Recommender Systems
Online Update

Presented By-
Manish Mishra (271340)
Raghavendran Tata (271441)
Niraj Dev Pandey (271484)

Agenda

Olntroduction
ODiscussions on papers
OComparison of the Papers

oWinning method

On line Update

Introduction of the Topic

0 Online Update: This topic deals with the updating the recommender system algorithms in inline/streaming way to increase the
scalability , performance and accuracy of the systems

0 Motivation for Online Update:
* In today’s big data environment, scalability of the algorithm is a challenge
« User feedback is continuously being generated at unpredictable rates, which requires the algorithm to adapt and learn faster

* Users’ preferences are also not static, it change with time

O Papers:

1. Incremental Singular Value Decomposition Algorithms for Highly Scalable Recommender Systems (Sarwar, Badrul, et al. Fifth
International Conference on Computer and Information Science. 2002)

2. Vinagre, Joado, Alipio Mario Jorge, and Joao Gama. "Fast incremental matrix factorization for recommendation with positive-
only feedback. "International Conference on User Modeling, Adaptation, and Personalization. Springer International
Publishing, 2014

3. Matuszyk, Pawel, et al. "Forgetting methods for incremental matrix factorization in recommender systems." Proceedings of
the 30th Annual ACM Symposium on Applied Computing. ACM, 2015.

0 The presentation order follows the chronological order of the publication date of the papers

On line Update

Paper 1: Incremental singular value decomposition
algorithms for highly scalable recommender systems

Presented by - Manish Mishra

Online Update
Manich Michra

Structure

OMotivation and hypothesis
OState of art

* Singular value decomposition (SVD)

* Challenges of dimensionality reduction
Olncremental SVD algorithm
OExperimental evaluation
OResults

OConclusion and future work

Online Update
Manich Michra

Introduction

Motivation:

0To investigate the use of dimensionality reduction for improving performance of Recommender Systems
OCollaborative filtering (CF) - based recommender systems are rapidly becoming a crucial tool

Olncreasing amount of customer data poses two key challenges for CF based systems:
* Quality of recommendations
e Scalability

O0Singular Value Decomposition (SVD) based recommendations algorithms can produce fast, high quality
recommendations but has to undergo very expensive matrix factorization steps

Hypothesis:

O The paper suggests an incremental model building technique for SVD-

based CF that has potential to be highly scalable while producing good
predictive accuracy

0 Experimental results show that the overall algorithm works twice as fast
while producing similar prediction accuracy

Online Update
Manich Michra

State of the art: Singular Value Decomposition (SVD)

Matrix factorization technique for producing low-rank approximations
SVDA)=U xS xVI
mXn mX

m mXxn nxn

n m n n
< > < > < > < >
A A A A
n
m m = m
\"
V
A\ A\ \ T
A U S
U and V are orthogonal matrices
S is a diagonal matrix with only r nonzero entries suchthat si>0andsl =2s2=... = srwhereris

the rank of matrix A

The r columns of U corresponding to the nonzero singular values span the column space
(eigenvectors of AAT) , and the r columns of V span the row space of the matrix A (eigenvectors of

ATA)

Online Update
Manich Michra

State of the art: Singular Value Decomposition (SVD)
contd..

e *Ref:
[1]

Srxr VTr x n

k
Am x n Um xr
dt is possible to retain only k << r singular values by discarding other entries (Sk diagonal matrix).

OdI'he reconstructed matrix Ak = Uk.Sk.VKT is a rank-k matrix that is the closest approximation to the original matrix A

O0Better than the original space itself due to the filtering out of the small singular values that introduce “noise” in the
customer-product relationship.

Orhis produces a set of uncorrelated eigenvectors. Each customer and product is represented by its corresponding
eigenvector.

Online Update
Manich Michra

State of the art: Singular Value Decomposition (SVD)
contd..

Prediction Generation Using SVD

P = +(U, /ST (0).(S, VI ()
Where,

P, Is the prediction for ith customer and jth product
7 Is the row average

1

Once the SVD decomposition is done, the prediction generation process
Involves only a dot product computation, which takes O(1) time, since k is a
constant

Online Update
Manich Michra

State of the art

Challenges of Dimensionality
B&QH QH%der system algorithm works in two separate steps:

0 Offline or model-building step
‘User-user similarity computation and neighborhood formation i.e. SVD decomposition
* Time consuming and infrequent
* Run-time of O(m3) for matrix Am x n
00On-line or the execution step
* Actual prediction generation
*O(1)

Online Update
Manich Michra

Incremental SVD Algorithm

0 The idea is borrowed from the Latent Semantic Indexing (LSI) world to handle dynamic databases

O LSl is a conceptual indexing technique which uses the SVD to estimate the underlying latent semantic structure
of the word to document association.

O Projection of additional users provides good approximation to the complete model
0 Authors build a suitably sized model first and then use projections to incrementally build on that

O Errors induced as the space is not orthogonal

Online Update
Manich Michra

Incremental SVD Algorithm contd..

1: SVD decomposition

of the original matrix 2: Projection of the new *Ref:

o A |Lem5 mtu lhe rnw»s;uace . [1]

. ‘u’J o |
Original : kxn xR :b
user-item mxn ‘:D \ J : ',\;,_
matrix U ¥ :
#_,,_,.J'-'" ;
u:-;rImE.w {b 4,// mxk o
b3 3. The resulting (m+ujxk
dimensional user space
Algorithm: Folding -in (As per the paper) Algorithm' Folding -in
*Project the new user vector Nu (t x1) as (R eference [2])
P= Uk Uk T N * To fold th a new user vector u (1x
‘Append k-dimensional vector UKT.Nu as new column of
append k-dimensional n), a projections ﬂm‘lf@g;the current
product vectors (Vk) is computed

as d

« Similarly to fold in adewdEadlct
vector d (mx1), a projection
onto the current user vectors (Uk)

L I [

Online Update

Incremental SVD Algorithm contd..

Pseudo Code: Folding-in

::tl:;t:Amleq = U kS 'Vkl;n s
1 For i=14<01tﬂ)d'o: U meupeic-Sioxk ’ij’;”
2

| do, = ELPTEES G Y

4 emdU(mﬂ’)xk &ithxk

5 retiurn

T
U(m+u)><k 'Skxk 'kan

Online Update

Experiment Detalls

Data Parameters Description
Data source MovieLens (www.movielens.umn.edu)

Ratings 100,000 ratings (Users with 20 or more ratings
considered)

User-Movie matrix 943 users (rows) and 1682 movies (columns)
Test-Training ratio X : 80%, 50% and 20%

0 Evaluation Metric
Mean Absolute Error (MAE) = N

where, =1

<pi - qi> is a ratings - prediction pair

Online Update
Manich Michra

http://www.movielens.umn.edu/

Experiment Procedure

0 Two hyper parameters need to be optimized before the experiment

1. The number of dimensions (k): Optimized by performing prediction experiments over different
dimensions each time. The results were plotted and k=14 was obtained as an optimal value

2. The threshold model size (basis size): Optimized by performing experiments with a fix basis size and
computing the SVD model by projecting the rest of (total -basis) users using the folding-in technique. MAE
was plotted for the experiments and the optimal basis size was chosen

0 These hyper parameters are used to build an initial SVD model (A=USVT) and then use the folding-in technique
to incrementally compute the SVD model for additional users

010-fold cross validation by selecting random training and test data for all our experiments

Online Update
Manich Michra

Model Size

Optimal reduced Rank k =14 was found
Demrminaﬁm pflgLﬁaq”Ly Folding-in

Model Size *Ref:
0.815 - [1]
0.805 - Select a basis size
that is small enough
0.795 4
» to produce fast model
= 0.785 1 building yet large
0.775 - S enough to produce
i & . .
0.765 4 ‘/ Model Size gOOd pre.dICtIOn
—— quality
0.755 T T r . T T T . .

100 200 300 400 500 600 700 800 900
Folding-in Model Size

(943 - Model size) is projected using
folding-in

Online Update
Manich Michra

Results

Quality Performance

Model-based SVD Prediction using Folding-in Troippus v Folding-in hts Siee

. . _ *Ref:
0. s (at different train/test ratios) *I[Rle]f. 400 - [1]
0sd — * . . 350 1
0.7 - Tt . g 300
0.78 | :2 . i —_, H“‘-#-.L_*
< 077 Z % e
= £ B 150 - Ty
0.76 . ._—l——l-—_._i___.____' R = p—
0.75 - Bl _ = F_'—"._'—O———Q-—.—__..___'
orad b——A— p " A 0 : : . : : . .
0.73 . : , . . _Ta BOO BSO TO0 7S50 8OO 850 900 943
GO0 G50 Fili i} 750 200 as0 Q0 943 e
Folding-in model size Basis size
—ip—3=0.2 —g—x=05 —p—x=0.8 —p— x=0.2 —d— =05 ——x=08
MAE x = 0.8 = 0.733 (full model size) and Corresponding to x=0.8, at basis size 600
0.742 (model size of 600) (only 1.22% quality throughput rate s is 88.82 whereas at basis
drop) size 943(full model) throughput rate becomes
=> Even with a small basis size it is possible 48.9. So there is 81.63% performance gain

to obtain a good qualififline Update
Manich Michra

Conclusion

0 The SVD-based recommendation generation technique leads to very fast online
performance but computing the SVD is very expensive

0 The Incremental SVD algorithms, based on folding-in, can help recommender
systems achieve high scalability while providing good predictive accuracy

0 The folding-in technique requires less time and storage space

Paper Evaluation
0 SVD based recommender systems has following limitations
°* Can not be applied on sparse data
* doesn’t have regularization

OFuture work led to better matrix factorization techniques to handle
these limitations

O Importance of the papers lies in starting the discussion on “Online
Update” for recgmgg%glaqg systems

Manich Michra

References

1. Sarwar, Badrul, et al. "Incremental singular value decomposition algorithms for highly scalable
recommender systems." Fifth International Conference on Computer and Information Science. 2002.

2. Berry, M. W., Dumais, S. T., and O’Brian, G. W. (1995). Using Linear Algebra for Intelligent Information
Retrieval. SIAM Review, 37(4).

3. Deerwester, S., Dumais, S. T., Furnas, G. W.,Landauer, T. K., and Harshman, R. (1990). Indexing by
Latent Semantic Analysis. Journal of the American Society for Information Science. 41(6).

4. G. W. O brien, Information Management Tools for Updating an SVD-Encoded Indexing Scheme,
Master’s thesis, The University of Knoxville, Knoxville, TN, 1995

5. Wikipedia

Online Update
Manich Michra

Example:

Latent Semantic Indexing and Updating

Original Data

Term-Document
Matrix of Original
Data

Titles

Human Machine Interface for Lab ABC Computer Applications

[y |
o2 A Survey of User Opinion of Computer Systems Besponse Time
o The EPS User Interface Man sgemenl Syvslems
cd Svstems and Human Svstems Engineering Testing of EPS-2
Y Relation of User-Perceived Response Time to Frror Measuremend
ml The Generation of Random, Binary, Unordered Tree
m2 Intersection Graph of Paths in a Tree
il Graph Minors IV: Tree-Width and Well-Cuasi-Ordering
1 Graph Minors - A Survey
Terms Documents *Ref:
cl je2]ed [ed s | ml | m2 | md] md [4]
huim an nolpoqgl 0 0 0] 0
interface 1] 1 nl]o 0 0 1] 0
computer | 1 I [[[[[I [
nser 01] 1] 1 0 0 1] 0
syslem [1 1 2 [[[[[
response | O | 1 0|0 1 0 0] 0
Lime i 1 [0 1 [[0 {1
EPS [0 1 | [[[0 {1
sUrvey 0f1 ofojqao 0 0] |
Lrees 1 L 1 1] 1 1 1 1 1]
graph 0o 0o 0 0 1 1 1
oS 1 [1 1] 1 1 1

Online Update

*Ref:
[4]

o

These titles are based
on two topics : the “c"
documents refer to
human-computer
interaction and the “m"
documents refer to
group theory

The elements of this
129 term-document
matrix are the
frequencies in which a
term OCCUrs in a
document or title

Example:

SVD: Selecting k=2,_ the best rank-2

*Ref:
[4]
VT
= S
2
iq (g
12x 9 12x 2 2x 2 2x 9

Online Update

Example:

Two-dimensional plot of terms and documents for

the 12x9
*Ref:
[4]
cd
s system
human P c3
interface
cl
i 4+———— -— e -—e e
Cﬂnipulqﬂ USer

ml

m2
minors

[tree
m4d

“m3
graph

i =
Lime
response

survey

Online Update

Terms Representation:
X-axis:1st column of U2
scaled by sl

Y-axis:2nd column of U2
scaled by s2

Documents Representation:
X-axis: 1st column of V2
scaled by sl

Y-axis: 2nd column of V2
ddied thyes@ocuments and
terms pertaining to human
computer interaction are
clustered around the x-axis
and the graph theory-related
terms and documents are
clustered around the y-axis

Example:

Folding-in

Suppose another document d= “human computer” needs to be added
Then,

Document vectordi2x1 =[101000000000]T

Projection of d12x1 will be

* .
F1N T f 005 —0.0432 Ref.
V7o ooy)
0 0.3008 01413
1 0.0361 —0 6298
0 0.9214 01132
0 01976 00721
1
. 0 00318 —0.4505 33400 0 -
01383 0.0275) = ' N o
(7) 0 0.9650 —0.1072 (0 25417)
0 0.2050 —0.2736
0 06445 —01673
0 0.0127 —0.4902
0 02650 —01072
\ 0) \ 0.4036 —0.0571)

This can be appended as column in VT to give UmxkSkxkVTkx(n+1)

Online Update

Agenda

Olntroduction
e Motivation

 Hypothesis
OBatch Stochastic Gradient Descent (SGD)
OEvaluation Issues
OProposed Algorithm -- Incremental Matrix Factorization for item prediction
OExample with Datasets
O0Conclusion and Future Work
OReferences

Introduction

Motivation:

0 The optimization process of batch SGD requires several iterations through the
entire data set

0 This procedure holds good for stationary data however, its not acceptable for
streaming data

 As number of observations increases, repeatedly visiting all the available
data becomes too expensive

Hypothesis:

0 The paper introduce a simple but fast Incremental Matrix Factorization algorithm
for positive - only feedback

0 Experimental results show that the overall algorithm has competitive accuracy,
while being significantly faster

Introduction

O The purpose of recommender systems is to aid users in the usually
overwhelming choice of items from a large item collection

0 Collaborative Filtering (CF) is a popular technique to infer unknown user
preferences from a set of known user preferences

0 Collaborative filtering is a method of making automatic predictions (filtering)
about the interests of a user by collecting preferences or taste information

from many users (collaborating)

Batch Stochastic Gradient Descent (SGD)

Sleorithm 1 SRt Master text styles " Ref
Data: D = < uw,i,r > T

[1]
input : feat, iters, A, g Second Ievel

output: A, B
init: * Third level

for u € Users(D) do
A, + Vector(size : frr,r,fFourth level

| Au ~N(0,0.1) * Fifth level
for i € Items([)) do

B; +— Vector(size : feat)

| B; ~N(0,0.1)

for count +— 1 to ifers do
D + shuffle(D)

for < u.i,r > [do
errui +— r — Au. BT
A, +— A, —Pj-}[rj-rmﬂ Ad,)
B; +— B; + n(erru: A, — AB;)

0 The advantage of BSGD is that complexity grows linearly with the number of known

ratings in the training set, actually taking advantage of the high sparsity of R

Online Update
Raghavendran Tata

Evaluation Issues

Classic evaluation methodologies for recommender systems begin by splitting the ratings dataset
in two subsets - training set and testing set - randomly choosing data elements from the
initial dataset. However, there are some issues:

0 Dataset ordering

0 Time awareness

0 Online updates

0 Session grouping

0 Recommendation bias

Proposed Algorithm -- Incremental Matrix Factorization
for item prediction

0 The Algorithm 1 proposed consists of Batch procedure requiring several passes through the dataset to train a model
* Easy - stationary environment
* Much difficult and more expensive - moving / streaming data
0 Algorithm 2 proposed is called Incremental SGD and has 2 differences when compared to Algorithm 1
« At each observation < u, i >, the adjustments to factor matrices A and B are made in a single step
* No data shuffling - or any other pre-processing is performed

0 Since, we deal with positive only feedback we assume numerical values for True Values as “1” and error is measured as
N

errui = 1 T i

 The Matrix R contains either true vaIueRfor positively rated items - or false values - for unrated items (we assume false
values as missing values)

Online Update
Raghavendran Tata

Algorithm

Algorithm 2 ISGD - Incremental SGD * Ref
Data:) = {< u,i >}, a finite set or a data stream [1]

input : feat, A, n
output: A, BB

for < u,i > D do
if u & Rows(A) then
A, + Vector(size : feat)

A, ~N(0,0.1)

if i & Rows(B”) then

Bl « vVector(size : feat)
| B! ~N(0,0.1)

errui +— 1 — Au.BY

Ay — Ay +n(erryi B; — AAL)
B; «— B; + nlerruyid. — AB;)

Online Update
Raghavendran Tata

Example with Datasets

o To support the proposed solution, the Author’s have considered 4 different datasets with 4 Algorithm's and

compared the values “Update Time” forsetN € {1, 5,10}
o The Algorithms considered are:
* Incremental Stochastic Gradient Descent (ISGD)
* Bayesian Personalized Ranking MF (BPRMF)
* Weighted Bayesian Personalized Ranking MF (IBPRMF)
* User Based Nearest Neighbour's algorithm (UKNN)

Dataset Events Users Items Time frame Sparsity
Musie-listen 335.731 4.768 15.323 12 months 99.90% * Ref
Lastfm-6OOk _ 403.063 164 65.013 8 months 00,11% |1
Music-playlist 111.942 10.392 26.117 45 months 99,96%
MovieLens-1M 226.310 6.014 3.232 34 months 98.84%

Table 1. Dataset description

Online Update
Raghavendran Tata

Example with Datasets

Dataset Algorithm |Recall@] |Recall@s |Recall@10| Update time
BPRMF 0,003 0.016 0.028] 0.846 ms

o WBPRMF| 0012] 0,037 0.056| 1.187 ms
Music-listen |y 0,017 0044 0061] 0.118 ms
UserKNN | 0,038 0.101| 0,139| 328,917 ms

BPRMF | <0,001] 0,001 0.003] 2R8.061 ms

WBPRMF| <0,001] 0,002 0.003| 20,194 ms

Lastim-600k ;¢ 0,012 0,027 0.034| 1,106 ms
UserKNN 0,001| 0,004 0,006 290,133 ms

BPRMF | <0,001] 0,000 0.020] 1.880 ms

_ ~ |WBPRMF| 0011] 0,038 0.057| 2.156 ms
Music-playlistiyg 0.060| 0.136] 0.171] 0.949 ms
UserKNN 0,033 0,005 0,132 190,250 ms

BPRMF 0.012] 0.045 0.080] 0.173 ms

Movielone 11| WBPRMF| 0.013(0,050 0.084| 0,220 ms
ISGD 0,007| 0,028 0.050| 0,016 ms

UserKNN 0.018 0.066 0.110] #4927 ms

Table 2. Overall results. Best performing algorithms are highlighted in bold for each
dataset. Update times are the average value of the update time for all data points,

Online Update
Raghavendran Tata

* Ref
[1]

Example with Datasets

a) Music—listen b) Lastfm—600k

g 4 _

[

w | % — * Ref
[] = = |
@ = | ® = - e [1]
g ° g = m Wy
— e —_ L |]

= =

s _ s _

=] T T T T T T =1 T T T T T T T

0 10000 20000 30000 ADQD0 S0000 L] 10000 20000 20000 40000 50000 OO0
irvclex index
c) Music—playlist d) Mowvielens—1M

= =

o — =

= | S

[M
= = 7 e o Z
® o ®
g8 < £ 1 |

| =

= w

s S

— I I I T I =1

0 20000 ADQD0 G000 80000
irvclex

—— UMM —a— BPRMF —w— WBPRMF—— ISGD

Online Update
Raghavendran Tata

Conclusion and Future Work

0 Conclusion

* Proposed fast matrix factorization algorithm dealing with positive only user
feedback

* Proposed prequential evaluation framework for streaming data

* By testing data sets with other incremental algorithms, ISGD is faster with
competitive accuracy

O Future Work
0 Better understanding of the effects of dataset properties such as

* Sparseness
* User-ltem Ratios
* Frequency Distributions

Online Update
Raghavendran Tata

References

1. Fast incremental matrix factorization for recommendation with positive-only feedback -- Joao Vinagre, Alipio Mario

Jorge, and Joao Gama

2. Goldberg, D., Nichols, D.A., Oki, B.M., Terry, D.B.: Using collaborative filtering to weave an information tapestry.
Commun. ACM 35(12) (1992) 61 - 70

3. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. [25] 263 - 272
4. Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R.M., Scholz, M., Yang, Q.: Oneclass collaborative filtering. [25] 502 - 511

5. Wikipedia

Online Update
Raghavendran Tata

Paper 03 - Selective Forgetting for
Incremental Matrix Factorization

Presented by - Niraj Dev Pandey

Online Update
Niraj Dev Pandey

Contents

Olntroduction
* Motivation

* Hypothesis

ORelated Work
O0Methods
* Initial Training
* Stream-based Learning
* Drift or Shift

OForgetting Techniques
* Instant Based

* Time Based
OExperiments
0Conclusion

OReferences

Online Update
Niraj Dev Pandey

Introduction

Motivation.:

0 The Recommender systems should reflect current state of preferences at any time point,

but preferences are not static

Preferences are subjected to concept drift / even drift i.e. it undergoes permanent changes
as the taste of Users and perception of Iltems change over time

It is important to select the actual data for training models and forget outdated ones

0)

0)

Hypothesis:

0 The paper proposes two forgetting techniques for Incremental Matrix Factorization and
incorporate them into a Stream recommender
0 A new evaluation protocol for Recommender Systems in a Streaming Environment is

introduced and it shows that the forgetting of outdated date increases the quality of
recommendation substantially

Why to forget ?

0 Users'’ preferences are not static

O Extreme data sparsity

0 Old data doesn’t reflect the current users’ preferences

O Training models upon old data decrease the quality of
our prediction

Drift

O Time-changing data stream

O In order to guaranteed that results are always up-to-date, it is
necessary to analyze the incoming data in an online manner

O Incorporate new and eliminate old

Drift software

O EDDM (Early drift detection method) , MOA , Rapid Miner

(https://en.wikipedia.org/wiki/Concept_drift)

Methods

Phase - 1 Initial Training

O Create latent user and items features using BRISMF algorithm

O It is a pre-phase for actual steam-based training

0 Rating matrix ‘R’ should be decomposed into a product of two matrices R = PQ

0 To Calculate the decomposition SGD is used

Phase - 2 Stream based Learning

Result of Initial training would be input for this section
This is prime mode

Drift or Shift

selective forgetting techniques are applied in this mode

©O O OO

Algorithm 1 Incremental Learning with Forgetting

Input rus; P Q.n.k A
I pu + getLatentUserVector(P, u)
@ getLd.ts:ntItcnﬂe::tur[Q 1)
Fo p.u_ qi, / /predict a rating for ry, ;
evaluatePrequentially(ru i, ru.i) //update evalnation measures
T ux + getUserRatings(R, u)
(7 us).addRating(r, ;)
applyForgetting(7..) //old ratings removed
epoch =0
while epoch < optimal NumberQ f Epochs do
epoch++; //for all retained ratings
fGI‘ all ry; in 7 . do

p.u, + getLatentUser Vector(P, u)

7 e gct]_.'ltcnt[temvectcri@_l

predictionError = ry ; —
15: for all latent dimensions L = 1 in p, do
16: Puk + Puk + 7 - (predictionError - gig — A - pu i)
17: end for
18: end for
19: end while

e e
ol - el =

Online Update
Niraj Dev Pandey

Forgetting Techniques

Instance-based Forgetting

O If window grows above the predefined size, the oldest rating is
removed as many

times as needed to reduce it back to the size ‘w’
Sliding Windows

B

f :
% window '
' length .
s i
= -
92 LR
w0]
w0 1
o :
7)) Data in window] Current Session

.

Session index

Online Update
Niraj Dev Pandey

Instance Based Forgetting Algorithm

O New ratings are added into the list of user's ratings ‘ru’
0 Window is represented by ‘w’

Algorithm 2 applyForgetfing(ry ;) - Instance-Gased Forgetting

o Snrnnnl laval
S Qs W 1T T\A TN\ V 1

Input: ry. a list of ratingsy;pepyansarted wrt. time, w - window size
I: while =1 do - Fourth level
2 removeFirstElement(r,) < Fifth level

3 end while

Ty e

Online Update
Niraj Dev Pandey

Time Based Forgetting Algorithm

0 Define preferences with respect to time

O In volatile applications time span might be reasonable

Algorithm 3 applvForgetting(r, ,) - Time-based Forgetting

Input: ry. a hist of ratings by user u sorted w.r.t. time, a - age threshold
1: forgettingAppled « true

2: while forgettingApphed == true do

3: oldestElement + getFirstElement(r,) //the oldest rating

4: 1if age(oldestElement) > a then
G removel irstElement(r, .)

i forgetting Applied + true

7. else

& forgetting Applied + false

9: endif

10: end while

Online Update
Niraj Dev Pandey

Evaluation Measure - sliding RMSE

O Popular evaluation measure

0 Based on deviation of predicted & real rating

RMSE

(where T is a test set)

0 Calculating ‘sliding RMSE’ is the same as for RMSE

O Test set T is different

Online Update
Niraj Dev Pandey

Experiments

0 Author’s have dealt with 4 real datasets Movielens 1M, Movielens 100K, Netflix (a
random sample of 1000 Users) Epinions (extended)

0 Used modified version of BRISMF algorithm with and without forgetting

0 Performed grid search to find the approximately optimal parameter setting

Dataset MLIM [ML100k|Epinions| Netfix
avg. slidingRMSE - Forgetting (0.9151|1.0077 | 0.6627 [0.9138
avg, slidingRMSE - NO Forgetting|| 1.1059 | 1.0364 | 0.8091 | 1.0162

Table 1: Average values of sliding RMSE for each dataset (lower values are better). Our
forgetting strategy outperforms the non forgetting strategy on all datasets

Experiments (1/2)

dlt Master text styles
',ﬁa .a iﬂnﬁ %*u gﬁ.r QNM Wh- ++m:3

5I|-::I|ng F-ﬂ'u'ISE

T
— Last20
y 'HII i' é’j 'h” &'q'l ""-ﬁlll- 1= — Mo Forgetting
W ' .. W F drthiievel |
0 1::5:»' xor Fifth: leveli:
Timepoint (Data Instances) Fcrrgettmg

(a) Movielens 1M

RIES= | Y| A% ies

: V. \\‘ = — Laston
=09- ¢ 3 -
u‘/ . — No Forgetting

2000 40100 oo
Timepoint (Data Instances) Forgetting

(b) Movielens 100k
Online Update
Niraj Dev Pandey

Experiments (2/2)

—i
Fa
1

—
—_—
—

:
E10 - jes
E — Lat1s
=] =
5 B . Forgeting
0.8
b 10don 20000 30do0 oo
Timepoint {Data Instances) Forgetting
(c) Netflox (random sample of 1000 users)
1.50-
w128
g ing
IEimu— jes
z -- — Lasti3
H075- mnl ol 1IW‘J J'l .‘lqﬁ l'hlh{hm ", H‘1 + — No Forgetting
0.50-
100000 150000 200000 Fonf
Tmepcnt (Diata Instances) Forgetting

. (d) Epmions extended
Online Update

Niraj Dev Pandey

Conclusion

0 We Investigated selective forgetting techniques for matrix factorization in order to
improve the quality of recommendations

0 We proposed two techniques, an instance-based and time-based forgetting

0 Designed a new evaluation protocol for stream-based recommenders which takes the
initial training and temporal aspects into account

O Incorporated them into a modified version of the BRISMF algorithm
O Qur approach is based on a user-specific sliding window
O Introduced more appropriate evaluation measures sliding RMSE

0 Beneficial to forget the outdated user’s preferences despite of extreme data sparsity

Online Update
Niraj Dev Pandey

References

1. Matuszyk, Pawel, et al. "Forgetting methods for incremental matrix factorization in recommender systems."
Proceedings of the 30th Annual ACM Symposium on Applied Computing. ACM, 2015.

https://www.wikipedia.orqg/

http://www.slideshare.net/jnvms/incremental-itembased-collaborative-filtering-4095306

file:///C:/Users/Dell/Downloads/tema _0931.pdf

Lo~ W N

C. Desrosiers and G. Karypis. A Comprehensive Survey of Neighborhood-based Recommendation Methods. In
F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, pages 107{144.
Springer US

6. J]. Gama, R. Sebasti~ao, and P. P. Rodrigues. Issues in evaluation of stream learning algorithms. In KDD, 2009

7. Y. Koren. Collaborative filtering with temporal dynamics. In KDD, 2009

Comparisons and Differences

Incremental SVD

0 Incremental model
building for SVD - Based
CF systems

0 Focus on Scalability of
Recommender Systems

0 Folding - In technique
that requires less time and
storage space

Ul

Incremental SGD

0 |Incremental matrix
factorization (ISGD)

0 Focus on positive only user
feedback and prequential
evaluation framework for
streaming data

line Update

Selective Forgetting for
Incremental Matrix
Factorization

0 Incremental Matrix
Factorization using
Forgetting techniques

0 Focus on accuracy and
using recent relevant data

0 Modified version of BRISMF
algorithm

0 Introduced sliding window
mechanism with limited
space

0 Forget extreme data
sparsity

https://www.wikipedia.org/
https://www.wikipedia.org/
http://www.slideshare.net/jnvms/incremental-itembased-collaborative-filtering-4095306
http://www.slideshare.net/jnvms/incremental-itembased-collaborative-filtering-4095306
file:///C:/Users/Dell/Downloads/tema_0931.pdf
file:///C:/Users/Dell/Downloads/tema_0931.pdf

Winning Method

0 Although 3 papers deals with slightly different scenarios of the
Online Update but the “Selective Forgetting for Incremental Matrix
Factorization” seems to be more generic and hence should be
winning method

On line Update

	Slide 1
	Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

