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How to read a paper
» Like novel or newspaper stories, scientific articles needs to be read
differently.
» Since they are not books designed for students sometimes they are
not self contained and requires some research to be fully understood.
» Understand a paper for a researcher means to be able to implement
the described algorithm.
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How to read a paper
» Skim

Re—read

v

v

Analyze

» Summarize
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First get the "Big picture” by reading the title, abstract, and introduction
carefully: this will tell you the major findings and why they matter.

» Quickly scan the article without taking notes: focus on headings and
subheadings

» Note the publishing date and conference/journal

» Note terms and parts you don't understand.

Only with the bigger picture you will understand how much it is
necessary to investigate something.
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Re-read

Read the article again, asking yourself questions such as:
» What problems is the study trying to solve?
» Are findings well supported by evidence?
» |s the study repeatable? (i.e. is the article self contained?)

» If you do not understand take some time to find a brief explanation of
what you are not understanding (one-two sentences).

» Is the paper innovative?
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Interpret
» Examine graphs and tables carefully

v

Try to interpret data first before looking at captions

When reading the discussion and results look after key issues and new
findings

Make sure you have distinguished the main points. If not go over the
text again.

v

v
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Summarize
» Take notes and underline key points: it improves reading

» Decide what part of the paper needs to be expanded and how much.
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Common paper structure
» Abstract
» Introduction

State of the art

v

v

Algorithms explanation

v

Experiments

v

Conclusions and future work

References

v
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Let's take this paper as an example:

"Huang, S., Wang, S., Liu, T. Y., Ma, J., Chen, Z., and Veijalainen, J.
(2015, August). Listwise Collaborative Filtering. In Proceedings of the
38th International ACM SIGIR Conference on Research and Development
in Information Retrieval (pp. 343-352). ACM.”

Go to: www.scholar.google.com/
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Listwise Collaborative Filtering

S Huang, S Wang, TY Liu, J Ma, Z Chen... - Proceedings of the 38th ..., 2015 - dl.acm.org
Abstract Recently, ranking-criented collaberative filtering (CF) algorithms have achieved
great success in recommender systems. They obtained state-of-the-art performances by
estimating a preference ranking of items for each user rather than estimating the absolute
Cited by 2 Related articles  All 6 versions Cite Save More

List-wise learning to rank with matrix factorization for collaborative filtering
Y Shi, M Larson, A Hanjalic - Proceedings of the fourth ACM conference .. 2010 - dl.acm.org
Abstract A ranking approach, ListRank-MF, is proposed for collaborative filtering that

combines a list-wise leaming-to-rank algorithm with matrix factorization (MF). A ranked list of
items is obtained by minimizing a loss function that represents the uncertainty between ...

Cited by 99 Related articles  All 16 versions Cite Save More

Learning to rank: from pairwise approach to listwise approach

Z Cao, T Qin TY Liu. MF Tsai, H Li - Proceedings of the 24th intemnational ..., 2007 - dl.acm org

.. These include document retrieval, collaborative filtering, expert finding, anti web spam, sentiment
analysis, and product ... metric between the corresponding top k probability distributions as the list-
wise l0ss function ... when we use Cross En- tropy as metric, the listwise loss function ...

Cited by 901 Related articles Al 26 versions Cite Save More

Probabilistic latent preference analysis for collaborative filtering

NN Liu, M Zhao, Q Yang - P of the 18th ACM on 2009 - dl. acm.org

.. To recommend new items to a user, content-based filters match their representa- tions to those
items the user has expressed interests on. In contrast, the collaborative filtering(CF) approach
does not require any content information about the items. it works by collecting ratings ...

Cited by 78 Related articles  All 5 versions  Cite Save More

Effort estimation based on collaborative filtering

N Ohsugi, M Tsunoda, A Monden .. - .. Conference on Product 2004 - Springer

«.. Their results showed that listwise deletion technique did not performed well when the level of
missing data was more than 30 ... In this paper. we propose Collaborative Filtering (CF) based effort
estimation methed, under the assumption that the (historical) predictor data have a
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Abstract
» Brief introduction to the topic
» Brief introduction to paper achievements

» Brief summary of the experiments
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Introduction

» Introduction to the topic

v

Introduction of the main concepts

Introduction of the main state of the art methods

v

State of the art limitations

v

v

Hypotheses
Contributions

v
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The Importance of Hypotheses

» It is not enough to describe some new technique or system, some
claim about it must be stated and evaluated
» In experimental research, hypotheses typically take one of these two
forms:
» Technique/system X automates task Y for the first time
» Technique/system X automates task Y better, along some dimension,
than each of its rivals
» In theoretical papers, the hypotheses are the statements of theorems
and the supporting evidence is their proofs
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The Importance of Hypotheses
Technique/system X automates task Y better, along some dimension, than
each of its rivals, where the dimensions are typically:

» Behavior: X has a higher success rate or produces better quality
outputs than Y

» Coverage: X is applicable to a wider range of examples then Y
» Efficiency: X is faster or uses less space then Y

» Dependability: X is more reliable, safe or secure than its rivals
» Maintainability: X is easier to adapt and extend than its rivals

» Usability: Users find X easier to use than its rivals

Carlotta Schatten, Informations Systems and Machine Learning Lab (ISMLL)
Hildesheim, October 2016 15 / 30
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State of the art / Related work

» Is a broad and shallow account of the field, which helps to place the
contribution of the paper in context

What are the rival approaches?
What are the drawbacks of each?

\4

v

» One sentence per method. Is it clear enough?

v

How has the battle between different approaches progressed?

v

What are the major outstanding problems?

Carlotta Schatten, Informations Systems and Machine Learning Lab (ISMLL)
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Algorithm Explanation

» First the authors introduce the algorithm from which they derived the
new algorithm

» Then, the new algorithm is explained

» Contains:

» Formulas
» Pseudo code

Carlotta Schatten, Informations Systems and Machine Learning Lab (ISMLL)
Hildesheim, October 2016
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: i il i i 5. Q&
Input: An item set I, a user set I/, and a rating matrix //deshe\

1

15
16
17
18
19
20
21
22
23

R e RM*¥_ A set of rated items I, C T by
each user u £ 7. The maximal number of
iterations mazTteration and error threshold e.
Output: A ranking f, of items for each user u € U.
for u € U/ do
for v € U and u # v do
Py. P, + TopKProDist(1,, I,, R)
sim(u,v) + Similarity( Pu, Po)
end
Nu + SelectNeighbors({sim(u, v) }eerryu)
end
foru e U do
t=1

/% Eq.1 #/
/% Eq.2 */

Initialize(p%)
for g € g:“ do
g + Update{Ny, sim, R)

T (kg —wie)?

/% Eq.8 %/

e+=
end
te—tE1

until ¢ > mazlteration or £ < e

for t £ Tu do

| P(t) & Aggregation({pu g}, gra)

end

#y + Ordering({ P(t)}

end

ter,)
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Experiments

» Dataset Explanation

» What are the available information?
» What are the available statistics? E.g. number of users, items, sparsity
etc.

» Evaluation protocol

» How is the error of the algorithm computed?
» Are there any other quantitative success measures?

» Experiments
> Are the results statistically significant?

Carlotta Schatten, Informations Systems and Machine Learning Lab (ISMLL)
Hildesheim, October 2016 19 / 30
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Table 2: Statistics on the three datasets.
‘ H Movielens-1M | EachMovie | Netflix |

#users 6,040 36,656 429,584
#items 3,952 1,623 17,770
F#ratings 1,000,209 2,580,222 | 99,884,940
#ratings/user 165.6 70.4 232.5
#ratings/item 253.1 1589.8 5621.0
sparsity 93.7% 95.7% 98.7%

Carlotta Schatten, Informations Systems and Machine Learning Lab (ISMLL)
Hildesheim, October 2016 20 / 30
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Conclusions

» Repeats the contributions pointing out specifically how the paper
addressed it

» Include future works
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Finding additional material
» If you don't understand something..

» This is not a book, it happens...

» Try to pose yourself a specific questions
» Look online
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Finding additional material
» A book explaining the algorithms
» A PhD thesis
» Tutorials

» Highly related state of the art papers
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E]Collaborative Filtering
S Huang, SpWang. TY Liu, J Ma, Z Chen... - Proceedings of the 38th ..., 2015 - dl.acm.org
Abstract

ently. ranking-criented collaborative filtering (CF) algorithms have achieved
Great success in recommender systems. They cbiained state-of-the-art performances by
estimaling a preference ranking of items for each user rather than estimating the absolute
Cited by 2 Related articles Al 6 versions Cite Save More

List-wise learning to rank with matrix factorization for collaborative filtering
Y Shi, M Larson, A Hanjalic - Proceedings of the fourth ACM conference .. 2010 - dl.acm.org
Abstract A ranking approach, ListRank-MF, is proposed for collaborative filtering that

combines a list-wise leaming-to-rank algorithm with matrix factorization (MF). A ranked list of
items is obtained by minimizing a loss function that represents the uncertainty between ...

Cited by 99 Related articles  All 16 versions Cite Save More

Learning to rank: from pairwise approach to listwise approach

Z Cao, T Qin TY Liu. MF Tsai, H Li - Proceedings of the 24th intemnational ..., 2007 - dl.acm org

.. These include document retrieval, collaborative filtering, expert finding, anti web spam, sentiment
analysis, and product ... metric between the corresponding top k probability distributions as the list-
wise l0ss function ... when we use Cross En- tropy as metric, the listwise loss function ...

Cited by 901 Related articles Al 26 versions Cite Save More

Probabilistic latent preference analysis for collaborative filtering

NN Liu, M Zhao, Q Yang - P of the 18th ACM on 2009 - dl. acm.org

.. To recommend new items to a user, content-based filters match their representa- tions to those
items the user has expressed interests on. In contrast, the collaborative filtering(CF) approach
does not require any content information about the items. it works by collecting ratings ...

Cited by 78 Related articles  All 5 versions  Cite Save More

Effort estimation based on collaborative filtering

N Ohsugi, M Tsunoda, A Monden .. - .. Conference on Product 2004 - Springer

«.. Their results showed that listwise deletion technique did not performed well when the level of
missing data was more than 30 ... In this paper. we propose Collaborative Filtering (CF) based effort
estimation methed, under the assumption that the (historical) predictor data have a
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