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1. Intro to Social Recommendation

• Traditional recommender systems assume that users are
independent and identically distributed (i.i.d. assumption);

• However, online users are inherently connected via various types
of relations such as friendships and trust relations;

• Users in social recommender systems are connected, providing
social information.

Definition
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• Narrow Definition: any recommendation with online social
relations as an additional input, i.e., augmenting an existing
recommendation engine with additional social signals.

• Broad Definition: recommender systems recommending any
objects in social media domains such as items (the focus under the
narrow definition), tags , people, and communities.

The narrow definition is used in the context of this presentation.

1. Intro to Social Recommendation

Narrow x Broad Definition
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• Connected users are more likely to share similar interests in topics 
than two randomly selected users;

• In the physical world, we usually ask suggestions from our friends 
(tend to be similar and also know our tastes); 

• Provides an independent source of information about online 
users (specially useful on Cold Start); 

• Exploiting social relations can potentially improve 
recommendation performance.

1. Intro to Social Recommendation

Reasons to use
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• In addition to the rating matrix in traditional recommender 
systems, there is also a second matrix to map the relations:

1. Intro to Social Recommendation

Representation
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•Memory based: for social recommendation, it takes both the 
rating information and social information to find similar users (ex: 
TidalTrust, MoleTrust, TrustWalker).

•Model based: uses matrix-factorization methods which also take 
into account the social relations. A unified framework can be 
stated as:

2. Social Recommendation Methods

Overview of the Methods
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2. Social Recommendation Methods

Model Based Methods
• Co-factorization methods: performs a co-factorization in the 

useritem matrix and the user-user social relation matrix by sharing 
the same user preference latent factor (Ex: SoRec  and LOCABAL).

• Ensemble methods: a missing rating for a given user is predicted as 
a linear combination of ratings from the user and the social network 
(Ex: STE, mTrust).

• Regularization methods: For a given user, regularization methods
force his preference to be closer to that of users in his social
network. (Ex: SocialMF and Social Regularization).
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SoRec: Social Recommendation 
Using Probabilistic Matrix 
Factorization
Maurício Camargo
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SoRec

Motivation
Problems with current recommender systems:

• Ignores the social interactions or connections among users;

• Bad results on users who have made very few ratings or even 
none at all;

• Some existing approaches fail to handle very large datasets;

In reality, we always turn to friends we trust for movie, music or 
book recommendations;
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SoRec

Current Scenario
Collaborative Filtering

• Memory Based:  

- user-based and item-based approaches;

- trust-based recommender systems – also use trust to calculate similarity  
(does not scale well).

• Model-based: 

- clustering model, aspect models  and the latent factor model.

- considers users independent and identically distributed

No model-based approach to deal with social relations.
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SoRec

Proposed Solution
SoRec (Social Recommendation): 

• predict the missing values of the user-item by employing two 
different data sources. 

• factorize the social network graph and user-item matrix 
simultaneously using UTZ and UTV

U – low-dimensional user latent feature space

Z – factor matrix in the social network graph

V – low-dimensional item latent feature space
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SoRec

How it works
1 - By analysing both the social relations and the ratings, we get 
two diferent tables:
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SoRec

How it works
2 – Both resulting tables can be factorized into its latent features:

U2
TZU1

TV
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U1 and U2   – low-dimensional user latent feature space

Z – factor matrix in the social network graph

V – low-dimensional item latent feature space



SoRec

How it works
3 – The trick is to force both factorizations to share the same U:

UTZ

UTV
Same matrix
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U – low-dimensional user latent feature space

Z – factor matrix in the social network graph

V – low-dimensional item latent feature space

U will be influenced by the user x item
ratings AND its social network.



SoRec

How it works
To improve the model:

• trust value should decrease if user i trusts lots of users; 

• trust value should be increase if user k is trusted by lots of users. 

= outdegree of node vi

= indegree of node  vk

The original equation becomes:

1/10/2017 16



SoRec

How it works
For SoRec, the general equation:

- denotes the Frobenius norm

Becomes:
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SoRec

How it works
Other notation:

The minimum can be found through gradient descent:

derivative of the logistic function
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In order to reduce the model complexity:  λU = λV = λZ



SoRec

How it works
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Even though user 4 does not rate any items, the 
approach still can predict reasonable ratings.



SoRec

How it works – pseudocode
Input: The rating information r, the social information c, the number of latent factors 

k,    and   (regularization parameters) 

Output: The user preference matrix U and the item characteristic matrix V 

1: Initialize U, V and Z randomly (with k factors) 

2: while Not convergent do 

3: Calculate ∂J ∂U , ∂J ∂V and ∂J ∂Z 

4: Update U ← U − γu ∂J ∂U 

5: Update V ← V − γv ∂J ∂V 

6: Update Z ← Z − γz ∂J ∂Z 

7: Evaluate LossFunction 

8: end while
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SoRec

Complexity Analysis

Computational time of the method is linear with respect to the number of observations in the 
two sparse matrices. Thus, the approach can scale on large datasets.
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Where         and            are the numbers of nonzero entries in matrices R and C.

Total computational complexity in one iteration is:



SoRec 

Experimental Analysis
Epinions was selected as the data source

• well known knowledge sharing site and review site.

• Users submit their opinions on topics such as products, companies, 
movies, or reviews issued by other users. 

• Users can also assign products or reviews integer ratings from 1 to 5. 

• Members maintain a “trust”  and a “block (distrust)” list

• 40,163 users who have rated at least one of a total of 139,529 different 
items. The total number of reviews is 664,824

Density =                                          (very sparce) 
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SoRec 

Experimental Analysis
Epinions was select as the data source
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SoRec 

Experimental Analysis
Comparison to other methods

MMF - Maximum Margin Matrix Factorization
PMF - Probabilistic Matrix Factorization
CPMF - Constrained Probabilistic Matrix Factorization

On average, the approach improves the accuracy by 11.01%, 9.98%, and 7.82% relative to MMMF, PMF 
and CPMF, respectively.
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SoRec 

Experimental Analysis
Impact of 
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SoRec 

Experimental Analysis
Performance on Different Users 
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SoRec 

Experimental Analysis
Efficiency Analysis 
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SoRec 

Conclusion and Future Work
Conclusion

• Experimental results:  the approach outperforms the other state-
of-the-art collaborative filtering algorithms.

• Complexity analysis: it is scalable to very large datasets. 

• Can also be used to predict connections on social network.

Future Work: 

• Investigate whether the distrust information is useful to increase 
the prediction quality, and how to incorporate it. 

• Consider the diffusion process between users.
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g’(x) = e−x /(1 + e−x )² . 



Inputs: observed ratings R, users U, items V and trust information T
Output: the latent feature vectors

1: U and V initialization - samples from normal noises with zero mean

2: while not converged do

3:   update U:

4:   update V: 

5:   Evaluate LossFunction
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Introduction and Motivation

• Widely studied for information retrieval

• For production Recommendation, used in Amazon, Itunes, Netflix etc

• We always ask friends for recommendation in different products

• We Used Trust aware Systems

• Previous methods ignores social relationship in process,
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Trust Aware And Social Friends (1)

• Different Approaches

• “Trust aware” doesn’t have to know each other, … SoundCloud ,twitter etc

• Based on the Assumption that user have similar taste

• “Social aware” to interact and connect with their friends in the real life, 
... facebook etc

• Need to incorporate social information
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Traditional Systems

Collaborative Filtering

• Neighborhood Approaches (User or Items)

• Model Based approaches
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Problem Definition

Predict the missing terms of user-item matrix by Incorporate the social network 
information

• Bidirectional social Connection (User – Item Matrix) 

• Unidirectional trust Connection
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Low Rank Matrix Factorization

• We have User and Item Matrix, approx rating matrix by multiplying l-rank factors

• Traditionally, we use Single Value Decomposition (SVD) for minimization of R

• Due to sparsity we only need factorize the observed rating in matrix

• So, we use Indicator function for missing value's ----> I = {1,0}

• when user rated the item = 1 , else = 0
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Extremely Sparse …................................................ (1)

….........................................................(2)

…....…....................(3)
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Now to avoid overfitting, we add normalization​
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…..........................(4)

• Now we can use Gradient Approach to Find the minimum
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Social Regularization

Two models are used for social Regularization

• Average Based Model

• Individual Based Model
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Average Based Model

We always ask our friend for recommendation using ( …. 4 ) Matrix 
Factorization
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….......................(5)

In social Network, Facebook etc
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• In (…...5) we have given the average taste users friends, which doesn’t seems 
right, due to diverse taste nature …. changing it by introducing a similarity 
function

• As similarity is more accurate than our previous approach, 

• Now to find the local minima, we just take the derivative
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….....................(6)
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Individual-based Regularization

• Previously, we used similarity average of friends

• In reality users have diverse taste, so this could cause information loss 
so, add another regularization term,

• Constraint between user and their friends, individually

Now putting in equation ( ….... 5)

1/10/2017

…...... (iii)
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Als

• Also deal with 2nd degree friends

• Like U(i) and U(g) are not friends but indirectly minimizing the distance 
between the feature vectors ….. ( expanding.....(iii) )

• Now for local minima we again use the gradient descent ( …...... 6 )
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Similarity Function

We have User's rating, for similarity two methods are used.

• Two popular methods raging [0,1] Vector Space Similarity (VSS), ignore the individual 
rating behavior

• Pearson Correlation Coefficient (PCC) [-1,1], considers individual Rating behavior

1/10/2017

To map in [0,1] we will 

do f(x) = (x + 1)/ 2
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Datasets

two data-sets

• Douban

• Rating and Recommendation about movies, books, music

• Provides information about social friends

• In Movie Group, Users = 129,490, Movies = 58,541,.. total rated cells in matrix = 16,830,839
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Epinions

• Visitors read review of other users ​for and item selection

• Each user Maintain Trust list

• Users = 51,670; items = 83,509, ….. total rating cells in matrix = 631,064
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Comparison’s

Comparison with previous three other different methods

• NMF

• For image analysis, also used in Collaborative Filtering

• Probabilistic Matrix Factorization (PMF)

• User-item matrix for recommendation

• RECOMMENDATION WITH SOCIAL TRUST ENSEMBLE (RSTE) *

• Trust aware recommendation user’s rating

In Douban and Epinions , lemda ( 0.001 )

Alpha = 0.001 …. on Douban

Beta = 0.01 …. on Epinions
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Result By Doubian

• Results given by Different Previous Methods and Our Present Method SR_1 and SR_2,

• SR_1 = Average Based Model

• SR_2 = Individual Based Model
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Results By Epinions 

1/10/2017 125



Impact Of Parameters

We keep the values of beta low

• Only uses second model

• Douban
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Epinions
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Impact Of Similarity Functions

• Also test the similarity function by few alterations ( random & set all to 1) 

• As we used PCC and VSS for evaluation
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Conclusion and Future Work

• Two general algorithms are proposed that imposed social regularization using PCC and VSS

• Quite generic method also can be applied to trust aware recommendation problems

• Comparison shows it outperforms the state of the art RSTE method

• Make it more better if we have user's information about Clicking behavior and Tagging 
Records

• To make it more realistic we can use categorical cluster wise approach
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Conclusions and Comparison
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SoRec SocialMF SRS
Model Based V V V

Method Co-factorization Regularization methods Regularization methods

Dataset - Epinions03 V V

Dataset - Epinions02 V

Dataset - Douban V

Dataset - Flixster V

Error Metric - RMSE V V

Error Metric - MAE V V



Conclusions and Comparison
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Best MAE Best RMSE Context
SoRec – Epinions 0.8932 --- Dimensionality = 10

99% Training Data

SocialMF – Epinions [2] --- 1.075 80% Training Data

SociaIMF - Flixter -- 0.815 5-fold CV.

SRS – Epinions 0.8256 1.0739 PCC, Individual Method
90% Training Data

SRS - Douban 0.5543 0.6988 PCC , Individual Method
80% Training Data



Conclusions and Comparison
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Social recommendation may also perform worse than tradicional
recommender systems:

• social network composed of valuable friends, casual friends and
event friends; users are not necessarily all that similar;

• social relations mixed with useful and noise connections;

• users with fewer ratings are likely to also have fewer
connections.

Issues on Social Recommendation



QUESTIONS
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Backup Slides - SRS
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NMF

• Originally Used for image Analysis, But now widely used in Collaborative Filtering (For 
recommendation uses User Item matrix )

• algorithm for non-negative matrix factorization that is able to learn parts of faces and 
semantic features of text.

• This is in contrast to other methods, such as principal components analysis and vector 
quantization,

• that learn holistic, not parts-based, representations. Non-negative matrix factorization is 
distinguished from the other methods by its use of non-negativity constraints. These 
constraints lead to a parts-based representation because they allow only additive, not 
subtractive, combinations.

• When non-negative matrix factorization is implemented as a neural network, parts-based 
representations emerge by virtue of two properties: the firing rates of neurons are never 
negative and synaptic strengths do not change sign.

1/10/2017 138



PMF (Probabilistic Matrix Factorization)

• model which scales linearly with the number of observations and, more importantly, performs well on 
the large, sparse, and very imbalanced Netflix dataset

• users who have rated similar sets of movies are likely to have similar preferences

• When the predictions of multiple PMF models are linearly combined with the predictions of Restricted 
Boltzmann Machines models, we achieve an error rate of 0.8861, that is nearly 7% better than the 
score of Netflix’s own system.
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RSTE (RECOMMENDATION WITH SOCIAL TRUST ENSEMBLE )

• Aiming at modeling recommender systems more accurately and realistically, we propose a novel 
probabilistic factor analysis framework, which naturally fuses the users’ tastes and their trusted 
friends’ favors together.

• term Social Trust Ensemble (RSTE) to represent the formulation of the social trust restrictions on the 
recommender systems.

• Uses the epinion Dataset
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