

Should SDBMS Support a Join Index?:
A Case study from CrimeStat

Pradeep Mohan
Department of Computer Science

University of Minnesota
mohan@cs.umn.edu

Ronald E. Wilson
National Institute of Justice

Washington D.C
Ronald.Wilson@usdoj.gov

Shashi Shekhar
Department of Computer Science

University of Minnesota
shekhar@cs.umn.edu

Betsy George
Department of Computer Science

University of Minnesota
bgeorge@cs.umn.edu

Ned Levine
Ned Levine and Associates

Houston, TX
ned@nedlevine.com

Mete Celik
Department of Computer Science

University of Minnesota
mcelik@cs.umn.edu

ABSTRACT

Given a spatial crime data warehouse, that is updated
infrequently and a set of operations O as well as constraints of
storage and update overheads, the index type selection problem is
to find a set of index types that can reduce the I/O cost of the set
of operations. The index type selection problem is important to
improve user experience and system resource utilization in crucial
spatial statistics application domains such as mapping and
analysis for public safety, public health, ecology, and
transportation. This is because the response time of frequent
queries based on the set of operations can be improved
significantly by an effective choice of index types. Many spatial
statistical queries in these application domains make use of a
spatial neighborhood matrix, known as W in spatial statistics,
which can be thought of as a spatial self-join in spatial database
terminology. Currently supported index types such as B-Tree and
R-Tree families do not adequately support spatial statistical
analysis because they require on-the-fly computation of the W-
Matrix, slowing down spatial statistical analysis. In contrast, this
paper argues that Spatial Database Management Systems
(SDBMS) should support a join index to materialize the W-
Matrix and eliminate on-the-fly computation of the common self-
join. A detailed case study using the popular spatial statistical
software package for public safety, namely CrimeStat, shows that
join indices can significantly speed up spatial analysis such as
calculation of Ripley’s K and identification of hotspots.

Categories and Subject Descriptors

H.2.2[PHYSICAL DESIGN]: Access methods

General Terms
Design, Experimentation

Keywords
Join Index, Spatial Statistics, W Matrix, Self-Join

1. INTRODUCTION
Given a spatial crime data warehouse that is updated

infrequently and a set of operations, the spatial index type
selection problem is to find a set of spatial index types that can
reduce the I/O cost of the set of operations under given constraints
of storage and update overheads. The index type selection
problem is important to improve user experience, response time,
and system resource utilization. For example, in tools such as
CrimeStat[6], the response time for identification of hotspots is 2
hours for a dataset size of 15000 crime reports. This slow
response time occurs because CrimeStat is a main memory tool.
Using spatial index types e.g., a join index family, may lower the
response time to a few minutes, thereby enhancing the user
experience.

This paper focuses on spatial statistical queries in the context
of mapping and analysis for public safety. The application
considers questions such as, "Are there spatial concentrations of
crime that warrant increased police targeting at the community,
city, and county levels?" to identify a set of spatially grouped
instances defined as hotspots. For example, Figure 1 illustrates the
identification of burglary hotspots in applications such as
mapping and analysis of public safety. In these scenarios, law

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM GIS '08 , November 5-7, 2008. Irvine, CA, USA (c) 2008 ACM
ISBN 978-1-60558-323-5/08/11...$5.00

Figure 1: Identification of Hotspots

enforcement agencies normally have very limited resources such
as officers and patrol vehicles to deploy in a concentrated manner.
Given a large area such as a city, it would be very useful for law
enforcement agencies to examine different possible configurations
for distributing their limited resources to areas where there is
increased crime activity. To perform this strategic placement,
crime analysts and law enforcement agencies perform an
exploratory analysis.

Similar spatial statistical queries are important in many other
application domains such as public health, transportation,
ecology, consumer applications etc. For example, public health
authorities may be interested in hotspots of diseases such as
cancer clusters [14] in order to identify and remedy environmental
factors such as contaminated soil or water. Transportation
professionals may be interested in identifying and remedying
spatial concentrations of traffic accidents by re-designing
transportation networks via traffic calming etc. Ecologists may
identify spatial concentrations of endangered species to promote
their protection. Many of these queries make use of a spatial
neighborhood matrix known as W in spatial statistics and perform
repeated W Matrix computation for different neighborhoods. We
call such queries W-Queries.

Current spatial database management systems (SDBMS)
provide a rich set of operations and spatial index structures such
as B-Tree and R-Tree index families that can enhance the
efficiency of processing queries in various applications [1, 3, 4,
10, 11, 12, 17]. However, these SDBMS must perform repeated
on-the-fly computation of the W-Matrix and are limited in their
ability to support W-Query operations.

This paper argues that SDBMS should support a self-join
index. The paper aims to establish the utility of the join index to
process W-Queries efficiently by evaluating the idea of a self-join
index.

Related Work: Research related to the index type selection
problem can be classified into two categories: (1) spatial indices
that make use of on-the-fly join computation strategies by
computing joins as a part of the query evaluation process, (2)
spatial indices used for direct(lookup) join computation that
compute joins by performing a sequence of lookups.

On-the-fly join computation techniques that are based on
spatial indices, namely the R-Tree and its variants, are suitable for
computing the spatial join for a single neighborhood relationship
[1, 3, 4, 5, 6, 7, 8, 10, 11, 17, 18, 19]. However, W-Queries are
exploratory in nature and require repeated self-join computation,
making on-the-fly join computation expensive. Spatial indices
such as R-Tree and its variants, Quad tree, Grid Files, etc., have
been incorporated as a part of commercial SDBMS systems [7, 8,
9, 19, 16]. IBM Informix Spatial DataBlade makes use of the R
Tree, ESRI Arc SDE makes use of Grid Files, Oracle spatial
makes use of R Tree and Quad tree, and Microsoft SQL Server
2008 spatial data support makes use of multi-level Grid files.
These commercial SDBMS tools retain the limitations of the
corresponding spatial indices and hence do not provide support
for W-Queries and their operations. A major issue faced by
existing SDBMS tools to support several spatial indices is that the
choice of a spatial index type for a given set of workloads affects
the strategy for I/O optimization, query optimization strategies,
concurrency control, and recovery strategies.

Direct join computation techniques are based on spatial
indices such as the (spatial) join index [8,13]. Join indices have
been primarily used in the context of computing a spatial join
between two different relations to speed up online query
processing infrequently updated databases. However, current join
indices are represented as bi-partite graphs [9, 14]. By contrast,
W-Queries are primarily focused on computing several spatial
self-join operations. In self-join cases, the join index becomes a
neighborhood graph rather than a bi-partite graph representation.
Hence, the current representation of join indices as bi-partite
graphs needs re-consideration.

Our Contributions: First, we characterize the computational
structure of W-Queries. We consider the computation of Ripley's
K Function, and the identification of hotspots [2,6] for modeling
W-Queries. We propose a set of operations for handling these
queries. We define the spatial index selection problem for
handling the set of operations efficiently. We propose two
variants of the self-join index namely: (a) the Self-join Edge List
Index (SJELI) and (b) the Self-join Adjacency List Index
(SJALI). We also propose algorithms for processing W-Queries.
We evaluate the I/O efficiency of the proposed variants of the
self-join index using algebraic cost models for the operations. The
cost model and the experimental results establish the utility of the
self-join indices. Experimental results using real crime datasets
indicate that the self-join indices decrease the user response time
of W-Queries by a factor 40 compared to a single threaded
version of CrimeStat and outperform an R-Tree based Tree
Matching self-join algorithm. Based on these findings we believe
that existing SDBMS should adopt the self-join indices to support
spatial statistical queries such as W-Queries.

Scope: This paper primarily focuses on the selection of a suitable
index type for a given set of operations. The join indices are
materialized for the study area, a primary requirement in most
spatial statistical analysis applications. Our propositions are
mainly focused on multiple spatial neighborhood analysis queries
within a particular study area. The aim is to reduce the response
time of the proposed set of operations for W-Queries in a spatial
crime data warehouse setting. We understand that adding new
index types in a SDBMS is a complex decision due to the impact
on issues such as concurrency control, recovery, and evaluation of
storage costs. These issues are beyond the current scope of the
paper.

Outline: The rest of the paper is organized as follows. Section 2
presents the basic concepts and the spatial index type selection
problem. Section 3 describes the proposed self-join index
variations and design decisions. In Section 4, we propose two
algorithms for two example W-Queries, e.g., Ripley's K Function
computation and identification of hotspots, and propose an
algebraic cost model for the set of W-Query operations. The
experimental evaluation is given in Section 5 and Section 6
outlines the conclusions and future work.

2. Basic Concepts and Problem Statement
In this section, we present some basic concepts required to

model W-Queries. We model W-Queries by identifying two
example queries, namely the computation of the Ripley K-
Function and the identification of hotspots. We propose a set of
W-Query operations based on the example queries and
characterize their computational structure.

In spatial statistics, the W-Matrix is a matrix--based

representation of space and a measure of the adjacency,
proximity, distance or level of spatial interaction between spatial
instances [3]. Given a uniform spatial framework and a set of
spatial instances, W-Queries re-compute the W-Matrix for
different neighborhood relations.

For example: Figure 2a and 2b represent the spatial
neighborhood graph for a spatial dataset. Figure 2a corresponds to
a neighborhood relation R1, and Figure 2b corresponds to a
neighborhood relation R2. The corresponding W- Matrices for the
neighborhood graphs is illustrated in Figure 2c and 2d
respectively. Spatial instances are represented by N1, N2…,N7 in
a uniform spatial framework. In the W-Matrix, a 1 denotes that
the two spatial instances satisfy the neighborhood relation and a 0
denotes that the two spatial instances do not satisfy the
neighborhood relation.

Definition 2.1 Given two spatial instances Si, and Sj , where i ≠ j,
in a spatial dataset SD a neighborhood relation R(Si, Sj) can be
defined as a measure of spatial interaction, distance or
adjacency.
For example, In Figure 2, R1 and R2 are two different spatial
neighborhood relations.

Definition 2.2 Given a spatial framework S, the W-Matrix is
defined as a set of values that quantify the spatial interaction,
distance or adjacency. These values can be binary or real
depending on the measure of spatial interaction used. Formally,
the W-Matrix can be defined as follows[13];

}

),(,|),({),(

jiandvalidis

SSRandSSSSSRRSW jiDjijiD

≠

∈∀=

Definition 2.3 Given a spatial instance Si , the no_of_instances(Si
, R) of instance Si is the number of spatial instances Sj є SD , i≠j,
that satisfy the neighbor relation R.
For example, in Figure 2, R1, R2 are two different spatial
neighborhood relationships whose no_of_instances(N1,R1) = 3
and no_of_instances(N2,R2) = 4

Definition 2.4 Given a spatial instance Si , the average edge
weight (AEW) (or average weight) of a spatial instance is the sum
of the values of R(Si , Sj) divided by the Frequency(Si ,R) where Sj
є SD and i≠j, that have a valid neighbor relation R. The term
average edge weight is relevant only if the neighbor relation
represents a value of distance or similarity.

2.1 Two Simple W Queries

To model W-Queries, we consider two spatial statistical
queries that have been applied to compute statistics in
CrimeStat[6].

Query I: Is data spatially clustered ?.
Query I relates to the calculation of a well-known statistical

measure called Ripley's K function [2, 14]. This measure
calculates the cumulative number of spatial instances that are
within a search radius of each spatial instance in the dataset. This
cumulative count is computed for different neighborhood radii.
Figure 3(a) illustrates the method of computing Ripley’s K
Function.

In the figure, dark circles around the spatial instances N1,
N2.., and N7 represent neighborhood relationship R1, and dashed
circles around the spatial instances represent neighborhood
relationship R2. The Ripley K Function method computes the
number of spatial instances around a particular spatial instance for
a particular neighbor relation R2 and reports the cumulative sum
of these frequencies over all spatial instances. The process is
repeated after the neighbor relation is changed to R1 and so on
until a significant number of levels are completed. The number of
neighborhood relationships is of the order of 100 in spatial
statistics tools such as CrimeStat [6].

Query II: Are there concentrations of crime that warrant
increased police targeting at the community, city, and county
level?

Query II relates to the identification of a spatially grouped
set of instances defined as hotspots. Figure 3(b) illustrates
hotspots that can be extracted from the spatial dataset for multiple
neighborhood definitions. N1, N2…and N7 are the spatial
instances. In the figure, dark ellipses refer to hotspots that are
identified for a neighborhood R1 and the dashed ellipse refers to
hotspots that are identified for a neighborhood R2.

The computational process begins with the computation of
the W-Matrix for an initial neighborhood relation R and the
selection of a set of representative points called seeds. Seeds are
defined as spatial instances which have a minimal edge weight
compared to their neighbor spatial instances. For example, in
Figure 3(b), N2, N5, and N6 are the seed points since they have
minimum average edge weights? for the neighbor relation R1.
The hotspot identification process always maintains a list of
potential seeds that are updated whenever a new hotspot is
identified. The key challenge in the process is to identify non-
overlapping hotspots so that spatial instances are not re-
considered in subsequent hotspots.

N3

N7
N6

N2

N1

N5

N4

Neighbor Relation R1

Neighbor Relation R2

N3

N7
N6

N2

N1

N5

N4

Neighbor Relation R1

Neighbor Relation R2

(a) (b)
Figure 2: Sample dataset and the W-Matrix for different relations. (a)
Neighborhood graph for neighborhood relation R1, (b) Neighborhood
graph for relation R2. (d) W-Matrix for relation R1. (f) W-Matrix for
relation R2.

Figure 3: Computational structure of W-Queries. (a) Ripley's K (b) Hotspots

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7654321
01111101
01101012
10100113
11100014
01011115
10110116
01011007

NNNNNNN
N
N
N
N
N
N
N

(c)

(b)(a)

(d)
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7654321
00101101
01101012
00000113
01100004
01010115
10110106
01000007

NNNNNNN
N
N
N
N
N
N
N

N 3

N 7
N 6

N 2

N 1

N 5

N 4

N 3

N 7
N 6

N 2

N 1

N 5

N 4

2.2 Case Study: W Queries from CrimeStat
 Spatial statistical queries that can be classified as W-Queries
and that mainly involve repeated computation of neighborhood
relationships are drawn from crime analysis tools such as
CrimeStat [6].
 Table 1 lists some of these queries. CrimeStat has several
spatial autocorrelation routines including Moran’s “I”, Geary’s
“C” and LISA. These are global level statistics that determine if
there is clustering or dispersion within a dataset across a study
area. They are used as a guide to conduct local level hotspot
analysis whereby if the results indicate there is no clustering or
dispersion, then any hotspots found with local level techniques
will likely be false positives. These spatial statistical measures
can also be modeled as W-Queries.

2.3 Operations for W-Queries
 W-Queries can be modeled as a set of operations that can be
used to identify a suitable spatial index type to process them
efficiently. Figure 4 illustrates the effect of the set of operations
on the example dataset illustrated by Figure 1. Since the spatial
dataset is modeled as a neighborhood graph under a neighborhood
relation, we make use of terminology used in the spatial network
database literature such as predecessor and successor [17]. We
make use of node coloring to distinguish a predecessor from a
successor as the operations are applied on a neighborhood graph.

get-neighbors-in-relationship(Si,R): Identify the neighbors of
a spatial instance Si.

Given the spatial instance Si, the get-neighbors-in-relationship()
operation colors the spatial instance Si and gives all the neighbors
that satisfy the relationship R the same color as Si.

For example: Figure 4 (a) shows the effect of the get-neighbors-
in-relationship(Si,R) on the spatial instance N2 where the
operation get-neighbors-in-relationship(N2,R) results in the
coloring of the instances N2, N3,N5 and N6.

get-successors (Si): Retrieve the successors of Si.

The successor of a spatial instance Si is defined as a set of spatial
instances that satisfy the neighbor relation R with Si and have the
same color. For example: Figure 4 (b) shows the effect of the get-
successor(Si) operation on the spatial instance N2, where the
instances N1, N3, N5, and N6 are reported as successors since
they have the same color as N3.

get-successor (Si): Retrieve the farthest unreported successors
of Si.

This operation returns the spatial instance which is the successor
of Si and has the maximum value of the neighbor relation R with
Si. We call this the "farthest successor first " strategy.

For example: Figure 4(c) shows the effect of the get-successor(Si)
operation on the spatial instance N2, where the instances N1, N3,
N5, and N6 are reported as successors since they have the same
color as that of N3.

get-predecessors (Si): Retrieve the predecessors of Si.

Retrieves the spatial instances that have a color different from that
of spatial instance Si . This operation is executed normally when
the degree of spatial instances requires updating.

For example: Figure 4 (f), shows the result of get-predecessors(Si)
on the spatial instance N2. The operation reports instances N5 and
N6 as the results.

get-predecessor-of-successor (Si): Retrieve the predecessors of
the successor of Si

This operation returns the nearest uncolored spatial instance to the
successor of Si. A predecessor is a spatial instance Sj that does not
have the same color as spatial instance Si.

For example: Figure 4(d) shows the result get-predecessor-of-
successor(Si) applied two times on the spatial instance N2. The
operation reports instances N4 and N7 as the results.

get-predecessors-of-successor (Si): Retrieve the predecessors
of the successors of Si.

This operation retrieves the predecessors of the successor of a
spatial instance Si. This operation is important to update the
average edge weight of neighboring spatial instances of the
neighbors of Si.

For example: Figure 4(g) shows the result of this operation on the
spatial instance N2,where the first successor of N2 is N1 and its
first predecessor is N5 gets reported.

update-successors (Si, <successors>): Un-colors all the
successors of Si

Checks whether the spatial instance Si is colored; if it is colored
then it un-colors the spatial instance. <successors> represents a
list of successors to be updated.

Statistic W(SD,R) Consecutive
W Subsets

Frequency
Based

Average Edge
Weight Based

Join Computation:
On the Fly

Join Computation:
Look up

Ripley's K Function Yes Yes Yes NO NO Yes

Nearest Neighbor Statistic Yes Yes Yes NO NO Yes

Hotspots Yes Yes Yes Yes NO Yes

Moran’s I NO NO NO NO Yes Yes

Geary’s C NO NO NO NO Yes Yes

Local Moran (LISA) Yes NO NO NO NO Yes

Table 1: W-Queries from CrimeStat[6]

For example: Figure 4 (e) shows the result of update-
successors(Si) on the spatial instances N5 and N6.

update-average edge weight (Sj): Update the average edge
weight of a spatial instance.

This operation updates (reduces) the average edge weight of a
given spatial instance Si.

For example: This operation is applied on the instances N5 and
N6, which are shown in Figure 4(f,g). N5 is updated two times in
this example.

2.4 Problem Statement
 This section defines the spatial index type selection problem
given a set of operations that are relevant to W-Queries.
Given:

• A spatial crime data warehouse

• A set of operations O

Find:

• A suitable secondary memory index structure type.

Objective:

• To minimize the I/O cost of the set of operations O.

Constraints:

• Spatial datasets are updated infrequently.

• Concurrency control and recovery considerations are
addressed separately.

• There are no storage overheads.

• User response time is minimized.

Example: To compute a W-Query such as the Ripley K Function,
given a spatial dataset and a set of operations, namely get-
neighbors-in-relationship() and get-successors(). The objective of
the above problem is to find a suitable spatial index type that

minimizes the I/O cost of the operations get-neighbors-in-
relationship(), get-successors() and the user response time of the
W-Query. Different W-Queries may have different workloads
which are provided as an input to the query. For example,
Ripley's K has parameters such as maximum neighborhood size
and number of spatial neighborhoods.

3. Self-Join Index and Its Variants
In this section, we formally define a self-join index (SJI) and

propose two variants, namely the Self-Join edge list index
(SJELI) and the Self-join adjacency list index (SJALI). We
formally define the self-join index as:

}&)),(

,(&,|),(,,{

jivalidisSSR

RRSSSSSRSSSJI

ji

S
Djijiji

≠

∈∃∈∀><=

where SD is the spatial dataset, RS is a set of neighborhood
relationships that are defined for a spatial framework S.
For example: From Figure 5, RS = {R1,R2}. R(Si ,Sj) is either R1
or R2.

3.1 Representations of the SJI
 Traditionally, the join index has been represented as a bi-
partite graph. Since W-Queries repeatedly compute self-joins, the
modeling of the self-join index as a bi-partite graph needs to be
modified to that of an undirected neighborhood graph, G=(SD, E).
The neighborhood graph G consists of a set of spatial instances SD
and an edge set E. Each element SiєSD is a spatial location in a
uniform spatial framework S. The set of edges E is a subset of the
cross product, DD SS × . Each element (Si, Sj) in E is an edge
that joins instances Si, and Sj, where i≠j. Also each edge has a
weight which is the level of spatial interaction, distance or
adjacency.

Figure 4 Effect of W-Query operations on sample dataset. (a)get-neighbors-in-relationship(N2,R1). (b) get-
successors(N2). (c) get-successor(N2) (d)get-predecessor-of-successor(N2) applied two times. (e) update-
successors(N2). (f) get-predecessors(N2).(g) get-predecessors-of-successor(N2). (h) get-predecessor(N2).

R1

R2
Colored Spatial Instances

N3

N7
N6

N2

N1

N5

N4

N3

N7
N6

N2

N1

N5

N4

N3

N7
N6

N2

N1

N5

N4

Successors

(a)

(h)

(c) (d)

(e) (g)

(b)

N3

N7
N6

N2

N1

N5

N4

N3

N7
N6

N2

N1

N5

N4

N3

N7
N6

N2

N1

N5

N4

(f)

N3

N7
N6

N2

N1

N5

N4

N3

N7
N6

N2

N1

N5

N4

Predecessors

Unmarked Instance
Requires Update

This neighborhood graph can be represented in two different
ways, namely, the edge list and the adjacency list. Figure 5(a) and
5(b) are the neighborhood graphs for the relations R1 and R2
respectively. We present the design of the two representations and
evaluate the effect of the operations on the two variants.

3.1.1 Self – Join Index: Edge List Representation (SJELI)
 The edge list representation of the self-join index is
illustrated in Figure 5(c). In this representation, the join index is
ordered by column 1 and within column 1 by the value of the
relation R(Si,Sj). This representation does not provide any
information on the successors or the predecessors of a spatial
instance Si. This is clearly evident from its representation. A clear
challenge with this representation is to determine an optimal
partitioning of the SJELI to minimize the I/O costs of the set of
operations.

3.1.2 Self – Join Index: Adjacency List Representation(SJALI)
 The adjacency list representation of the self-join index is
illustrated in Figure 5(d).The adjacency list representation has
clear advantages compared to that of the edge list representation.
First, the adjacency list representation maintains a list of
successors and predecessors that are critical for processing W-
Queries. Second, the coloring scheme used by the set of
operations can easily exploit the adjacency list representation to
retrieve the successors or predecessors with lesser I/O. Also,
processing updates on the adjacency list is easier due to the same
reasons.

3.1.3 Design Issues
 We make use of the connectivity clustering heuristic [17] to
cluster the spatial instances of the SJALI and SJELI. CCAM
(Clustered Connectivity Access Method) [17] makes use of

separate lists for successors and predecessors and does not exploit
the concept of a spatial neighborhood. The self-join indices,
SJALI and SJELI are primarily neighborhood graphs that are
represented as adjacency lists and edge lists.

We apply the connectivity clustering heuristic for the two
neighborhood graphs to store them into disk pages. In the design
of the SJALI, we maintain only one list of adjacent neighbors of
a particular spatial instance.

The proposed set of W-Query operations, for example, get-
neighbors-in-relationship(Si,R), makes use of a coloring heuristic
to retrieve the successors and the predecessors of a particular
spatial instance. To allocate these spatial instances to disk
pages,we make use of the same connectivity clustering heuristic
on the neighborhood graph. For example, in Figure 4(d), a typical
page allocation would involve storing N1, N2, and N3 in the same
page; N4,N5, and N6 in another page; and N7 in a separate page.
This allocation scheme changes with the maximum size of a page
and the value of the Connectivity Residue Ratio (CRR) [17]. CRR
is defined as the probability that two neighboring spatial instances
are present in the same disk page.
 Utilizing the same heuristic on the SJELI involves storing the
edge lists of spatial instances in the same disk page such that the
number of cut edges is minimized. This allocates the edge lists of
spatial instances to pages where each edge of the spatial instance
corresponds to a page entry. In some cases for large neighborhood
sizes, it is possible that the edge list of one spatial instance itself
may exceed one single page.
For example, in Figure 5(c), a typical page allocation would
involve allocating the edge lists of N1, N2, and N3 to the same
page, edge lists of N4,N5, and N6 to another page, and N7 to a
separate page.

Figure 5: Self-join index representations.(a). Neighborhood graph for relation R1.(b). Neighborhood graph for
relation R2.(c) Self-join edge list index (SJELI).(d). Self-join adjacency list index.(SJALI)

The key trade-off in the two different representations is in
the value of the connectivity residue ratio (CRR) they yield. . The
SJELI would yield a lower value of CRR for small page sizes,
thus resulting in larger I/O costs. SJELI would also incur more
I/O costs for larger neighborhood sizes than the other
representation. This clearly indicates that the value of the CRR in
the case of both the SJELI and the SJALI depends on the value of
the neighborhood relation R. An in-depth evaluation of the
variation in CRR for the two self-join indices is beyond the scope
of this paper.

4. W-Query Processing Algorithms
In this section, we propose two query processing algorithms

using the set of operations get-neighbors-in-relationship(), get-
successors(), get-predecessors(), get-successor(), get-
predecessor(), get-predecessor-of-successor(), get-predecessors-
of-successor(), update-average-edge-weight(), and update-
successors(). These operations are used to design the algorithms
for W-Queries, namely Ripley's K- Function computation and
identification of hotspots.

4.1 Ripley's K Function Computation
 The Ripley K Function computation involves the use of two
operations, get-neighbors-in-relationship(Si,R) and get-
successors(Si). Algorithm 1 lists the computational process for
the Ripley K Function. The trace of the algorithm is listed in
Table 2.

4.2 Identification of Hot Spots
The identification of hotspots involves the use of the

operations get-neighbors-in-relationship(Si,R), get-
successors(Si,R), get-successor(Si), update-successors(Si), get-
predecessors(Si), and update-average-edge-weight(Si). Algorithm
2, Hotspot_JI lists the computational process for the identification
of hotspots.

The trace of the Hotspot_JI Algorithm is listed in Table 3.

The trace clearly shows that the number of hotspots computed
decreases as the size of the neighborhood increases. Also, the
effect of the set of operations is listed in the trace.

Neighbor
Relation

get-neighbors-in-
relationship(Si, R)

get-successors(Si) Frequency

R2 N2:[N3,N1,N5,N6]

N1:[N2,N3,N5,N4,N6]

N3:[N2,N1,N5,N7]

N4:[N5,N6,N7,N1]

N5:[N4,N6,N2,N1,N3]

N6:[N7,N5,N4,N1]

N7:[N6,N4,N3]

[N3,N1,N5,N6]

[N2,N3,N5,N4,N6]

[N2,N1,N5,N7]

[N5,N6,N7,N1]

[N4,N6,N2,N1,N3]

[N7,N5,N4,N1]

[N6,N4,N3]

4

5

4

4

5

4

3

Total = 28

R1 N2:[N3,N1,N5,N6]

N1:[N2,N3,N5,N6]

N3:[N2,N1]

N4:[N5,N6]

N5:[N4,N6,N2,N1]

N6:[N7,N5,N2]

N7:[N6]

[N3,N1,N5,N6]

[N2,N3,N5,N6]

[N2,N1]

[N5,N6]

[N4,N6,N2,N1]

[N7,N5,N2]

[N6]

4

4

2

2

4

3

1

Total = 20

Algorithm 1: CalcRipleyK: Computation process for computing
Ripley’s K Function

Inputs:

• Spatial sataset SD, Query: Is data spatially clustered?,

• Total number of levels, Study Area
Output:

• K – Function: Measure of spatial randomness.
Procedure: CalcRipleyK

1. do

2. begin

3. for every spatial instance Si in SD

4. get-neighbors-in-relationship(Si,R[i])

5. F[i] := F[i]+size(get-successors(Si,R[i]))

6. update-successors(Si)

7. endfor

8. K [i] := calculate_ripley_k from F[i]

9. i:= i+1

10. R [i] := decrease_neighborhood(R[i-1])

11. end

12. While(i<= Total Number of Levels)

Algorithm 2: Hotspot_JI: Computation process for extracting
hotspots from a spatial dataset.

Inputs:
Spatial Dataset SD, Query: Are there concentrations of crime that
warrant increased police targeting at the block ,city and county
level?
HotspotSizeThreshold, Set of Neighbor Relations
Output: Set of hotspots corresponding to each neighbor relation
Procedure: Hotspot_JI

1. While (Size(HotspotQueue >= HotspotSizeThreshold)
2. begin
3. while(Terminate when there are no more seeds)
4. Si := Retrieve New Seed
5. get-neighbors-in-relationship(Si,R)
6. Successor_List:= get-successors(Si)
7. while(R[i](predecessor-of-successor(Si))<R[i](get-successor(Si))
8. upd_succ_list.Enque(Successor_List.Deque())
9. endwhile
10. update-successors(Si,upd_succ_list)
11. HotspotQueue:= Successors_List
12. while(Successor_List!=NULL)
13. p:=get-predecessor(Successor_List.Deque())
14. update-average-edge-weight(p)
15. endwhile
16. i := i+1
17. R[i] := increase_neighborhood R[i-1]
18. end

Table 2: Trace of CalcRipleyK Algorithm

4.3 Algebraic Cost Model
 In this section, we provide algebraic cost models for the I/O
costs of W-Query operations. We make use of the CRR to
measure the worst case I/O costs of the operations. Table 4 lists
the symbols used to develop the cost formulas.

 For both self-join index variants, let the costs of retrieving
one spatial instance be Z. The value of Z is equal to 1, which is
the cost of a simple look-up from the join indices. As described
earlier, the CRR of SJELI is expected to be lower as compared to
SJALI due to the presence of a large number of cut edges on a
single page. Hence, the I/O costs of the W-Query operations are
expected to be greater for SJELI.
 The get-neighbors-in-relationship(Si,R) operation retrieves
all the instances that satisfy the neighborhood relationship R with
Si. The cost of one get-neighbors-in-relationship operation equals
the product of the cost of retrieving the neighbors of Si multiplied
by the probability that the neighbors are not in the same disk
page. The get-successors(Si.) operation retrieves all the successors
of Si. The cost of one get-successors() operation involves the cost
of retrieving all the successors and the probability that the
successors are not in the same page as Si.

The get-predecessors(Si) operation retrieves all the
predecessors of Si. The cost of one get-predecessors() operation
involves the cost of retrieving all the predecessors of Si and the
probability that they are not in the same page as Si. The cost of
one get-successor(Si) operation is the probability that the

successor of Si is not in the same page as Si. The cost of one get-
predecessor(Si) operation is also the same.

The cost of one get-predecessors-of-successor(Si) operation
involves the cost of extracting one successor and then the cost of
extracting the predecessors of that successor, accounting for the
probability that they are not in the same disk page. The cost of
one update-successors(Si) operation is the cost of un-coloring the
successors of Si which is the cost of retrieving the successors
multiplied the probability that they are not in the same page. The
cost of one update-average-weight(Si) operation is the cost of
retrieving Si and also moving Si to an appropriate secondary
memory bucket which maintains potential seeds for handling W-
Queries such as identification of hotspots. These costs are
summarized in Table 5.

Operation Data Page Accesses

get-neighbors-in-
relationship(Si,R)

{|SR|/(|SD|-1)} |SD| Z (1-CRR)
 = ρ Z |SD| (1-CRR)

get-successors(Si) |S| Z (1-CRR)

get-successor(Si) Z (1-CRR)

get-predecessor-of-
successor(Si)

2 Z (1-CRR)

update-successors(Si) Z (1-CRR)X|S|

get-predecessors(Si) |P| Z (1-CRR)

get-predecessors-of-
successor(Si)

(|P| Z + 1) (1-CRR)

get-predecessor(Si) Z (1-CRR)

update-average-edge-
weight(Si)

2 Z

5. Experimental Evaluation
The self-join indices were evaluated using a set of

experiments that measure the response time of the two queries,
namely Ripley’s K Function and hotspots. The experiments were
implemented in C++/CLI and conducted on a Pentium Xeon 3.2
GHz Machine with a 4GB main memory. We make use of real
crime datasets to demonstrate the utility of the self-join index
variants to process W-Queries and their set of operations
efficiently. We measured the user response time for the queries.

Neighbor
Relation

Seeds get-successors (Si) get-successor(Si) get-predecessor-
of-successor(Si)

update-
successors

Hotspots get-
predecessors(Si)

update-average-
edge-weight

R1 N2:[N3,N1,N5,N6] [N3,N1,N5,N6] N6,N5,N1,N3 N7,N4 N6,N5 N2:[N3,N1] N5,N6 N5,N6,N5

N5:[N4,N6,N2,N1] [N4,N6] N6,N4 N7 N6 N5:[N4] N6 N6

N6:[N7,N5,N4,N1] [N7] N7 - - N6:[N7] - -

R2 N5:[N4,N6,N2,N1,N3] [N4,N6,N2,N1,N3] N3,N1,N2,N6,N4 Null, Null, Null,
N7, Null

N6 N5:[N4,N6,N2,N1,N3] N6 N6,N6,N6,N6

Symbol Meaning

|S| Average number of successors of a particular node

|P| Average number of predecessors of a particular
node.

CRR Connectivity residue ratio : The probability that the
page(Si) = page(Sj) for edge(Si , Sj)

|SR| is the average number of instances satisfying the
Neighbor Relation R

|SD | is the total size of the spatial dataset.

Ρ selectivity of a Range Query for a neighbor relation,
R, {|SR|/(|SD|-1)}X|SD|

ZLI = Z Cost of accessing a single spatial instance from the
SJALI

ZEL= Z Cost of accessing a single spatial instance from the
SJELI

Table 3: Trace of Hotspot_JI Algorithm for identifying Hotspots from the sample dataset.

Table 5. Worst case I/O cost analysis of W-Query operations.

Table 4: Symbols used in Cost Analysis.

We compared our proposed self-join index-based direct join
computation method with an R-Tree-based tree matching self-join
computation method that computes the W-Matrix for every new
neighborhood relationship. We performed experiments for
different dataset sizes ranging from 1182 spatial instances to
14852 spatial instances. We also compared the response time of
the self-join index based algorithms with that of the ones
implemented in a modularized single threaded version of
CrimeStat. The experimental evaluation addresses the following
questions:

Question 1: What is the user response time of the Ripley K
Function Query?
We implemented the W-Query processing algorithm
CalcRipleyK, proposed in Section 4, on a self-join adjacency list
index (SJALI). We also implemented the same queries by
repeated computation of self-joins on the R-Tree index. Figure 6
shows the comparison of the R-Tree-based on-the-fly join
computation method and the method using the self-join index.
The total response time also includes the time for performing I/O.
It can be concluded from Figure 6 that the self-join index-based
implementation gives a better performance as compared to the R-
Tree-based on-the-fly join computation. We have omitted the
details of the algorithm for space considerations. This algorithm
involves a repeated computation of only the self-join operation.
The algorithm was executed for 100 neighborhood relationships.

Table 6 shows the comparison with a single threaded version
of CrimeStat where the self-join index speeds up the query
processing time by a factor of 40 for the computation of Ripley's
K function.

Datase
t Size

User response time for
CrimeStat (seconds)

User response time for
self-join index (seconds)

14852 4892 92.672

4489 2688 48.763

2290 388 19.668

1182 69.763 9.778

Question 2: What is the user response time of the hotspot
identification query?

We implemented the W-Query processing algorithm for
hotspot Identification, Hotspot_JI, on the SJALI. The user
response time of the hotspot identification process was compared
with the Tree matching self-join algorithm using the R Tree

Figure 7 shows the comparison of the self-join index based
method with the R-Tree-based method. The total response time
also includes the time taken for performing I/O. It was observed
that the self-join index-based hotspot identification method takes
more response time because of the seed selection process that
incurs more updates on the average edge weight of the spatial
instances. However, the self-join index outperforms the R-Tree-
based on-the-fly join computation, which has processing
overheads for removing false positives from identified hotspots.

Table 7 shows the user response time of the self-join index based
algorithms with a single threaded CrimeStat. As can be seen, the
self-join index improves the user response time by a factor of 50
for the identification of hotspots

Datase
t Size

User Response time for
CrimeStat (seconds)

User response time for
self-join index (seconds)

14852 9000 169.982

4489 3000 79.363

2290 699 35.262

1182 90 22.038

6. Conclusions and Future Work
 We characterized the computational structure of a class of
spatial statistical queries called W-Queries. We defined a set of
operations that can be used to process these queries. These
operations have been identified as a basic set that is required to
process two simple W-Queries such as Ripley's K and hotspots.
Table 1 lists other types of W-Queries that are frequently
observed in spatial analysis and identifies the two simple W-
Queries as the most representative queries. This paper does not
claim about the completeness of the set of operations.
 We defined the spatial index type selection problem for
selecting a suitable spatial index type for handling these
operations efficiently. We proposed two variants of the self-join
index and presented our design decisions. We proposed
algorithms for two simple W- Queries. We presented an algebraic

Figure 6.User-response time comparison for Ripley's K Computation

Table 6. User response time comparison with CrimeStat

Figure 7. User-response time comparison for hotspot identification

Table 7. User response time comparison with CrimeStat.

cost model for the proposed set of operations. We performed
experimental evaluation on real crime datasets to demonstrate that
the self-join index guarantees better user response time as
compared to an R-Tree-based on-the-fly self-join computation
and a repetitive W-Matrix computation-based CrimeStat. These
observations establish the utility of the join index to process W-
Queries efficiently and we have identified a suitable
representation of the join index to achieve this objective. This
result validates our claim that the self-join index should be
supported by SDBMS for processing such queries.
 In future work, we plan to evaluate the detailed I/O costs of
the W-Query processing algorithms for the proposed variants of
the self-join index. We also plan to address critical issues such as
concurrency control and recovery, optimal query processing
strategies, and extraction of optimal page access sequences for the
proposed self-join index variants. We also want to consider more
spatial statistical queries such as the Local Moran Index, Moran's
I, Geary's C, as well as other hotspot algorithms.

Acknowledgments
 The authors would like to thank the members of the spatial
database research group at the University of Minnesota for helpful
discussions and comments. We would like to thank Kim Koffolt
for her comments to improve the readability of the paper. This
work was supported by grants from NSF, NGA and NIJ.

7. REFERENCES
[1] N. Beckmann, H.P. Kriegel, R. Schnieder and BB. Seeger.

The R*-Tree: an efficient and robust access method for
points and rectangles. SIGMOD Rec. , 19(2): 322-331, 1990.

[2] N.A. Cressie, editor. Statistics for Spatial Data. Wiley-
Interscience, 1993.

[3] V. Gaede and O. Gunther. Multidimensional access methods.
ACM Comput. Surv., 30(2): 170-231, 1998

[4] A Guttman. R Trees: a dynamic index structure for spatial
searching. In SIGMOD’84: Proceedings of the 1984 ACM
SIGMOD international conference on Management if data,
pages 47-57, New York, NY, USA. 1984.ACM

[5] E.H. Jacox and H.Samet. Spatial Join Techniques. ACM
Transactions on Database Systems., 32(1): 7, 2007.

[6] N. Levine, CrimeStat: A spatial statistics program for the
analysis of Crime incident locations, version 3.1. Ned
Levine and Associates: Houston, TX/ National Institute of
Justice: Washington, DC, 2004.
URL: www.icpsr.umich.edu/CrimeStat

[7] G. Malcom. Microsoft SQL Server 2008, Delivering
Location Intelligence with Spatial Data. SQL Server

Technical Article. Microsoft Corporation, Aug 2007.
Available online at
http://download.microsoft.com/download/a/c/d/acd8e043-
d69b-4f09-bc9e-4168b65aaa71/SpatialData.doc

[8] A. Mitchell, editor. The ESRI Guide to GIS Analysis, Volume
1: Geographic Patterns and Relationships. ESRI Press,
2005.

[9] A. Mitchell, editor. The ESRI Guide to GIS Analysis, Volume
2:Statistical Measurements and Statistics. ESRI Press, 2005.

[10] D. Rotem. Spatial Join Indices. In Proceedings of the
Seventh International Conference on Data Engineering,
April 8-12, 1991, Kobe Japan, pages 500-509. IEEE
Computer Society, 1991.

[11] H. Samet. The quadtree and related hierarchical data
structures. ACM Comput. Surv., 16(2): 187-260, 1984.

[12] T.K. Sellis, N. Roussopoulos and C.Faloutsos. The R+-Tree:
A dynamic index for multi-dimensional objects. In VLDB
’87: Proceedings of the 13th International Conference on
Very large databases, pages 507-518, San Francisco, CA,
USA, 1987. Morgan Kaufman Publishers Inc.

[13] S. Shekhar and S.Chawla, editors. Spatial Databases: A
Tour. Prentice Hall, 2002.

[14] B.D. Ripley. The second-order analysis of stationary point
processes. Journal of Applied Probability 13: 255-66. 1976.

[15] S.Shekhar, C.T. Lu, S.Chawla and S.Ravada. Efficient Join-
Index- Based Spatial Join Processing: A Clustering
Approach. IEEE Trans. In Know. and Data Engineering
15(1), 2003.

[16] Oracle Spatial 11g: Advanced Spatial Data Management for
the Enterprise. Oracle Data Sheet. Feb 2005. Available
online at
http://www.oracle.com/technology/products/spatial/pdf/11g_
collateral/spatial11g_datasheet.pdf

[17] S. Shekhar and D. R. Liu, CCAM: A Connectivity-Clustered
Access Method for Networks and Network Computations,
IEEE Trans. on Knowledge and Data Engineering, Vol. 9,
No. 1, Jan. 1997

[18] M. Worboys and M. Duckham, editors. GIS: A Computing
Perspective. Second Edition. CRC, 2004.

[19] IBM Informix Spatial DataBlade Module: User's Guide.
IBM Corporation, Ver 8.20, Part No.000-9119, Aug: 2002.
Available online at
http://publib.boulder.ibm.com/epubs/pdf/9119.pdf

