this presentation two approaches      
  are presented and compared 
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Stochastic gradient descent

- basic idea: start at a random point → compute     
  the gradient on that point → shift to a new point    
  in the opposite direction of the gradient → repeat 
  procedure at the new point until the new point is   
  „good enough“

- how far can we shift the new point and what is     
  the gradient in this case? 
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Stochastic gradient descent 
algorithm (1/2)
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Stochastic gradient descent 
algorithm (2/2)

- lrate stands for the learning rate (also called step 
  size) of the algorithm and makes sure that the      
  algorithm converges
  → can be chosen rather arbitrarily or with the       
       Armijo algorithm
- in one iteration we calculate the error and then     
  update the k-th entry in our vectors by going into  
  the opposite direction of the partial derivates of    
  the error function
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Alternating least squares (ALS)

- because the minimization problem relies on two   
  vectors (user vector and item vector) to be           
  trained, we cant simply do a least squares            
  approach as usual

   → however by fixing one of the vectors and only 
       optimizing the other, we can fall back into the  
       standard least squares approach

- then we alternate between which vector is fixed   
  and which gets optimized
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Pseudo code for ALS
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Stochastic gradient descent vs ALS

- while in general stochastic gradient descent runs 
faster, there are at least two circumstances in 
which ALS is superior
1. parallelization: ALS can be parallelized, 
because each user and each item vector can be 
computed independently of other user/item factors
2. non sparse rating matrices: stochastic gradient 
descent loops over all of the training data. If there 
is a lot of training data, this can make the 
algorithm quite slow, while ALS can handle this 
case 
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Refining the model

- the formulas used to compute the estimated         
  rating and to train the model can be expanded

  → Adding biases: Users are more or less critical  
      in their ratings, products are better/worse

  → Implicit data: i.e. Purchase history can be         
      used to gather further information about a user 
  → Temporal dynamics: user behaviour/bias or      
       item bias might change with time

  → Confidence in the training data: Different          
      levels of certainty can be applied to ratings
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Netflix Prize competition
- in 2006 Netflix released a training set of 100         
  million ratings made by 500,000 users on more    
  than 17,000 movies
  → the item/user matrix has about 8.5 billion          
     entries, but only 100 million of them are filled     
     with a rating 
- Netflix had a training set of about 3 million            
  ratings on which they calculated the root mean     
  squared error
  → the first team to beat Netflix' own                      
      recommender system by 10% on the test set    
      wins 1 million $  
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How to win the Netflix Prize 
competition

- using the methods aforementioned and                
  factorization models Yehuda Koren's team was    
  the frontrunner in 2007 and 2008 and finally won  
  in 2009
  → factorizing the user-movie matrix given by        
      Netflix allowed the team to gain the most          
      descriptive characteristics-preference               
      dependencies
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Conclusion

● Content filtering does not allow a look at user behaviour 
and only relies on profiles

● Collaborative filtering focuses on user-user, item-item 
(neighborhood method) or user-item (latent factors) 
interdependencies

● Latent factors lead directly to matrix factorization which 
allows us to fill in the sparse rating matrix with estimated 
ratings

● The item/user vectors are estimated by a learning 
algorithm

● The latent factor model is easy to expand
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Back up slides

Every slide after this one is not part of the 
presentation, but may offer some insight to a topic 
only briefly discussed in the presentation.
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Neighborhood method: 
User/user relationship example (1/2)

Finding Nemo Spiderman Star Wars The Hobbit

Jannis 5 2 3 4

Verena 2 3 5 1

Miriam 4 2 1 5

Matthias 5 ? ? ?

User/movie matrix filled with ratings from 1 to 5 (1=not liked,5=liked).
Ratings from Matthias are only known for „Finding Nemo“.
What other movies could be predicted to be liked by Matthias?
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Neighborhood method: 
User/user relationship example (2/2)
Verena and Matthias' rating doesn't match, so we can ignore her. 
Jannis, Miriam and Matthias however do match. That is why we can 
assume that Matthias will like the movies Jannis and Miriam liked (in 
this example: Matthias will probably like „The Hobbit“).

Finding Nemo Spiderman Star Wars The Hobbit

Jannis 5 2 3 4

Verena 2 3 5 1

Miriam 4 2 1 5

Matthias 5 ? ? ?
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Example for overfitting

The left graph shows training data being estimated by different estimation methods

While the green line has the lowest mean squared error on this training data (right-hand graph, grey line), it doesnt seem to correctly 
reflect the „true“ function as it gets influenced too much by random error made in the training set.

Therefore the mean squared error of the green line in the test data is actually bigger than the error made by the other estimations
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Stochastic gradient descent with regularization
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Adding biases

- expanding the model by 3 types of biases:
1. user bias: b

u

2. item bias: b
i

3. overall average rating: μ  
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Additional input sources (1/2)

- additional information can be gathered through    
  implicit feedback or known user attributes (age,    
  gender, etc) and refine our model
- helps with the cold start problem and with users   
  not willing to give explicit ratings
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Additional input sources (2/2)
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Temporal dynamics

- specifically the user bias, item bias and the user  
  preference can change over time
 → modeling these parameters as functions over   
      time, change our model from a static to a          
      dynamic one 
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Inputs with varying confidence 
levels

- massive advertising for a certain item might         
  influence ratings not correctly reflecting its            
  longterm ratings
  → how sure can one be in given ratings?
- our model can reflect the confidence in ratings     

  by giving user/item pairs weights (c
ui
)
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Introduction

• The PMF model that is basically based on the assumption that users 
who have rated similar sets of movies are likely to have similar 
preferences. 

• This model scales linearly with the number of observations and, more 
importantly, performs well on the large, sparse, and very imbalanced 
Netfliǆ dataset. It also eŵphasize the regularizatioŶ ĐoŶĐept ǁhiĐh 
solve all ill-posed problems or prevent any overfitting.
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Current techniques

• There are many different approaches and algorithms in collaborative-
filtering technique, some of them are based on low-dimensional 
factor.The idea behind such models is that attitudes or preferences of 
a user are determined by a small number of unobserved factors.

• A variety of probabilistic factor-based models has been proposed 
recently, in addition to low-rank approximations based on minimizing 
the sum-squared distance can be found using Singular Value 
Decomposition (SVD).

• “VD fiŶds the ŵatriǆ                of the given rank which minimizes the 
sum-squared distance to the target matrix R. 

08.11.2016 Mohamed Emara ,Probabilistic Matrix Factorization 41



Current techniques

Unfortunately all of the mentioned techniques have a lot of 
disadvantages and drawbacks. i.e.
• Performance 
• Scalability 
• Sparseness (because of users who have few ratings records)
Except for the matrix-factorization-based ones none of the above 
mentioned have proved an accurate predictions.
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PMF technique
• PMF is a simple probabilistic linear model with 

Gaussian observation noise.

• Given the feature vectors for the user and the 
movie, the distribution of the corresponding rating 
is:

• The user and movie feature vectors are given 
zero-mean spherical Gaussian priors:
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PMF technique

• Maximize the log posterior over movie and user features with fixed 
hyperparameters.
• Equivalent to minimizing the sum-of-squared-errors with quadratic 

regularization terms:

• Find a local minimum by performing gradient descent in U and V.
• If all ratings were observed, the objective to the SVD objective in the 

limit of prior variance going to infinity.
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PMF technique

• Instead of using a simple linear-Gaussian model, which can make 
predictions outside of the range of valid rating values, the dot 
product between user- and movie-speĐifiĐ feature ǀeĐtors is passed 
through the logistiĐ fuŶĐtioŶ g;ǆͿ = ϭ/;ϭ+eǆp;−ǆͿͿ, ǁhiĐh ďouŶds the 
range of predictions:

• We map the ratings 1,...,K to the interval [0,1] using the function t(x) 
= ;ǆ − ϭͿ/;K − ϭͿ, so that the raŶge of ǀalid ratiŶg ǀalues ŵatĐhes the 
range of predictions our model makes. 

08.11.2016 Mohamed Emara ,Probabilistic Matrix Factorization 45



PMF with adaptive prior
• Capacity control is essential to making PMF models generalize well.
• The simplest way to control the capacity of a PMF model is by 

changing the dimensionality of feature vectors.
• The complexity of the model is controlled by the hyperparameters:

• the Ŷoise ǀariaŶĐe σϮ aŶd the paraŵeters of the priors.
• Find a MAP estimate for the hyperparameters after introducing 

priors for them.
• Find a point estimate of parameters and hyperparameters by 

maximizing the log-posterior.
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PMF with adaptive prior

• Can use more sophisticated regularization methods than simple 
penalization of the Frobenius norm of the feature matrices.
• priors with diagonal or full covariance matrices and adjustable 

means, or even mixture of Gaussians priors.
• Using spherical Gaussian priors for feature vectors leads to the 

staŶdard PMF ǁith λU aŶd λV ĐhoseŶ autoŵatiĐallǇ.
• selection of the hyperparameter values worked considerably better 

than the manual approach that used a validation set.
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Constraint PMF

• OŶĐe a PMF ŵodel has ďeeŶ fitted, users ǁith ǀerǇ feǁ ratiŶgs ǁill 
have feature vectors that are close to the prior mean, or the average 
user, so the predicted ratings for those users will be close to the 
movie average ratings.
• Two users that have rated similar movies are likely to have 

preferences more similar than two randomly chosen users.
• We are introducing a way of constraining user-speĐifiĐ feature 

vectors that has a strong effect on infrequent users. 
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Constraint PMF

• Let W א RD×M be a latent, so the feature vector for 
user i is: 

where I is the observed indicator matrix with Iij taking on value 1 if user i rated movie j and 0 otherwise.

• This should be performing better on infrequent user.
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Constraint PMF

• We Ŷoǁ defiŶe the ĐoŶditioŶal distriďutioŶ oǀer the oďserǀed 
ratings as:

• We regularize the latent similarity constraint matrix W by placing a 
zero-mean spherical Gaussian prior on it:
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Constraint PMF

• The left panel shows the graphical model for Probabilistic Matrix 
Factorization (PMF). The right panel shows the graphical model for 
constrained PMF.
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Experimental result and conclusion 

• AĐĐordiŶg to Netfliǆ, the data ǁere ĐolleĐted ďetǁeeŶ OĐtoďer ϭϵϵϴ 
and December 2005 and represent the distribution of all ratings 
Netfliǆ oďtaiŶed duriŶg this period. The traiŶiŶg dataset ĐoŶsists of 
100,480,507 ratings from 480,189 randomly-chosen, anonymous 
users oŶ ϭϳ,ϳϳϬ ŵoǀie titles. As part of the traiŶiŶg data, Netfliǆ also 
provides validation data, containing 1,408,395 ratings. In addition to 
the traiŶiŶg aŶd ǀalidatioŶ data, Netfliǆ also proǀides a test set 
containing 2,817,131 user/movie pairs with the ratings withheld.
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Experimental result and conclusion 

• Left paŶel: PerforŵaŶĐe of “VD, PMF aŶd PMF ǁith adaptiǀe priors, usiŶg ϭϬD feature ǀeĐtors, oŶ the full Netfliǆ ǀalidatioŶ data. 
Right panel: Performance of SVD, Probabilistic Matrix Factorization (PMF) and constrained PMF, using 30D feature vectors, on the 
validation data. The y-axis displays RMSE (root mean squared error), and the x-axis shows the number of epochs, or passes, 
through the entire training dataset.
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Experimental result and conclusion 

● Left panel: Performance of SVD, Probabilistic Matrix Factorization (PMF) and constrained PMF on the validation data. The y-axis displays 
RMSE (root mean squared error), and the x-axis shows the number of epochs, or passes, through the entire training dataset. Right panel: 
Performance of constrained PMF, PMF, and the movie average algorithm that always predicts the average rating of each movie. The 
users were grouped by the number of observed ratings in the training data.
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Experimental result and conclusion 

• Left panel: Performance of constrained PMF, PMF, and the movie average algorithm that always predicts the average rating of each movie. 
The users were grouped by the number of observed rating in the training data, with the x-axis showing those groups, and the y-axis 
displaǇiŶg RM“E oŶ the full Netfliǆ ǀalidatioŶ data for eaĐh suĐh group. Middle paŶel: DistriďutioŶ of users iŶ the traiŶiŶg dataset. Right 
panel: Performance of constrained PMF and constrained PMF that makes use of an additional rated/unrated information obtained from the 
test dataset.
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Conclusion

• In this paper we presented Probabilistic Matrix Factorization (PMF) and its two 
derivatives: PMF with a learnable prior and constrained PMF. We also 
deŵoŶstrated that these ŵodels ĐaŶ ďe effiĐieŶtlǇ traiŶed aŶd suĐĐessfullǇ 
applied to a large dataset containing over 100 million movie ratings.

• EffiĐieŶĐǇ iŶ traiŶiŶg PMF ŵodels Đoŵes froŵ fiŶdiŶg oŶlǇ poiŶt estiŵates of 
model parameters and hyperparameters, instead of inferring the full posterior 
distribution over them. If we were to take a fully Bayesian approach, we would 
put hyperpriors over the hyperparameters and resort to MCMC methods [5] to 
perform inference. While this approach is computationally more expensive, 
preliminary results strongly suggest that a fully Bayesian treatment of the 
preseŶted PMF ŵodels ǁould lead to a sigŶifiĐaŶt iŶĐrease iŶ prediĐtiǀe 
accuracy.
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General information

• NMF decomposes a matrix ܸ א ℝ+ே௫� into 2 matrices ܹ א ℝ+ே௫ெ and � א ℝ+ெ௫�. All three are positive matrices. 

• ܸ ேெ� ܸ ≈ ܹ�
• Matriǆ W ĐoŶtaiŶs „ďasis-ǀeĐtors͞ ;featuresͿ.
• Matrix H contains weightings (importance of basis)

• The non negativity property produces sparse matrices

• Used in computer vision, document clustering, audio signal 
processing and recommender systems
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Example 1
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Example 2
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NMF without sparseness constraints

• NMF is used for parts-based approximative linear representations of 
non-negative data

• It is Đalled „parts-ďased͟ ďeĐause the ďasis-vectors represent features 
of the iŶitial data. CaŶ ďe seeŶ as „ďuildiŶg-ďloĐks .͞
• Thus the information of the initial matrix is split into its different 

features 

• Due to sparseness the resulting decomposed Matrixes are easy to 
interpret and further computational methods are easy to apply

• Sometimes more sparseness is required to improve the solution
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Which matrices should be chosen?

• W and H must be chosen, such that the reconstruction error ܹ� = ܸ
is minimal.

• Often the squared error (euclidean distance) is used

• � ܹ,� = ܸ −ܹ� ଶ = σ௜,௝ ௜ܸ,௝ − ܹ� ௜,௝ ଶ
• Algorithms for minimization: 

• Gradient algorithm

• Multiplicative algorithm (simpler implementation, also good performance)
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Sparseness

• Sparseness means, that only few units of a large set are effectively 
used to present a data-vector. Most are zero or close to zero.

• There exist many different sparseness measures.

• Normalized scale: sparseness א [Ͳ,ͳ]
• Example: sparseness(x)=

�− ൗσ |௫�| σ ௫�మ�−ଵ ,   n=dim(x)

• MeasureŵeŶt for aŵouŶt of ͞eŶergǇ͞ ǁhiĐh is paĐked iŶ a feǁ 
components: ℝ� → ℝ
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Definition: NMD with sparseness constraints

Given a non-negative data-matrix ܸ א ℝ+ே௫� matrixes ܹ א ℝ+ே௫ெ , � ℝ+ெ௫�must be found, such that Eא ܹ,� = ܸ −ܹ� ଶ is minimized 
under optimal constraints

• Sparseness(ݓ௜)=ܵ௪ , ∀ � א ℕ
• Sparseness(ℎ௜)=ܵℎ , ∀ � א ℕ
ℎ௜ and ݓ௜ are not constrained ⇒ free to fix any norm of eighter one

W or H sparse? Depends on specific application/experiment
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Pseudo code(1/2)

1. Initialize W and H to random positive matrices

2. If sparseness constraints on W apply, then project each column of 
W to be non-negative, have unit �ଶ norm, but �ଵ norm set to 
achieve desired sparseness

3. If sparseness constraints on H apply, then project each row of H to 
be non-negative, have unit �ଶ-norm, and �ଵ-norm set to achieve 
desired sparseness

Jan Forkel, Non-negative matrix factorization with sparseness 

constraints
08.11.2016 67



Pseudo code(2/2)

4. Iterate:

i. If sparseness constraints on W apply,

• Set ܹ:= ܹ − �� ܹ� − ܸ ��
• Project every column of W to be non-negative, have unchanged �ଶ-norm, but �ଵ norm

set to achieve desired degree of sparseness

ii. Else take standard multiplicative step ܹ ≔ܹٔ ሺܹ�ܸሻٕ ሺܹ���ሻ
iii. If sparseness constraints on H apply,

• Set � ≔ � − ��ܹ� ܹ� − ܸ
• Project each row of H to be non-negative, have unit �ଶ-norm, and �ଵ norm set to achieve 

desired degree of sparseness

iv. Else take standard multiplicative step � ≔ �ٔ ሺܹ�ܸሻٕ ሺܹ�ܹ�ሻ
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Algorithm to find the closest non-negative vector(in 
euclidean sense) with given �૚and �૛ norm

1. Set ݏ௜ ≔ ௜ݔ + ௅భ−σ௫�dim ௫ , ∀�
2. Set � ≔
3. Iterate

i. Set �௜ ≔ ቐ ௅భdim ௫ −௦௜�� � , �� � ב �Ͳ , �� � א �
ii. Set ݏ ≔ � + � ݏ − � , where � ≥ Ͳ is selected such that the resulting s satisfies the �ଶ norm 

constraint. This requires solving a quadratic equation.
iii. If all components of s are non-negative, return s, end
iv. else

a) Set � ≔ � ∪ �, ௜ݏ < Ͳ
b) Set ݏ௜ ≔ Ͳ, ∀� א �
c) Calculate � ≔ σ௦�−௅భdim ௫ −௦௜�� �
d) Set ݏ௜ ≔ ௜ݏ − �, ∀� ב �
e) Restart by setting �௜ in i.)
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Iterations of algorithms depending on 
dimension
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Amount of iterations such that the projection algorithm converges. The 

solid line shows the average, the dotted lines are the maximum and 

minimum amount of iterations. (Worst scenario: desired sparseness 0.9, 

initial sparseness 0.1)



Comparing NMF and NMF with constraints

• NMF with constraints is similar to the NMF

• Both create a positive sparse decomposition of an initial matrix

• In the one with constraints the sparseness can be chosen

• This offers the chance to experiment with different levels of 
sparseness to gain a better solution depending on what the matrixes 
are needed for

• In many experiments the NMF with constraints produced a better 
solution
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Using NMF on ORL image database

Jan Forkel, Non-negative matrix factorization with sparseness 

constraints

Features learned from ORL face image database using NMF with sparseness constraints. When increasing 

the sparseness of the basis images, the representation switches from a global one to a local one. 

Sparseness levels were set to (a) 0.5, (b) 0.6, (c) 0.75
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Comparing the different methods

• The MF and PMF have the same goal

• While MF and PMF tried to fill the initially sparse matrix, the NMF was about 
setting a specific degree of sparseness on the decomposed ones.

• The NMF with constraints changes the values itself by setting a specific degree of 
sparseness

• The MF and PMF defined sparseness as empty spaces in the matrices, while the 
NMF defined them as zero or close to zero

• The NMF only used positive values in the matrices. In the MF and PMF there 
were also negative ones allowed

• The MF and PMF use stochastic gradient descent, while the NMF uses the 
gradient descent and multiplicative algorithm

• All approaches use the euclidean distance to minimize the error

08.11.2016
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Back up slides

Every slide after this one is not part of the presentation, but may offer 
some insight to a topic only briefly discussed in the presentation.
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Current research

• Algorithms: calculation of global minima of factors and factor 
initialization

• Scalability: Methods to factorize huge matrices

• Online: Updating factorization without recomputing the matrixes

• Collective factorization: factorization of multiple interrelated matrices 
for multiple-view learning

• Cohen and Rothblum 1993 problem: Does a rational matrix always 
have a NMF of minimal inner dimension whose factors are also 
rational? No!
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Different norms

• �ଵ = ݔ ଵ = σ௜=ଵே ௜ݔ
• �ଶ = ݔ ଶ = మ σ௜=ଵே ௜ଶݔ
• �� = ݔ � = � σ௜=ଵே �௜|ݔ|
• x is a vector, N is the dimension of x and � א ℕ
08.11.2016
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What do data-matrixes include

• Given data: T measurements and N scalar-variables

• ௧ݒ = σ௜=ଵெ ௜ℎ௜௧ݓ = ܹℎ௧ , ݐ∀ א {ͳ,… , ܶ}
• v are data-vectors, ௜ݓ are basis-vectors and ℎ௜ are weightings

• If many measurements exist, it becomes ܸ ≈ ܹ�
• Thus a factorization of an initial data matrix can be approximated

• Examples:

1. ௜=movie information-vector, ℎ௜=user-vector (Movie-rating)ݓ

2. ௜=picture information-vector, ℎ௜=intensity-vector (Image-construction)ݓ
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