

How to read a Paper

Information Systems and Machine Learning Lab (ISMLL)

Carlotta Schatten

Outline

How to read a paper

Common paper structure

Finding additional material

How to read a paper

- ► Like novel or newspaper stories, scientific articles needs to be read differently.
- Since they are not books designed for students sometimes they are not self contained and requires some research to be fully understood.
- Understand a paper for a researcher means to be able to implement the described algorithm.

How to read a paper

- ► Skim
- ► Re-read
- ► Analyze
- ► Summarize

Skim

First get the "Big picture" by reading the title, abstract, and introduction carefully: this will tell you the major findings and why they matter.

- Quickly scan the article without taking notes: focus on headings and subheadings
- ► Note the publishing date and conference/journal
- Note terms and parts you don't understand. Only with the bigger picture you will understand how much it is necessary to investigate something.

Re-read

Read the article again, asking yourself questions such as:

- ▶ What problems is the study trying to solve?
- ► Are findings well supported by evidence?
- ► Is the study repeatable? (i.e. is the article self contained?)
- ▶ If you do not understand take some time to find a brief explanation of what you are not understanding (one-two sentences).
- ▶ Is the paper innovative?

Interpret

- ► Examine graphs and tables carefully
- ► Try to interpret data first before looking at captions
- When reading the discussion and results look after key issues and new findings
- ► Make sure you have distinguished the main points. If not go over the text again.

Summarize

- ► Take notes and underline key points: it improves reading
- ▶ Decide what part of the paper needs to be expanded and how much.

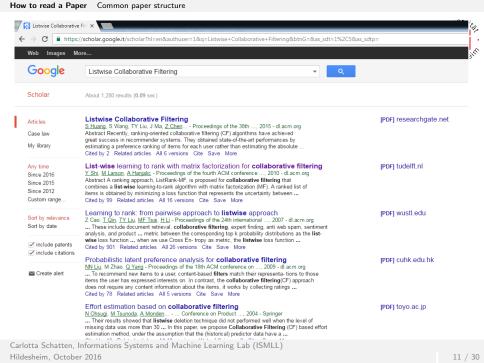
Common paper structure

- ► Abstract
- Introduction
- ► State of the art
- ► Algorithms explanation
- Experiments
- ► Conclusions and future work
- ► References

Let's take this paper as an example:

"Huang, S., Wang, S., Liu, T. Y., Ma, J., Chen, Z., and Veijalainen, J. (2015, August). Listwise Collaborative Filtering. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 343-352). ACM."

Go to: www.scholar.google.com/



Stand on the shoulders of giants

See all updates

Estimating student proficiency: Deep learning is not the panacea

About Google Scholar Privacy Terms Go to G

Abstract

- ► Brief introduction to the topic
- ► Brief introduction to paper achievements
- ► Brief summary of the experiments

Introduction

- ► Introduction to the topic
- ► Introduction of the main concepts
- ▶ Introduction of the main state of the art methods
- ► State of the art limitations
- Hypotheses
- **▶** Contributions

The Importance of Hypotheses

- ▶ It is not enough to describe some new technique or system, some claim about it must be stated and evaluated
- ▶ In experimental research, hypotheses typically take one of these two forms:
 - ► Technique/system X automates task Y for the first time
 - ► Technique/system X automates task Y better, along some dimension, than each of its rivals
- ► In theoretical papers, the hypotheses are the statements of theorems and the supporting evidence is their proofs

The Importance of Hypotheses

Technique/system X automates task Y better, along some dimension, than each of its rivals, where the dimensions are typically:

- ▶ **Behavior:** X has a higher success rate or produces better quality outputs than Y
- ► Coverage: X is applicable to a wider range of examples then Y
- **Efficiency:** X is faster or uses less space then Y
- **Dependability:** X is more reliable, safe or secure than its rivals
- ▶ Maintainability: X is easier to adapt and extend than its rivals
- ▶ **Usability:** Users find X easier to use than its rivals

State of the art / Related work

- Is a broad and shallow account of the field, which helps to place the contribution of the paper in context
- ▶ What are the rival approaches?
- What are the drawbacks of each?
 - ▶ One sentence per method. Is it clear enough?
- ► How has the battle between different approaches progressed?
- ▶ What are the major outstanding problems?

Algorithm Explanation

- ► First the authors introduce the algorithm from which they derived the new algorithm
- ► Then, the new algorithm is explained
- ► Contains:
 - ► Formulas
 - Pseudo code

Algorithm 1: The ListCF Algorithm

```
Input: An item set I, a user set U, and a rating matrix
                R \in \mathbb{R}^{M \times N}. A set of rated items I_u \subseteq I by
                each user u \in U. The maximal number of
                iterations maxIteration and error threshold \epsilon.
    Output: A ranking \hat{\tau}_u of items for each user u \in U.
 1 for u \in U do
         for v \in U and u \neq v do
              P_u, P_v \leftarrow \text{TopKProDist}(I_u, I_v, R) /* Eq. 1 */
 3
               sim(u, v) \leftarrow Similarity(P_u, P_v) /* Eq. 2 */
 5
          end
          N_u \leftarrow \text{SelectNeighbors}(\{sim(u, v)\}_{v \in U/u})
 7 end
 8 for u \in U do
          t = 1
10
          repeat
11
              \varepsilon = 0
12
               Initialize (\varphi^0)
              for g \in G_{t}^{T_u} do
13
                   \phi_{u,g}^t \leftarrow \text{Update}(N_u, sim, R) /* Eq.8 */
\varepsilon + = \sqrt{\sum (\varphi_{u,g}^t - \varphi_{u,g}^{t-1})^2}
14
15
16
               end
17
              t \leftarrow t + 1
18
          until t > maxIteration or \varepsilon < \epsilon;
          for t \in T_n do
19
               P(t) \leftarrow \text{Aggregation}(\{\varphi_{u,g}\}_{g \in \mathcal{G}_{\cdot}^{Tu}})
20
21
          end
          \hat{\tau}_u \leftarrow \text{Ordering}(\{P(t)\}_{t \in T_u})
23 end
```


Experiments

► Dataset Explanation

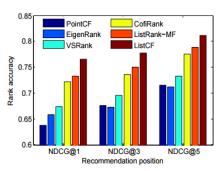
- ▶ What are the available information?
- ► What are the available statistics? E.g. number of users, items, sparsity etc.

► Evaluation protocol

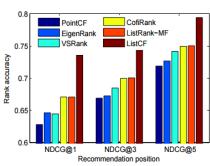
- ► How is the error of the algorithm computed?
- Are there any other quantitative success measures?

Experiments

Are the results statistically significant?



20162017/How to Read a Paper/fig/datasetcharacteristics.png


Table 2: Statistics on the three datasets.

	Movielens-1M	EachMovie	Netflix
#users	6,040	36,656	429,584
#items	3,952	1,623	17,770
#ratings	1,000,209	2,580,222	99,884,940
#ratings/user	165.6	70.4	232.5
#ratings/item	253.1	1589.8	5621.0
sparsity	93.7%	95.7%	98.7%

(a) Movielens-1M

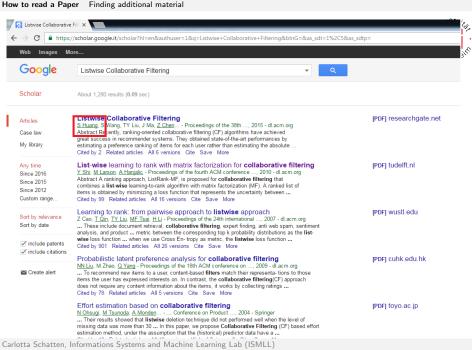
(b) EachMovie

Hildesheim, October 2016 21 / 30

Conclusions

- Repeats the contributions pointing out specifically how the paper addressed it
- ► Include future works

23 / 30

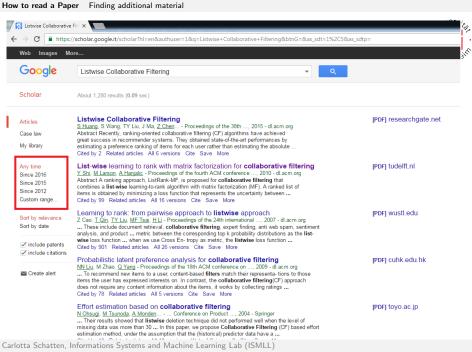

Finding additional material

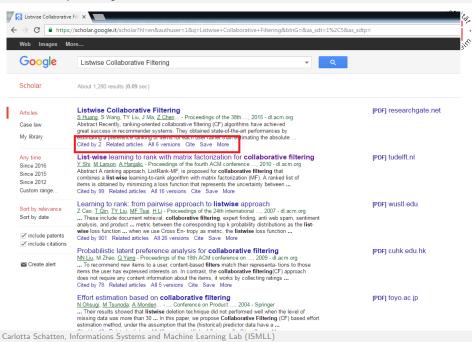
- ▶ If you don't understand something..
- ► This is not a book, it happens...
 - ► Try to pose yourself a specific questions
 - ▶ Look online

Finding additional material

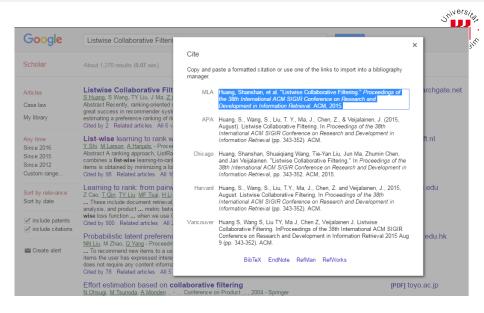
- ► A book explaining the algorithms
- A PhD thesis
- ▶ Tutorials
- ► Highly related state of the art papers

Hildesheim, October 2016


Sheng-Lung Huang National Taiwan University Biomedical imaging, fiber, laser, crystal Verified email at ntu.edu.tw


Title 1–20	Cited by	Year
Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams J Cao, E Terkin, V Srimivsan, W Fan, S Huang, H Zheng, JWL Yim, Nature nanotechnology 4 (11), 732-737	266	2009
Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. P Savatier, S Huang, L Szekely, KG Wiman, J Samarut Oncogene 9 (3), 809-918	248	1994
Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves B Yan, Q Dai, X Liu, S Huang, Z Wang Plant and soil 17(2) 281-288	227	1996

Google Scholar Q Get my own profile Citation indices Since 2011 15313 Citations 10955 h-index 49 39 i10-index 408 298


Carlotta Schatten, Informations Systems and Machine Learning Lab (ISMLL)

Hildesheim, October 2016

How to read a Paper Finding additional material

Carlotta Schatten, Informations Systems and Machine Learning Lab (ISMLL)

Hildesheim, October 2016 29 / 30