

Social Regularization

SEMINAR RECOMMENDER SYSTEMS - 10.01.17

Maurício Camargo / Guilherme Holdack / Zafar Mahmood

Agenda

- Introduction to Social Recommendation
- Social Recommendation Methods
- SoRec: Social Recommendation Using Probabilistic Matrix Factorization
- SocialMF: A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks
- RSR: Recommended Systems With Social Regularization
- Conclusions and Comparison

Definition

- Traditional recommender systems assume that users are independent and identically distributed (i.i.d. assumption);
- However, online users are inherently connected via various types of relations such as friendships and trust relations;
- Users in social recommender systems are connected, providing social information.

Narrow x Broad Definition

• Narrow Definition: any recommendation with online social relations as an additional input, i.e., augmenting an existing recommendation engine with additional social signals.

• **Broad Definition:** recommender systems recommending any objects in social media domains such as items (the focus under the narrow definition), tags, people, and communities.

The **narrow definition** is used in the context of this presentation.

Reasons to use

- Connected users are more likely to share similar interests in topics than two randomly selected users;
- In the physical world, we usually ask suggestions from our friends (tend to be similar and also know our tastes);
- Provides an independent source of information about online users (specially useful on Cold Start);
- Exploiting social relations can potentially improve recommendation performance.

Representation

• In addition to the rating matrix in traditional recommender systems, there is also a second matrix to map the relations:

	v_1	v_2	v_3	v_4	v_5
u_1	5	?	2	?	?
u_2	4	4	5	?	?
u_3	?	?	4	4	1
u_4	?	?	?	?	3
u_5	?	?	1	?	?

	u_1	u_2	u_3	u_4	u_5
u_1	0	1	0	0	1
u_2	0	0	1	1	0
u_3	0	0	0	0	0
u_4	1	0	1	0	0
u_5	0	1	1	1	0

2. Social Recommendation Methods

Overview of the Methods

•Memory based: for social recommendation, it takes both the rating information and social information to find similar users (ex: TidalTrust, MoleTrust, TrustWalker).

•Model based: uses matrix-factorization methods which also take into account the social relations. A unified framework can be stated as:

$$\min_{\mathbf{U}, \mathbf{V}, \boldsymbol{\Omega}} \|\mathbf{W} \odot (\mathbf{R} - \mathbf{U}^{\top} \mathbf{V})\|_F^2 + \alpha \quad Social(\mathbf{T}, \mathbf{S}, \boldsymbol{\Omega}) + \lambda(\|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2 + \|\boldsymbol{\Omega}\|_F^2)$$

2. Social Recommendation Methods

Model Based Methods

- **Co-factorization methods**: performs a co-factorization in the useritem matrix and the user-user social relation matrix by sharing the same user preference latent factor (Ex: SoRec and LOCABAL).
- Ensemble methods: a missing rating for a given user is predicted as a linear combination of ratings from the user and the social network (Ex: STE, mTrust).
- Regularization methods: For a given user, regularization methods force his preference to be closer to that of users in his social network. (Ex: SocialMF and Social Regularization).

SoRec: Social Recommendation Using Probabilistic Matrix Factorization

Maurício Camargo

Motivation

Problems with current recommender systems:

- Ignores the social interactions or connections among users;
- Bad results on users who have made very few ratings or even none at all;
- Some existing approaches fail to handle very large datasets;

In reality, we always turn to friends we trust for movie, music or book recommendations;

Current Scenario

Collaborative Filtering

- Memory Based:
 - user-based and item-based approaches;
- trust-based recommender systems also use trust to calculate similarity (does not scale well).
 - Model-based:
 - clustering model, aspect models and the latent factor model.
 - considers users independent and identically distributed

No model-based approach to deal with social relations.

Proposed Solution

SoRec (Social Recommendation):

- predict the missing values of the user-item by employing two different data sources.
- factorize the social network graph and user-item matrix simultaneously using $\boldsymbol{U}^T\boldsymbol{Z}$ and $\boldsymbol{U}^T\boldsymbol{V}$
- **U** low-dimensional user latent feature space
- **Z** factor matrix in the social network graph
- V low-dimensional item latent feature space

How it works

1 - By analysing both the social relations and the ratings, we get two different tables:

	v_1	v_2	v_3	v_4	v_5
u_1	5	?	2	?	?
u_2	4	4	5	?	?
u_3	?	?	4	4	1
u_4	?	?	?	?	3
u_5	?	?	1	?	?

	u_1	u_2	u_3	u_4	u_5
u_1	0	1	0	0	1
u_2	0	0	1	1	0
u_3	0	0	0	0	0
u_4	1	0	1	0	0
u_5	0	1	1	1	0

How it works

2 – Both resulting tables can be factorized into its latent features:

	v_1	v_2	v_3	v_4	v_5	
u_1	5	?	2	?	?	
u_2	4	4	5	?	?	
u_3	?	?	4	4	1	$U_{1}^{T}V$
u_4	?	?	?	?	3	
u_5	?	?	1	?	?	

	u_1	u_2	u_3	u_4	u_5	
u_1	0	1	0	0	1	
u_2	0	0	1	1	0	
u_3	0	0	0	0	0	1
u_4	1	0	1	0	0	
u_5	0	1	1	1	0	

 U_1 and U_2 – low-dimensional user latent feature space

Z – factor matrix in the social network graph

V – low-dimensional item latent feature space

How it works

3 – The trick is to force both factorizations to share the same U:

$$p(C|U, Z, \sigma_C^2) = \prod_{i=1}^m \prod_{k=1}^m \mathcal{N}\left[\left(c_{ik}|g(U_i^T Z_k), \sigma_C^2\right)\right]^{I_{ik}^C}$$
$$p(R|U, V, \sigma_R^2) = \prod_{i=1}^N \prod_{k=1}^M \left[\mathcal{N}\left(R_{u,i}|g(U_u^T V_i), \sigma_r^2\right)\right]^{I_{u,i}^R}$$

U – low-dimensional user latent feature space

Z – factor matrix in the social network graph

V – low-dimensional item latent feature space

U will be influenced by the *user x item* ratings AND its *social network*.

How it works

To improve the model:

- trust value should decrease if user i trusts lots of users;
- trust value should be increase if user k is trusted by lots of users.

$$c_{ik}^* = \sqrt{\frac{d^-(v_k)}{d^+(v_i) + d^-(v_k)}} \times c_{ik}$$
 $d^+(v_i)$ = outdegree of node vi $d^-(v_k)$ = indegree of node vk

The original equation becomes:

$$p(C|U, Z, \sigma_C^2) = \prod_{i=1}^m \prod_{j=1}^n \mathcal{N}\left[\left(c_{ik}^* | g(U_i^T Z_k), \sigma_C^2\right)\right]^{I_{ik}^C}$$

How it works

For SoRec, the general equation:

$$\min_{\mathbf{U}, \mathbf{V}, \Omega} \|\mathbf{W} \odot (\mathbf{R} - \mathbf{U}^{\top} \mathbf{V})\|_F^2 + \alpha \quad Social(\mathbf{T}, \mathbf{S}, \Omega) \quad + \lambda (\|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2 + \|\Omega\|_F^2)$$

$$\|\cdot\|_F^2 \quad \text{- denotes the Frobenius norm}$$

Becomes:

$$\min_{\mathbf{U}, \mathbf{V}, \mathbf{Z}} \| \mathbf{W} \odot (\mathbf{R} - \mathbf{U}^{\top} \mathbf{V}) \|_F^2 + \alpha \quad \sum_{i=1}^n \sum_{u_k \in \mathcal{N}_i} (\mathbf{S}_{ik} - \mathbf{u}_i^{\top} \mathbf{z}_k)^2 + \lambda (\| \mathbf{U} \|_F^2 + \| \mathbf{V} \|_F^2 + \| \mathbf{Z} \|_F^2)$$

$$Social(\mathbf{T}, \mathbf{S}, \Omega) = \min \sum_{i=1}^{n} \sum_{u_k \in \mathcal{N}_i} (\mathbf{S}_{ik} - \mathbf{u}_i^{\mathsf{T}} \mathbf{z}_k)^2$$

How it works

Other notation:

$$\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T}V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T}Z_{k}))^{2} + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2} + \frac{\lambda_{Z}}{2} ||Z||_{F}^{2}$$

In order to reduce the model complexity: $\lambda U = \lambda V = \lambda Z$

The minimum can be found through gradient descent:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial U_i} &= \sum_{j=1}^n I_{ij}^R g'(U_i^T V_j)(g(U_i^T V_j) - r_{ij}) V_j + \lambda_C \sum_{j=1}^m I_{ik}^C g'(U_i^T Z_k)(g(U_i^T Z_k) - c_{ik}^*) Z_k + \lambda_U U_i \\ \frac{\partial \mathcal{L}}{\partial V_j} &= \sum_{i=1}^m I_{ij}^R g'(U_i^T V_j)(g(U_i^T V_j) - r_{ij}) U_i + \lambda_V V_j \\ \frac{\partial \mathcal{L}}{\partial Z_k} &= \lambda_C \sum_{i=1}^m I_{ik}^C g'(U_i^T Z_k)(g(U_i^T Z_k) - c_{ik}^*) U_i + \lambda_Z Z_k \end{split}$$

$$g'(x) = \exp(x)/(1 + \exp(x))^2 \\ \text{derivative of the logistic function} \end{split}$$

How it works

	i_1	i_2	i ₃	i ₄	i_5	i_6	i_{7}	i ₈
u_1	5	2		3		4		
u_2	4	3			5			
u_3	4		2				2	4
u_4								
u_5	5	1	2		4	3		
u_6	4	3		2	4		3	5

	i_1	i_2	i_3	i ₄	i_5	i_6	i_7	i_8
u_1	5	2	2.5	3	4.8	4	2.2	4.8
u_2	4	3	2.4	2.9	5	4.1	2.6	4.7
u_3	4	1.7	2	3.2	3.9	3.0	2	4
u_4	4.8	2.1	2.7	2.6	4.7	3.8	2.4	4.9
u_5	5	1	2	3.4	4	3	1.5	4.6
u_6	4	3	2.9	2	4	3.4	3	5

(a) Social Network Graph

(b) User-Item Matrix

(c) Predicted User-Item Matrix

Even though user 4 does not rate any items, the approach still can predict reasonable ratings.

How it works – pseudocode

Input: The rating information r, the social information c, the number of latent factors k, λ_C and λ (regularization parameters)

Output: The user preference matrix U and the item characteristic matrix V

```
1: Initialize U, V and Z randomly (with k factors)
```

2: while Not convergent do

3: Calculate $\partial J \partial U$, $\partial J \partial V$ and $\partial J \partial Z$

4: Update
$$U \leftarrow U - \gamma u \ \partial J \ \partial U$$

$$\frac{\partial \mathcal{L}}{\partial U_i} = \sum_{j=1}^n I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) V_j + \lambda_C \sum_{j=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) Z_k + \lambda_U U_i$$

5: Update
$$V \leftarrow V - \gamma V \partial J \partial V$$

$$\frac{\partial \mathcal{L}}{\partial V_j} = \sum_{i=1}^m I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) U_i + \lambda_V V_j,$$

6: Update
$$Z \leftarrow Z - \gamma Z \partial J \partial Z$$

$$\frac{\partial \mathcal{L}}{\partial Z_k} = \lambda_C \sum_{i=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) U_i + \lambda_Z Z_k$$

7: Evaluate LossFunction
$$\mathcal{L}(R,C,U,V,Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T}V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T}Z_{k}))^{2} + \frac{\lambda}{2} (\|U\|_{F}^{2} + \|V\|_{F}^{2} + \|Z\|_{F}^{2})$$

8: end while

Complexity Analysis

$$\mathcal{L} = O(\rho_R l + \rho_C l)$$

Where ρ_R and ρ_C are the numbers of nonzero entries in matrices R and C.

$$\frac{\partial \mathcal{L}}{\partial U} = O(\rho_R l + \rho_C l)$$

$$\frac{\partial \mathcal{L}}{\partial U} = O(\rho_R l + \rho_C l)$$

$$\frac{\partial \mathcal{L}}{\partial V} = O(\rho_R l)$$

$$\frac{\partial \mathcal{L}}{\partial V} = O(\rho_R l)$$

$$\frac{\partial \mathcal{L}}{\partial Z} = O(\rho_C l)$$

Total computational complexity in one iteration is: $O(
ho_R l +
ho_C l)$

Computational time of the method is linear with respect to the number of observations in the two sparse matrices. Thus, the approach can scale on large datasets.

Experimental Analysis

Epinions was selected as the data source

- well known knowledge sharing site and review site.
- Users submit their opinions on topics such as products, companies, movies, or reviews issued by other users.
- Users can also assign products or reviews integer ratings from 1 to 5.
- Members maintain a "trust" and a "block (distrust)" list
- 40,163 users who have rated at least one of a total of 139,529 different items. The total number of reviews is 664,824

Density =
$$\frac{664824}{40163 \times 139529} = 0.01186\%$$
. (very sparce)

Experimental Analysis

Epinions was select as the data source

Figure 3: Degree Distribution of User Social Network

Statistics of User-Item Rating Matrix of Epinions

Statistics	User	Item
Min. Num. of Rated	1	1
Max. Num. of Rated		
Avg. Num. of Rated	16.55	4.76

Experimental Analysis

Comparison to other methods

Table 2: MAE comparison with other approaches (A smaller MAE value means a better performance)

Training Data	Dimensionality $= 5$				Dimensionality = 10			
Training Data	MMMF	PMF	CPMF	SoRec	MMMF	PMF	CPMF	SoRec
99%	1.0008	0.9971	0.9842	0.9018	0.9916	0.9885	0.9746	0.8932
80%	1.0371	1.0277	0.9998	0.9321	1.0275	1.0182	0.9923	0.9240
50%	1.1147	1.0972	1.0747	0.9838	1.1012	1.0857	1.0632	0.9751
20%	1.2532	1.2397	1.1981	1.1069	1.2413	1.2276	1.1864	1.0944

MMF - Maximum Margin Matrix Factorization

PMF - Probabilistic Matrix Factorization

CPMF - Constrained Probabilistic Matrix Factorization

$$MAE = \frac{\sum_{i,j} |r_{i,j} - \widehat{r}_{i,j}|}{N},$$

On average, the approach improves the accuracy by 11.01%, 9.98%, and 7.82% relative to MMMF, PMF and CPMF, respectively.

Experimental Analysis

Impact of λ_C

Figure 4: Impact of Parameter λ_C

Experimental Analysis

Performance on Different Users

(a) Performance Comparison on Different User Rating Scales (99% as Training Data)

(b) Distribution of Testing Data (99% as Training Data)

Experimental Analysis

Efficiency Analysis

Figure 6: Efficiency Analysis

Conclusion and Future Work

Conclusion

- Experimental results: the approach outperforms the other stateof-the-art collaborative filtering algorithms.
- Complexity analysis: it is scalable to very large datasets.
- Can also be used to predict connections on social network.

Future Work:

• Investigate whether the distrust information is useful to increase the prediction quality, and how to incorporate it.

• Consider the diffusion process between users.

References

Ma, Hao, et al. "Sorec: social recommendation using probabilistic matrix factorization." Proceedings of the 17th ACM conference on Information and knowledge management. ACM, 2008.

Social Recommendation: A Review Jiliang Tang · Xia Hu · Huan Liu https://pdfs.semanticscholar.org/fff4/4f028044dd6ee79b7c9c26a90a23dc8d4438.pdf

MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS

https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf

P. Massa and P. Avesani. Trust-aware collaborative filtering for recommender systems. In Proceedings of CoopIS/DOA/ODBASE, pages 492–508, 2004.

A MATRIX FACTORIZATION TECHNIQUE WITH TRUST PROPAGATION FOR RECOMMENDATION IN SOCIAL NETWORKS.

DEFINITION RELATED WORK **PSEUDOCODE** DATASETS **EXPERIMENTS** CONCLUSION + FUTURE WORK

DEFINITION

RELATED WORK PSEUDOCODE DATASETS **EXPERIMENTS** CONCLUSION + FUTURE WORK

what is it?

DEFINITION

RELATED WORK

PSEUDOCODE

DATASETS

EXPERIMENTS

CONCLUSION + FUTURE WORK

who are the competitors?

DEFINITION let's have a look on it! **RELATED WORK PSEUDOCODE** DATASETS **EXPERIMENTS** CONCLUSION + FUTURE WORK

DEFINITION
RELATED WORK
PSEUDOCODE

DATASETS

EXPERIMENTS

CONCLUSION + FUTURE WORK

which data are?
Twe dealing with?

OUTLINE

DEFINITION how does ! **RELATED WORK PSEUDOCODE** DATASETS **EXPERIMENTS**

CONCLUSION + FUTURE WORK

OUTLINE

DEFINITION **RELATED WORK PSEUDOCODE** DATASETS **EXPERIMENTS**

CONCLUSION + FUTURE WORK

go from here?

MATRIX FACTORIZATION

ONE OF THE MOST COMMON TECHNIQUES FOR MODEL BASED RECOMMENDATION.

MATRIX FACTORIZATION

ONE OF THE MOST COMMON TECHNIQUES FOR MODEL BASED RECOMMENDATION.

LEARNS LATENT FEATURES FOR BOTH USERS AND ITEMS.

MATRIX FACTORIZATION

model and conditional probability

$$p(R|U, V, \sigma_R^2) = \prod_{u=1}^{N} \prod_{i=1}^{M} \left[\mathcal{N} \left(R_{u,i} | g(U_u^T V_i), \sigma_r^2 \right) \right]^{I_{u,i}^R}$$

EACH RATING IS NORMALLY DISTRIBUTED AROUND THE PRODUCT OF BOTH, USERS AND ITEMS, FEATURE VECTORS - CONSIDERING STANDARD DEVIATION.

WHAT IS IT ALL ABOUT?

direct neighbours

WHAT IS IT ALL ABOUT?

social influence

WHAT IS IT ALL ABOUT?

social relations

related work PAPERS "COVERING" SAME TOPIC

RELATED WORK

TIDAL TRUST **MOLE TRUST ADVOGATO** TRUSTWALKER **SOCIAL TRUST ENSEMBLER - STE**

RELATED WORK

TIDAL TRUST **MOLE TRUST** ADVOGATO TRUSTWALKER **SOCIAL TRUST ENSEMBLER - STE**

FINDS ALL RATERS WITH THE SHORTEST PATH DISTANCE FROM THE SOURCE USER AND AGGREGATES THEIR RATINGS WEIGHTED BY THE TRUST BETWEEN THE SOURCE USER AND THESE RATERS.

RELATED WORK

TIDAL TRUST MOLE TRUST ADVOGATO TRUSTWALKER **SOCIAL TRUST ENSEMBLER - STE**

SIMILAR TO TIDALTRUST, BUT RECEIVES A PARAMETER CALLED MAXIMUM-DEPTH. THIS WAY, ONLY RATERS CONNECTED UP TO A MAXIMUM DEGREE ARE CONSIDERED.

RELATED WORK

TIDAL TRUST MOLE TRUST ADVOGATO TRUSTWALKER **SOCIAL TRUST ENSEMBLER - STE**

RECEIVES AN INTEGER INPUT, WHICH IS THE NUMBER OF MEMBERS TO TRUST. THIS NUMBER IS INDEPENDENT OF USERS OR ITEMS, SO IT IS NOT AN APPROPRIATE APPROACH FOR TRUST-BASED RFCOMMENDATION.

RELATED WORK

TIDAL TRUST MOLE TRUST ADVOGATO TRUSTWALKER SOCIAL TRUST ENSEMBLER - STE

FOCUSES ON TRUST-BASED AND ITEM-BASED RECOMMENDATIONS. THERE IS A PROBABILITY OF CONSIDERING THE RATING OF A SIMILAR ITEM INSTEAD OF THE RATING FOR THE TARGET ITEM ITSELF, DEPENDING ON THE LENGTH OF THE

RELATED WORK

TIDAL TRUST MOLE TRUST ADVOGATO TRUSTWALKER SOCIAL TRUST ENSEMBLER - STE

PARTNER USED AS COMPARISON TO THIS PAPER. THIS MODEL AFFECTS THE RATINGS OF A GIVEN USER, MAKING USE OF THE FEATURE VECTORS OF THE DIRECT **NEIGHBOURS: IT DOES NOT HANDLE TRUST** PROPAGATION, AS IT DOES NOT AFFECT THE FEATURE VECTORS OF THE TARGET USER.

OR...

$$\hat{R}_{u,i} = g(\alpha U_u^T V_i + (1 - \alpha) \sum_{v \in N_u} T_{u,v} U_v^T V_i)$$

THE BEHAVIOUR OF A GIVEN USER IS AFFECTED BY THE INFLUENCE OF HIS DIRECT NEIGHBOURS.

THE BEHAVIOUR OF A GIVEN USER IS AFFECTED BY THE INFLUENCE OF HIS DIRECT NEIGHBOURS.

THE BEHAVIOUR OF A GIVEN USER IS AFFECTED BY THE INFLUENCE OF HIS DIRECT NEIGHBOURS.

THE PROPOSED EQUATION:

$$\widehat{U}_u = \frac{\sum_{v \in N_u} T_{u,v} U_v}{\sum_{v \in N_u} T_{u,v}}$$

THE BEHAVIOUR OF A GIVEN USER IS AFFECTED BY THE INFLUENCE OF HIS DIRECT NEIGHBOURS.

THE PROPOSED EQUATION:

 $\widehat{U}_u = \underbrace{\frac{\sum_{v \in N_u} T_{u,v} U_v}{\sum_{v \in N_u} T_{u,v}}}_{\text{so: } T_{u,v} \text{ can only be zero or one.}}$

AND, HAVING ALL ROWS OF THE TRUST MATRIX NORMALIZED:

THE SUM OF ALL "TRUSTS" IN A ROW WOULD BE: $\sum_{v=1}^{N} T_{u,v} = 1$

THIS WAY:

$$\widehat{U}_u = \frac{\sum_{v \in N_u} T_{u,v} U_v}{\sum_{v \in N_u} T_{u,v}}$$

THE SUM OF ALL "TRUSTS" IN A ROW WOULD BE: $\sum_{v=1}^{N} T_{u,v} = 1$

THIS WAY:

$$\widehat{U}_{u} = \frac{\sum_{v \in N_{u}} T_{u,v} U_{v}}{\sum_{v \in N_{u}} T_{u,v}}$$

$$\widehat{U}_{u} = \sum_{v \in N_{u}} T_{u,v} U_{v}$$

SO IT BECOMES EASY TO CONCLUDE, THAT THE ESTIMATE OF THE LATENT FEATURES **VECTOR OF A GIVEN USER IS NOTHING** MORE THAN THE WEIGHTED AVERAGE OF THE LATENT FEATURE VECTORS OF HIS DIRECT NEIGHBOURS

THE ESTIMATED FEATURE VECTOR OF A GIVEN USER CAN BE INFERRED THIS WAY:

$$\begin{pmatrix} \widehat{U}_{u,1} \\ \widehat{U}_{u,2} \\ \dots \\ \widehat{U}_{u,K} \end{pmatrix} = \begin{pmatrix} U_{1,1} & U_{2,1} & \dots & U_{N,1} \\ U_{1,2} & U_{2,2} & \dots & U_{N,2} \\ \dots & \dots & \dots & \dots \\ U_{1,K} & U_{2,K} & \dots & U_{N,K} \end{pmatrix} \begin{pmatrix} T_{u,1} \\ T_{u,2} \\ \dots \\ T_{u,N} \end{pmatrix}$$

THE ESTIMATED FEATURE VECTOR OF A GIVEN USER CAN BE INFERRED THIS WAY:

$$\begin{pmatrix} \widehat{U}_{u,1} \\ \widehat{U}_{u,2} \\ \dots \\ \widehat{U}_{u,K} \end{pmatrix} = \begin{pmatrix} U_{1,1} & U_{2,1} & \dots & U_{N,1} \\ U_{1,2} & U_{2,2} & \dots & U_{N,2} \\ \dots & \dots & \dots & \dots \\ U_{1,K} & U_{2,K} & \dots & U_{N,K} \end{pmatrix} \begin{pmatrix} T_{u,1} \\ T_{u,2} \\ \dots \\ T_{u,N} \end{pmatrix}$$

question to the audience:

hey, audience! what's the main difference between STE and Social MF, by now?

AGAIN...

ACAIN...

nochmal

$$\hat{R}_{u,i} = g(\alpha U_u^T V_i + (1 - \alpha) \sum_{v \in N_u} T_{u,v} U_v^T V_i)$$

AND SOCIAL MF?

WAIT. NOT SO FAST!

WAIT. NOT SO FAST!

let's det some maths done!

$$p(U, V|R, T, \sigma_R^2, \sigma_T^2, \sigma_U^2, \sigma_V^2) \propto$$

$$p(R|U, V, \sigma_R^2) p(U|T, \sigma_U^2, \sigma_T^2) p(V|\sigma_V^2)$$

$$= \prod_{u=1}^N \prod_{i=1}^M \left[\mathcal{N} \left(R_{u,i} | g(U_u^T V_i), \sigma_r^2 \right) \right]^{I_{u,i}^R}$$

$$\times \prod_{u=1}^N \mathcal{N} \left(U_u | \sum_{v \in N_u} T_{u,v} U_v, \sigma_T^2 \mathbf{I} \right)$$

$$\times \prod_{u=1}^N \mathcal{N} \left(U_u | 0, \sigma_U^2 \mathbf{I} \right) \times \prod_{i=1}^M \mathcal{N} \left(V_i | 0, \sigma_V^2 \mathbf{I} \right)$$

$$p(U, V|R, T, \sigma_R^2, \sigma_T^2, \sigma_U^2, \sigma_V^2) \propto$$

$$p(R|U, V, \sigma_R^2) p(U|T, \sigma_U^2, \sigma_T^2) p(V|\sigma_V^2)$$

$$= \prod_{u=1}^N \prod_{i=1}^M \left[\mathcal{N} \left(R_{u,i} | g(U_u^T V_i), \sigma_r^2 \right) \right]^{I_{u,i}^R}$$

THE PRODUCT OF THE PROBABILITIES OF OBSERVED RATINGS ARE THE SAME AS IN MATRIX FACTORIZATION.

$$\times \prod_{u=1}^{N} \mathcal{N}\Big(U_{u} | \sum_{v \in N_{u}} T_{u,v} U_{v}, \sigma_{T}^{2} \mathbf{I}\Big)$$

NORMAL PROBABILITY OVER THE LATENT USER FEATURES INFLUENCED BY THE LATENT FEATURES OF THE DIRECT NEIGHBORS.

$$\times \prod_{u=1}^{N} \mathcal{N}\Big(U_{u}|0, \sigma_{U}^{2}\mathbf{I}\Big) \times \prod_{i=1}^{M} \mathcal{N}\Big(V_{i}|0, \sigma_{V}^{2}\mathbf{I}\Big)$$

YES, RATING VALUES ARE DEPENDENT ON LATENT FEATURES OF USERS AND ITEMS. BUT, REMEMBER... LATENT FEATURES OF USERS ARE INFLUENCED BY DIRECT NEIGHBOURS!

AND ALSO...

BEING THE OBJECTIVE FUNCTION STATED BEFORE:

$$\hat{R}_{u,i} = g(\alpha U_u^T V_i + (1 - \alpha) \sum_{v \in N_u} T_{u,v} U_v^T V_i)$$

A GRADIENT DESCENT CAN BE PERFORMED TO FIND A LOCAL MINIMUM FOR ALL USERS AND ITEMS:

$$\frac{\partial \mathcal{L}}{\partial U_u} = \sum_{i=1}^M I_{u,i}^R V_i g'(U_u^T V_i) (g(U_u^T V_i) - R_{u,i}) + \lambda_U U_u + \lambda_T (U_u - \sum_{v \in N_u} T_{u,v} U_v)) - \lambda_T \sum_{\{v \mid u \in N_v\}} T_{v,u} \Big(U_v - \sum_{w \in N_v} T_{v,w} U_w \Big)$$

$$\frac{\partial \mathcal{L}}{\partial V_i} = \sum_{u=1}^N I_{u,i}^R U_v g'(U_u^T V_i) (g(U_u^T V_i) - R_{u,i}) + \lambda_V V_i$$

in the experiments:

LAMBDA V = LAMBDA U

$$\lambda_U = \sigma_R^2/\sigma_U^2, \lambda_V = \sigma_R^2/\sigma_V^2$$
 $\lambda_T = \sigma_R^2/\sigma_T^2$
 $\lambda_U = \lambda_V$
 $g'(\mathbf{x}) = e^{-\mathbf{x}}/(1 + e^{-\mathbf{x}})^2$.

PSEUDOCODE

Inputs: observed ratings R, users U, items V and trust information T

Output: the latent feature vectors

- 1: U and V initialization samples from normal noises with zero mean
- 2: while not converged do

$$\text{3:} \qquad \text{update U:} \qquad \frac{\partial \mathcal{L}}{\partial U_u} = \sum_{i=1}^M I_{u,i}^R V_i g'(U_u^T V_i) (g(U_u^T V_i) - R_{u,i}) \\ + \lambda_U U_u \\ + \lambda_T (U_u - \sum_{v \in N_u} T_{u,v} U_v)) \\ - \lambda_T \sum_{\{v \mid u \in N_v\}} T_{v,u} \Big(U_v - \sum_{w \in N_v} T_{v,w} U_w \Big)$$

4: update V:
$$\frac{\partial \mathcal{L}}{\partial V_i} = \sum_{u=1}^N I_{u,i}^R U_v g'(U_u^T V_i) (g(U_u^T V_i) - R_{u,i}) + \lambda_V V_i$$

 $\text{5:} \qquad \text{Evaluate LossFunction} \quad \mathcal{L}(R,T,U,V) = \frac{1}{2} \sum_{u=1}^{N} \sum_{i=1}^{M} I_{u,i}^{R} (R_{u,i} - g(U_{u}^{T}V_{i}))^{2} \\ + \frac{\lambda_{U}}{2} \sum_{u=1}^{N} U_{u}^{T}U_{u} + \frac{\lambda_{V}}{2} \sum_{i=1}^{M} V_{i}^{T}V_{i} \\ + \frac{\lambda_{T}}{2} \sum_{u=1}^{N} \left((U_{u} - \sum_{v \in N_{u}} T_{u,v}U_{v})^{T} (U_{u} - \sum_{v \in N_{u}} T_{u,v}U_{v})^{T} (U_{u} - \sum_{v \in N_{u}} T_{u,v}U_{v}) \right)$

DATASETS

Statistics	Flixster	Epinions
Users	1M	71K
Social Relations	26.7M	508K
Ratings	8.2M	575K
Items	49K	104K
Users with Rating	150K	47K
Users with Friend	980K	60K

COLD-START USERS REPRESENT MORE THAN 50% OF EACH DATASET.

for both datasets, all ratings have been normalized to a scale from zero to one.

COMPARING WITH:

PLAIN MATRIX FACTORIZATION COLLABORATIVE FILTERING

STE
$$\alpha = 0.4$$

ERROR MEASURE: RMSE.

5-FOLD CROSS VALIDATION; 80% TRAIN, 20% TEST

$$\lambda_U = \lambda_V = 0.1$$

TAKING INTO ACCOUNT DIFFERENT SIZES OF K - 5 AND 10.

EPINIONS:

Method	K=5	K=10
CF	1.180	1.180
BaseMF	1.175	1.195
STE	1.145	1.150
SocialMF	1.075	1.085

FLIXSTER:

Method	K=5	K=10
CF	0.911	0.911
BaseMF	0.878	0.863
STE	0.864	0.852
SocialMF	0.821	0.815

LAMBDAT = 5

LAMBDA T = 1

OVERALL OBSERVATIONS:

EPINIONS:

FOR K = 5:

* 6.2% OF GAIN OVER STE

FOR K = 10:

* 5.7% OF GAIN OVER STE

FLIXSTER:

FOR K = 5 AND FOR K = 10:

* 5.0% OF GAIN OVER STE

THE DIFFERENT VALUES FOR LAMBDA T:

EPINIONS:

THE DIFFERENT VALUES FOR LAMBDA T:

FLIXSTER:

COLD-START USERS?

COLD-START USERS?

those with less !

than 5 ratings!

COLD-START USERS:

Method	Epinions	Flixster
CF	1.361	1.228
BaseMF	1.352	1.213
STE	1.295	1.152
SocialMF	1.159	1.057

K = 5 FOR BOTH DATASETS

COLD-START USERS:

11.5 % GAIN OVER STE

Method	Epinions	Flixster
CF	1.361	1.228
BaseMF	1.352	1.213
STE	1.295	1.152
SocialMF	1.159	1.057

K = 5 FOR BOTH DATASETS

COLD-START USERS:

8.5 % GAIN OVER STE

Method	Epinions	Flixster
CF	1.361	1.228
BaseMF	1.352	1.213
STE	1.295	1.152
SocialMF	1.159	1.057

K = 5 FOR BOTH DATASETS

RELEVANT POINTS

OUTPERFORMS ALL OTHER METHODS COMPARED. EVEN FOR COLD-START USERS!

RELEVANT POINTS

OUTPERFORMS ALL OTHER METHODS COMPARED. EVEN FOR COLD-START USERS!

WHAT ABOUT NEGATIVE TRUST?
HOW COULD SOCIAL MF DEAL WITH IT?

references GOOD SOURCES

Propagation of Trust and Distrust.

Guha, R., Kumar R., Prabhakar, R., Tomkins, A.

https://pdfs.semanticscholar.org/3911/6b28f1a94e7d0aec082fb325ffdeae430012.pdf

Social-aware Matrix Factorization for Recommender Systems, 2013.

Weidele, D.

https://kops.uni-konstanz.de/bitstream/handle/123456789/29251/Weidele_0-259317.pdf

A Generative Bayesian Model for Item and User Recommendation in Social Rating Networks with Trust Relationships

C. Gianni, Manco G., Ortale R.

http://www.academia.edu/23622275/A Generative Bayesian Model for Item and User Recommendation in Social Rating Networks with Trust Relationships

Recommended System with Social Regularization

Hao Ma, Dengyoung Zhou, Chao Liu, Micheal R.Lyu, Irwin King

Microsoft Research & Chinese University of Hong Kong 2011

Zafar Mahmood

Outline

- Motivation and Introduction
 - Trust and Social Aware System Difference
- Traditional Systems
- Problem Definition
- Matrix Factorization
- Social Regularization
- Data Sets
- Comparisons and Results
- Pseudo Code
- Conclusion and Future work
- References

Introduction and Motivation

- Widely studied for information retrieval
- For production Recommendation, used in Amazon, Itunes, Netflix etc
- We always ask friends for recommendation in different products
- We Used Trust aware Systems
- Previous methods ignores social relationship in process,

Trust Aware And Social Friends (1)

- Different Approaches
- "Trust aware" doesn't have to know each other, ... SoundCloud ,twitter etc
 - Based on the Assumption that user have similar taste
- "Social aware" to interact and connect with their friends in the real life,
 ... facebook etc
 - Need to incorporate social information

Traditional Systems

Collaborative Filtering

- Neighborhood Approaches (User or Items)
- Model Based approaches

Problem Definition

Predict the missing terms of user-item matrix by Incorporate the social network information

- Bidirectional social Connection (User Item Matrix)
- Unidirectional trust Connection

	v_1	v_2	v_3	v_4	v_5
u_{1}	1		2	3	
u_2		3			1
u_3		4		5	
u_4	5			4	
u_{5}		2	5		4

Low Rank Matrix Factorization

• We have User and Item Matrix, approx rating matrix by multiplying I-rank factors

$$Rpprox U^TV$$
 Extremely Sparse (1)

Traditionally, we use Single Value Decomposition (SVD) for minimization of R

$$1/2 \left\| R - U^T V \right\|_F^2 \tag{2}$$

- · Due to sparsity we only need factorize the observed rating in matrix
- So, we use Indicator function for missing value's ----> $I = \{1,0\}$
 - when user rated the item = 1, else = 0

$$\min_{U,V} 1/2 \sum_{i=1}^{m} \sum_{j=1}^{n} I_{i,j} (R_{i,j} - U_i^T V_j)^2$$
(3)

Now to avoid overfitting, we add normalization

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{i,j} (R_{i,j} - U_i^T V_j)^2 - \lambda_1 / 2 \|U\|_F^2 + \lambda_2 / 2 \|V\|_F^2 \qquad (4)$$

$$\lambda_1, \lambda_2 > 0$$

Now we can use Gradient Approach to Find the minimum

Social Regularization

Two models are used for social Regularization

- Average Based Model
- Individual Based Model

Average Based Model

We always ask our friend for recommendation using (.... 4) Matrix Factorization

$$\min_{U,V} \mathcal{L}_{1}(R,U,V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\alpha}{2} \sum_{i=1}^{m} ||U_{i} - \frac{1}{|\mathcal{F}^{+}(i)|} \sum_{f \in \mathcal{F}^{+}(i)} U_{f}||_{F}^{2}
+ \frac{\lambda_{1}}{2} ||U||_{F}^{2} + \frac{\lambda_{2}}{2} ||V||_{F}^{2}$$
(5)

$$lpha>0,\lambda_1,\lambda_2>0,F^+(i)\dots(i)$$

 $|F^+(i)|==|F^-(i)|\dots(ii)$ In social Network, Facebook etc

• In (.....5) we have given the average taste users friends, which doesn't seems right, due to diverse taste nature changing it by introducing a similarity function

$$\min_{U,V} \mathcal{L}_{1}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\alpha}{2} \sum_{i=1}^{m} \|U_{i} - \frac{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) \times U_{f}}{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f)} \|_{F}^{2}
+ \frac{\lambda_{1}}{2} \|U\|_{F}^{2} + \frac{\lambda_{2}}{2} \|V\|_{F}^{2}$$
(6)

- As similarity is more accurate than our previous approach,
- Now to find the local minima, we just take the derivative

$$\frac{\partial \mathcal{L}_1}{\partial U_i} = \sum_{j=1}^n I_{ij} (U_i^T V_j - R_{ij}) V_j + \lambda_1 U_i$$

$$+ \alpha (U_i - \frac{\sum_{f \in \mathcal{F}^+(i)} Sim(i, f) \times U_f}{\sum_{f \in \mathcal{F}^+(i)} Sim(i, f)})$$

$$+ \alpha \sum_{g \in \mathcal{F}^-(i)} \frac{-Sim(i, g) (U_g - \frac{\sum_{f \in \mathcal{F}^+(g)} Sim(g, f) \times U_f}{\sum_{f \in \mathcal{F}^+(g)} Sim(g, f)})}{\sum_{f \in \mathcal{F}^+(g)} Sim(g, f)}$$

$$\frac{\partial \mathcal{L}_1}{\partial V_j} = \sum_{i=1}^m I_{ij} (U_i^T V_j - R_{ij}) U_i + \lambda_2 V_j.$$

 $R_{ij} = UserItem\ matrix$ $I_{ij} = Indicator\ Function$ $F^+ = Out\ link\ friends$ $F^- = In\ link\ friends$ $U_i = first\ person$ $U_f = first\ person\ friend$ $U_q = second\ person\ friend$

Individual-based Regularization

- Previously, we used similarity average of friends
- In reality users have diverse taste, so this could cause information loss so, add another regularization term,
- Constraint between user and their friends, individually

Now putting in equation (...... 5)

$$\min_{U,V} \mathcal{L}_{2}(R,U,V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\beta}{2} \sum_{i=1}^{m} \sum_{f \in \mathcal{F}^{+}(i)} Sim(i,f) ||U_{i} - U_{f}||_{F}^{2}
+ \lambda_{1} ||U||_{F}^{2} + \lambda_{2} ||V||_{F}^{2}.$$
(6)

- Also deal with 2nd degree friends
- Like U(i) and U(g) are not friends but indirectly minimizing the distance between the feature vectors (expanding.....(iii))

$$Sim(i, f)||U_i - U_f||_F^2$$
 and $Sim(f, g)||U_f - U_g||_F^2$.

• Now for local minima we again use the gradient descent (.........6)

$$\frac{\partial \mathcal{L}_2}{\partial U_i} = \sum_{j=1}^n I_{ij} (U_i^T V_j - R_{ij}) V_j + \lambda_1 U_i
+ \beta \sum_{f \in \mathcal{F}^+(i)} Sim(i, f) (U_i - U_f)
+ \beta \sum_{g \in \mathcal{F}^-(i)} Sim(i, g) (U_i - U_g),
\frac{\partial \mathcal{L}_2}{\partial V_j} = \sum_{i=1}^m I_{ij} (U_i^T V_j - R_{ij}) U_i + \lambda_2 V_j$$

$$R_{ij} = UserItem\ matrix$$

 $I_{ij} = Indicator\ Function$
 $F^+ = Out\ link\ friends$
 $F^- = In\ link\ friends$

$$U_i = first \ person$$

 $U_f = U_g = first \ person \ friend$

Similarity Function

We have User's rating, for similarity two methods are used.

 Two popular methods raging [0,1] Vector Space Similarity (VSS), ignore the individual rating behavior

$$Sim(i, f) = \frac{\sum_{j \in I(i) \cap I(f)} R_{ij} \cdot R_{fj}}{\sqrt{\sum_{j \in I(i) \cap I(f)} R_{ij}^2} \cdot \sqrt{\sum_{j \in I(i) \cap I(f)} R_{fj}^2}}$$

• Pearson Correlation Coefficient (PCC) [-1,1], considers individual Rating behavior

$$Sim(i,f) = \frac{\sum\limits_{j \in I(i) \cap I(f)} (R_{ij} - \overline{R}_i) \cdot (R_{fj} - \overline{R}_f)}{\sqrt{\sum\limits_{j \in I(i) \cap I(f)} (R_{ij} - \overline{R}_i)^2} \cdot \sqrt{\sum\limits_{j \in I(i) \cap I(f)} (R_{fj} - \overline{R}_f)^2}} \quad To \ map \ in \ [0,1] \ we \ will \ do \ f(x) = (x + 1)/2$$

Datasets

two data-sets

- Douban
 - Rating and Recommendation about movies, books, music
 - Provides information about social friends
 - In Movie Group, Users = 129,490, Movies = 58,541,.. total rated cells in matrix = 16,830,839

Table 1: Statistics of User-Item Matrix of Douban Table 2: Statistics of Friend Network of Douban

Statistics	User	Item
Min. Num. of Ratings	1	1
Max. Num. of Ratings	6,328	49,504
Avg. Num. of Ratings	129.98	287.51

Statistics	Friends per User		
Max. Num.	986		
Avg. Num.	13.07		

Epinions

- Visitors read review of other users for and item selection
- Each user Maintain Trust list
- Users = 51,670; items = 83,509, total rating cells in matrix = 631,064

Table 3: Statistics of User-Item Matrix of Epinions Table 4: Statistics of Trust Network of Epinions

Statistics	User	Item
Max. Num. of Ratings	1960	7082
Avg. Num. of Ratings	12.21	7.56

Statistics	Trust per User	Be Trusted per User
Max. Num.	1763	2443
Avg. Num.	9.91	9.91

Comparison's

Comparison with previous three other different methods

- NMF
 - For image analysis, also used in Collaborative Filtering
- Probabilistic Matrix Factorization (PMF)
 - User-item matrix for recommendation
- RECOMMENDATION WITH SOCIAL TRUST ENSEMBLE (RSTE) *
 - Trust aware recommendation user's rating

Parameters

```
In Douban and Epinions, lemda (0.001)

Alpha = 0.001 .... on Douban

Beta = 0.01 .... on Epinions
```

Result By Doubian

Results given by Different Previous Methods and Our Present Method SR_1 and SR_2,

Training	Metrics	UserMean	ItemMean	NMF	PMF	RSTE	$SR1_{vss}$	$SR1_{pcc}$	$\mathrm{SR2}_{\mathrm{vss}}$	$SR2_{pcc}$
	MAE	0.6809	0.6288	0.5732	0.5693	0.5643	0.5579	0.5576	0.5548	0.5543
80%	Improve	18.59%	11.85%	3.30%	2.63%	1.77%	0.5578	0.5570	0.5546	0.0040
8070	RMSE	0.8480	0.7898	0.7225	0.7200	0.7144	0.7026	0.7022	0.6992	0.6988
	Improve	17.59%	11.52%	3.28%	2.94%	2.18%	0.7020	0.1022	0.0992	0.0300
	MAE	0.6823	0.6300	0.5768	0.5737	0.5698	0.5627	0.5623	0.5597	0.5593
60%	Improve	18.02%	11.22%	3.03%	2.51%	1.84%	0.5021	0.0023	0.0081	0.0000
0070	RMSE	0.8505	0.7926	0.7351	0.7290	0.7207	0.7081	0.7078	0.7046	0.7042
	Improve	17.20%	11.15%	4.20%	3.40%	2.29%	0.7001	0.7076	0.7040	0.7042
	MAE	0.6854	0.6317	0.5899	0.5868	0.5767	0.5706	0.5702	0.5690	0.5685
40%	Improve	17.06%	10.00%	3.63%	3.12%	1.42%	0.5100	0.5102	0.5050	0.3003
40/0	RMSE	0.8567	0.7971	0.7482	0.7411	0.7295	0.7172	0.7169	0.7129	0.7125
	Improve	16.83%	10.61%	4.77%	3.86%	2.33%	0.7172	0.7108	0.7128	0.7123

- SR_1 = Average Based Model
- SR_2 = Individual Based Model

Results By Epinions

Training	Metrics	UserMean	ItemMean	NMF	PMF	RSTE	$ m SR1_{vss}$	$SR1_{pcc}$	$SR2_{vss}$	$SR2_{pcc}$
	MAE	0.9134	0.9768	0.8712	0.8651	0.8367	0.8290	0.8287	0.8258	0.8256
90%	Improve	9.61%	15.48%	5.23%	4.57%	1.33%	0.6290	0.0201	0.0256	0.6250
3070	RMSE	1.1688	1.2375	1.1621	1.1544	1.1094	1.0792	1.0790	1.0744	1.0739
	Improve	8.12%	13.22%	7.59%	6.97%	3.20%	1.0792	1.0790	1.0744	1.0739
	MAE	0.9285	0.9913	0.8951	0.8886	0.8537	0.8493	0.8491	0.8447	0.8443
80%	Improve	9.07%	14.83%	5.68%	4.99%	1.10%	0.0433	0.0431	0.0441	0.0445
3076	RMSE	1.1817	1.2584	1.1832	1.1760	1.1256	1.1016	1.1013	1.0958	1.0954
	Improve	7.30%	12.95%	7.42%	6.85%	2.68%	1.1010	1.1013	1.0800	1.0354

Impact Of Parameters

We keep the values of beta low

- Only uses second model
- Douban

Epinions

Impact Of Similarity Functions

- Also test the similarity function by few alterations (random & set all to 1)
- As we used PCC and VSS for evaluation

Dataset	Training	Metrics	SR2 Sim=1	SR2 Sim=Ran	$\mathrm{SR2_{vss}}$	$\mathrm{SR2}_{\mathrm{pcc}}$
	80%	MAE	0.5579	0.5592	0.5548	0.5543
	0070	RMSE	0.7034	0.7047	0.6992	0.6988
Douban	60%	MAE	0.5631	0.5643	0.5597	0.5593
Douban	40%	RMSE	0.7083	0.7098	0.7046	0.7042
		MAE	0.5724	0.5737	0.5690	0.5685
		RMSE	0.7195	0.7209	0.7129	0.7125
	90%	MAE	0.8324	0.8345	0.8258	0.8256
Epinions	3070	RMSE	1.0794	1.0809	1.0744	1.0739
Epinions	80%	MAE	0.8511	0.8530	0.8447	0.8443
	0070	RMSE	1.1002	1.1018	1.0958	1.0954

Pseudo Code: Averaging Method

<u>Input</u>

$$U = R^{lxm} \approx lxm$$

$$V = R^{lxn} \approx lxn$$

$$\lambda_1 = \lambda_2 = 0.001$$

$$\alpha = 0.001$$

<u>Algorithm</u>

$$for i : m$$

$$for j : n$$

$$x = I_{i,j} \left(U_i^T V_j - R_{i,j} \right) + \lambda U_i$$

$$for f : f^+$$

$$b = b + \left(U_i - \frac{sim(i,f) * U_f}{sim(i,f)} \right)$$

$$for g : f^-$$

$$c = c + \frac{\left(-sim(i,g) \frac{\left(U_g - sim(g,f) * U_f \right)}{sim(g,f)} \right)}{sim(g,f)}$$

$$V_j = I_{i,j} \left(U_i^T - R_{i,j} \right) * U_i + \lambda_2 V_j$$

$$U_i = x + \alpha * b + \alpha * c$$

$$return U, V$$

Pseudo Code: Individual Method

```
<u>Input</u>
```

```
U = R^{lxm} \approx lxm
           V = R^{lxn} \approx lxn
            \lambda_1 = \lambda_2 = 0.001
               \beta = 0.001
Algorithm 1 4 1
            for i: m
                  for j: n
                     x = I_{i,j} (U_i^T V_j - R_{i,j}) + \lambda U_i
                    for f: f^+
                                b = b + sim(i, f) * (U_i - U_f)
                    for g: f^-
                                c = c + sim(i, g)(U_i - U_a)
                 V_i = I_{i,i} \left( U_i^T - R_{i,i} \right) * U_i + \lambda_2 V_i
                   U_i = x + \beta * b + \beta * c
             return U, V
```

Conclusion and Future Work

- Two general algorithms are proposed that imposed social regularization using PCC and VSS
- Quite generic method also can be applied to trust aware recommendation problems
- Comparison shows it outperforms the state of the art RSTE method
- Make it more better if we have user's information about Clicking behavior and Tagging Records
- To make it more realistic we can use categorical cluster wise approach

References

- D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788–791, Oct. 1999.
- R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Advances in Neural Information Processing Systems, volume 20, 2008.
- H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In Proc. Of SIGIR '09, pages 203–210, Boston, MA, USA, 2009

Conclusions and Comparison

	SoRec	SocialMF	SRS
Model Based	V	V	V
Method	Co-factorization	Regularization methods	Regularization methods
$Social(\mathbf{T}, \mathbf{S}, \Omega)$	$\min \sum_{i=1}^{n} \sum_{u_k \in \mathcal{N}_i} (\mathbf{S}_{ik} - \mathbf{u}_i^{T} \mathbf{z}_k)^2$	$\min \sum_{i=1}^{n} (\mathbf{u}_i - \sum_{u_k \in \mathcal{N}_i} \mathbf{S}_{ik} \mathbf{u}_k)^2$	$\min \sum_{i=1}^{n} \sum_{u_k \in \mathcal{N}_i} \mathbf{S}_{ik} (\mathbf{u}_i - \mathbf{u}_k)^2$
Dataset - Epinions03	V		V
Dataset - Epinions02		V	
Dataset - Douban			V
Dataset - Flixster		V	
Error Metric - RMSE		V	V
Error Metric - MAE	V		V

Conclusions and Comparison

	Best MAE	Best RMSE	Context
SoRec – Epinions	0.8932		Dimensionality = 10 99% Training Data
SocialMF – Epinions [2]		1.075	80% Training Data
SocialMF - Flixter		0.815	5-fold CV.
SRS – Epinions	0.8256	1.0739	PCC, Individual Method 90% Training Data
SRS - Douban	0.5543	0.6988	PCC , Individual Method 80% Training Data

Conclusions and Comparison

Issues on Social Recommendation

Social recommendation may also perform worse than tradicional recommender systems:

- social network composed of valuable friends, casual friends and event friends; users are not necessarily all that similar;
- social relations mixed with useful and noise connections;
- users with fewer ratings are likely to also have fewer connections.

QUESTIONS

Backup Slides - SRS

NMF

- Originally Used for image Analysis, But now widely used in Collaborative Filtering (For recommendation uses User Item matrix)
- algorithm for non-negative matrix factorization that is able to learn parts of faces and semantic features of text.
- This is in contrast to other methods, such as principal components analysis and vector quantization,
- that learn holistic, not parts-based, representations. Non-negative matrix factorization is distinguished from the other methods by its use of non-negativity constraints. These constraints lead to a parts-based representation because they allow only additive, not subtractive, combinations.
- When non-negative matrix factorization is implemented as a neural network, parts-based representations emerge by virtue of two properties: the firing rates of neurons are never negative and synaptic strengths do not change sign.

PMF (Probabilistic Matrix Factorization)

- model which scales linearly with the number of observations and, more importantly, performs well on the large, sparse, and very imbalanced Netflix dataset
- users who have rated similar sets of movies are likely to have similar preferences
- When the predictions of multiple PMF models are linearly combined with the predictions of Restricted Boltzmann Machines models, we achieve an error rate of 0.8861, that is nearly 7% better than the score of Netflix's own system.

$$p(R|U, V, \sigma^2) = \prod_{i=1}^{N} \prod_{j=1}^{M} \left[\mathcal{N}(R_{ij}|U_i^T V_j, \sigma^2) \right]^{I_{ij}},$$

RSTE (RECOMMENDATION WITH SOCIAL TRUST ENSEMBLE)

- Aiming at modeling recommender systems more accurately and realistically, we propose a novel
 probabilistic factor analysis framework, which naturally fuses the users' tastes and their trusted
 friends' favors together.
- term Social Trust Ensemble (RSTE) to represent the formulation of the social trust restrictions on the recommender systems.

$$p(R|U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \left[\mathcal{N}\left(R_{ij}|g(U_i^T V_j), \sigma_R^2\right) \right]^{I_{ij}^R},$$

Uses the epinion Dataset