
 
 

Should SDBMS Support a Join Index?:  
A Case study from CrimeStat 

Pradeep Mohan 
Department of Computer Science 

University of Minnesota 
mohan@cs.umn.edu  

 

Ronald E. Wilson 
National Institute of Justice  

Washington D.C 
Ronald.Wilson@usdoj.gov  

Shashi Shekhar 
Department of Computer Science 

University of Minnesota 
shekhar@cs.umn.edu  

 

Betsy George 
Department of Computer Science 

University of Minnesota 
bgeorge@cs.umn.edu  

Ned Levine 
Ned Levine and Associates 

Houston, TX 
ned@nedlevine.com   

 

Mete Celik 
Department of Computer Science 

University of Minnesota 
mcelik@cs.umn.edu  

 
ABSTRACT 

Given a spatial crime data warehouse, that is updated 
infrequently and a set of operations O as well as constraints of 
storage and update overheads, the index type selection problem is 
to find a set of index types that can reduce the I/O cost of the set 
of operations. The index type selection problem is important to 
improve user experience and system resource utilization in crucial 
spatial statistics application domains such as mapping and 
analysis for public safety, public health, ecology, and 
transportation. This is because the response time of frequent 
queries based on the set of operations can be improved 
significantly by an effective choice of  index types. Many spatial 
statistical queries in these application domains make use of a 
spatial neighborhood matrix, known as W in spatial statistics, 
which can be thought of as a spatial self-join in spatial database 
terminology. Currently supported index types such as B-Tree and 
R-Tree families do not adequately support spatial statistical 
analysis because they require on-the-fly computation of the W-
Matrix, slowing down spatial statistical analysis. In contrast, this 
paper argues that Spatial Database Management Systems 
(SDBMS) should support a join index to materialize the W-
Matrix and eliminate on-the-fly computation of the common self-
join. A detailed case study using the popular spatial statistical 
software package for public safety, namely CrimeStat, shows that 
join indices can significantly speed up spatial analysis such as 
calculation of Ripley’s K and identification of hotspots.  

Categories and Subject Descriptors 

H.2.2[PHYSICAL DESIGN]: Access methods 

General Terms 
Design, Experimentation 
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Join Index, Spatial Statistics, W Matrix, Self-Join 

1. INTRODUCTION 
Given a spatial crime data warehouse that is updated 

infrequently and a set of operations, the spatial index type 
selection problem is to find a set of spatial index types that can 
reduce the I/O cost of the set of operations under given constraints 
of storage and update overheads. The index type selection 
problem is important to improve user experience, response time, 
and system resource utilization. For example, in tools such as 
CrimeStat[6], the response time for identification of hotspots is 2 
hours for a dataset size of 15000 crime reports. This slow 
response time occurs because CrimeStat is a main memory tool. 
Using spatial index types e.g., a join index family, may lower  the 
response time to a few minutes, thereby enhancing the user 
experience.  

 

 

 

 

 

 

 

 

 

 

This paper focuses on spatial statistical queries in the context 
of mapping and analysis for public safety. The application 
considers questions such as, "Are there spatial concentrations of 
crime that warrant increased police targeting at the community, 
city, and county levels?" to identify a set of spatially grouped 
instances defined as hotspots. For example, Figure 1 illustrates the 
identification of burglary hotspots in applications such as 
mapping and analysis of public safety. In these scenarios, law 
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Figure 1: Identification of Hotspots 



 
 

enforcement agencies normally have very limited resources such 
as officers and patrol vehicles to deploy in a concentrated manner. 
Given a large area such as a city, it would be very useful for law 
enforcement agencies to examine different possible configurations 
for distributing their limited resources to areas where there is 
increased crime activity. To perform this strategic placement, 
crime analysts and law enforcement agencies perform an 
exploratory analysis.  

Similar spatial statistical queries are important in many other 
application domains such as public health, transportation, 
ecology, consumer applications etc. For example, public health 
authorities may be interested in hotspots of diseases such as 
cancer clusters [14] in order to identify and remedy environmental 
factors such as contaminated soil or water. Transportation 
professionals may be interested in identifying and remedying 
spatial concentrations of traffic accidents by re-designing 
transportation networks via traffic calming etc. Ecologists may 
identify spatial concentrations of endangered species to promote  
their protection. Many of these queries make use of a spatial 
neighborhood matrix known as W in spatial statistics and perform 
repeated W Matrix computation for different neighborhoods. We 
call such queries W-Queries. 

Current spatial database management systems (SDBMS) 
provide a rich set of operations and spatial index structures such 
as B-Tree and R-Tree index families that can enhance the 
efficiency of processing queries in various applications [1, 3, 4, 
10, 11, 12, 17]. However, these SDBMS must perform repeated 
on-the-fly computation of the W-Matrix and are limited in their 
ability to support W-Query operations. 

This paper argues that SDBMS should support a self-join 
index. The paper aims to establish the utility of the join index to 
process W-Queries efficiently by evaluating the idea of a self-join 
index.  

Related Work: Research related to the index type selection 
problem can be classified into two categories: (1) spatial indices 
that make use of on-the-fly join computation strategies by 
computing joins as a part of the query evaluation process, (2) 
spatial indices used for direct(lookup) join computation that 
compute joins by performing a sequence of lookups.  

On-the-fly join computation techniques that are based on 
spatial indices, namely the R-Tree and its variants, are suitable for 
computing the spatial join for a single neighborhood relationship 
[1, 3, 4, 5, 6, 7, 8, 10, 11, 17, 18, 19]. However, W-Queries are 
exploratory in nature and require repeated self-join computation, 
making on-the-fly join computation expensive. Spatial indices 
such as R-Tree and its variants, Quad tree, Grid Files, etc., have 
been incorporated as a part of commercial SDBMS systems [7, 8, 
9, 19, 16]. IBM Informix Spatial DataBlade makes use of the R 
Tree, ESRI Arc SDE makes use of Grid Files, Oracle spatial 
makes use of R Tree and Quad tree, and Microsoft SQL Server 
2008 spatial data support makes use of multi-level Grid files. 
These commercial SDBMS tools retain the limitations of the 
corresponding spatial indices and hence do not provide support 
for W-Queries and their operations. A major issue faced by 
existing SDBMS tools to support several spatial indices is that the 
choice of a spatial index type for a given set of workloads affects 
the strategy for I/O optimization, query optimization strategies, 
concurrency control, and recovery strategies.  

Direct join computation techniques are based on spatial 
indices such as the (spatial) join index [8,13]. Join indices have 
been primarily used in the context of computing a spatial join 
between two different relations to speed up online query 
processing infrequently updated databases. However, current join 
indices are represented as bi-partite graphs [9, 14]. By contrast, 
W-Queries are primarily focused on computing several spatial 
self-join operations. In self-join cases, the join index becomes a 
neighborhood graph rather than a bi-partite graph representation. 
Hence, the current representation of join indices as  bi-partite 
graphs needs re-consideration.  

Our Contributions: First, we characterize the computational 
structure of W-Queries. We consider the computation of Ripley's 
K Function, and the identification of hotspots [2,6] for modeling 
W-Queries. We propose a set of operations for handling these 
queries. We define the spatial index selection problem for 
handling the set of operations efficiently. We propose two 
variants of the self-join index namely: (a) the Self-join Edge List 
Index (SJELI) and (b) the Self-join Adjacency List Index 
(SJALI). We also propose algorithms for processing W-Queries. 
We evaluate the I/O efficiency of the proposed variants of the 
self-join index using algebraic cost models for the operations. The 
cost model and the experimental results establish the utility of the 
self-join indices. Experimental results using real crime datasets 
indicate that the self-join indices decrease the user response time 
of W-Queries by a factor 40 compared to a single threaded 
version of CrimeStat and outperform an R-Tree based Tree 
Matching self-join algorithm. Based on these findings we believe 
that  existing SDBMS should adopt the self-join indices to support 
spatial statistical queries such as W-Queries.  

Scope: This paper primarily focuses on the selection of a suitable 
index type for a given set of operations. The join indices are 
materialized for the study area,   a primary requirement in most 
spatial statistical analysis applications. Our propositions are 
mainly focused on multiple spatial neighborhood analysis queries 
within a particular study area. The aim is to reduce the response 
time of the proposed set of operations for W-Queries in a spatial 
crime data warehouse setting. We understand that adding new 
index types in a SDBMS is a complex decision due to the impact 
on issues such as concurrency control, recovery, and evaluation of 
storage costs. These issues are beyond the current scope of the 
paper. 

Outline: The rest of the paper is organized as follows. Section 2 
presents the basic concepts and the spatial index type selection 
problem. Section 3 describes the proposed self-join index 
variations and design decisions. In Section 4, we propose two 
algorithms for two example W-Queries, e.g., Ripley's K Function 
computation and identification of hotspots, and propose an 
algebraic cost model for the set of W-Query operations. The 
experimental evaluation is given in Section 5 and Section 6 
outlines the conclusions and future work. 

2. Basic Concepts and Problem Statement 
In this section, we present some basic concepts required to 

model W-Queries. We model W-Queries by identifying two 
example queries, namely the computation of the Ripley K-
Function and the identification of hotspots. We propose a set of 
W-Query operations based on the example queries and 
characterize their computational structure.  



 
 

 
 

 
In spatial statistics, the W-Matrix is a matrix--based 

representation of space and a measure of the adjacency, 
proximity, distance or level of spatial interaction between spatial 
instances [3]. Given a uniform spatial framework and a set of 
spatial instances, W-Queries re-compute the W-Matrix for 
different neighborhood relations. 

For example: Figure 2a and 2b represent the spatial 
neighborhood graph for a spatial dataset. Figure 2a corresponds to 
a neighborhood relation R1, and Figure 2b corresponds to a 
neighborhood relation R2. The corresponding W- Matrices for the 
neighborhood graphs is illustrated in Figure 2c and 2d 
respectively. Spatial instances are represented by N1, N2…,N7 in 
a uniform spatial framework. In the W-Matrix, a 1 denotes  that 
the two spatial instances satisfy the neighborhood relation and a 0 
denotes  that the two spatial instances do not satisfy the 
neighborhood relation.  

Definition 2.1 Given two spatial instances Si, and Sj , where i ≠ j, 
in a spatial dataset SD a neighborhood relation R(Si, Sj) can be 
defined as a measure of spatial interaction, distance or 
adjacency. 
For example, In Figure 2, R1 and R2 are two different spatial 
neighborhood relations.  

Definition 2.2 Given a spatial framework S, the W-Matrix is 
defined as a set of values that quantify the spatial interaction, 
distance or adjacency. These values can be binary or real 
depending on the measure of spatial interaction used. Formally, 
the W-Matrix can be defined as follows[13]; 
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Definition 2.3 Given a spatial instance Si , the no_of_instances(Si 
, R) of instance Si is the number of spatial instances Sj є SD , i≠j, 
that  satisfy the neighbor relation R.  
For example, in Figure 2, R1, R2 are two different spatial 
neighborhood relationships whose no_of_instances(N1,R1) = 3 
and  no_of_instances(N2,R2) = 4 

Definition 2.4 Given a spatial instance Si , the average edge 
weight (AEW) (or average weight) of a spatial instance is the sum 
of the values of R(Si , Sj ) divided by the Frequency(Si ,R) where Sj 
є SD  and  i≠j, that have a valid neighbor relation R. The term 
average edge weight is relevant only if the neighbor relation 
represents a value of distance or similarity.  

 
2.1 Two Simple W Queries   

To model W-Queries, we consider two spatial statistical 
queries that have been  applied to compute statistics in 
CrimeStat[6].  

Query I:  Is data spatially clustered ?. 
Query I relates to the calculation of a well-known statistical 

measure called  Ripley's K function [2, 14]. This measure 
calculates the cumulative number of spatial instances that are 
within a search radius of each spatial instance in the dataset. This 
cumulative count is computed for different neighborhood radii. 
Figure 3(a) illustrates the method of computing  Ripley’s K 
Function.  

In the figure, dark circles around the spatial instances N1, 
N2.., and N7 represent neighborhood relationship R1, and dashed 
circles around the spatial instances represent neighborhood 
relationship R2. The Ripley K Function method computes the 
number of spatial instances around a particular spatial instance for 
a particular neighbor relation R2 and reports the cumulative sum 
of these frequencies over all spatial instances. The process is 
repeated after  the neighbor relation is changed to R1 and so on 
until a significant number of levels are completed. The number of 
neighborhood relationships is of the order of 100 in spatial 
statistics tools such as CrimeStat [6]. 

Query II: Are there concentrations of crime that warrant 
increased police targeting at the community, city, and county 
level? 

Query II relates to the identification of a spatially grouped 
set of instances defined as hotspots. Figure 3(b) illustrates 
hotspots that can be extracted from the spatial dataset for multiple 
neighborhood definitions. N1, N2…and N7 are the spatial 
instances. In the figure, dark ellipses refer to hotspots that are 
identified for a neighborhood R1 and the dashed ellipse refers to 
hotspots that are identified for a neighborhood R2. 

The computational process begins with the computation of 
the W-Matrix for an initial neighborhood relation R and the 
selection of a set of representative points called seeds. Seeds are 
defined as spatial instances which have a minimal edge weight 
compared to their neighbor spatial instances. For example, in 
Figure 3(b), N2, N5, and N6 are the seed points since they have 
minimum average edge weights? for the neighbor relation R1. 
The hotspot identification process always maintains a list of 
potential seeds that are updated whenever a new hotspot is 
identified. The key challenge in the process is to identify non-
overlapping hotspots so that spatial instances are not re-
considered in subsequent hotspots.  
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Figure 2: Sample dataset and the W-Matrix for different relations. (a) 
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Figure 3: Computational structure of W-Queries. (a) Ripley's K (b) Hotspots 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7654321
01111101
01101012
10100113
11100014
01011115
10110116
01011007

NNNNNNN
N
N
N
N
N
N
N

(c )

(b )(a )

(d )
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7654321
00101101
01101012
00000113
01100004
01010115
10110106
01000007

NNNNNNN
N
N
N
N
N
N
N

N 3

N 7
N 6

N 2

N 1

N 5

N 4

N 3

N 7
N 6

N 2

N 1

N 5

N 4



 
 

 

 

2.2 Case Study: W Queries from CrimeStat 
      Spatial statistical queries that can be classified as W-Queries 
and that mainly involve repeated computation of neighborhood 
relationships are drawn from crime analysis tools such as 
CrimeStat [6].   
     Table 1 lists some of these queries. CrimeStat has several 
spatial autocorrelation routines including Moran’s “I”, Geary’s 
“C” and LISA.  These are global level statistics that determine if 
there is clustering or dispersion within a dataset across a study 
area.  They are used as a guide to  conduct local level hotspot 
analysis whereby if the results indicate there is no clustering or 
dispersion, then any hotspots found with local level techniques 
will likely be false positives. These spatial statistical measures  
can also be modeled as W-Queries. 

2.3 Operations for W-Queries 
       W-Queries can be modeled as a set of operations that can be 
used to identify a suitable spatial index type to process them 
efficiently. Figure 4 illustrates the effect of the set of operations 
on the example dataset illustrated by Figure 1. Since the spatial 
dataset is modeled as a neighborhood graph under a neighborhood 
relation, we make use of terminology used in the spatial network 
database literature such as predecessor and successor [17]. We 
make use of node coloring to distinguish a predecessor from a 
successor as the operations are applied on a neighborhood graph.  

get-neighbors-in-relationship(Si,R): Identify the neighbors of 
a spatial instance Si. 

Given the spatial instance Si, the get-neighbors-in-relationship() 
operation colors the spatial instance Si and gives all the neighbors 
that satisfy the relationship R the same color as  Si.  

For example: Figure 4 (a) shows the effect of the get-neighbors-
in-relationship(Si,R) on the spatial instance N2 where the 
operation get-neighbors-in-relationship(N2,R) results in the 
coloring of the instances N2, N3,N5 and N6.  

get-successors (Si): Retrieve the successors of Si. 

The successor of a spatial instance Si is defined as a set of spatial 
instances that satisfy the neighbor relation R with Si and have the 
same color. For example: Figure 4 (b) shows the effect of the get-
successor(Si) operation on the spatial instance N2, where the 
instances N1, N3, N5, and N6 are reported as successors since 
they have the same color as  N3.  

get-successor (Si): Retrieve the farthest unreported successors 
of Si. 

This operation returns the spatial instance which is the successor 
of Si and has the maximum value of the neighbor relation R with 
Si. We call this the "farthest successor first " strategy. 

For example: Figure 4(c) shows the effect of the get-successor(Si) 
operation on the spatial instance N2, where the instances N1, N3, 
N5, and N6 are reported as successors since they have the same 
color as that of N3.  

get-predecessors (Si): Retrieve the predecessors of Si. 

Retrieves the spatial instances that have a color different from that 
of spatial instance Si . This operation is executed normally when 
the degree of spatial instances requires updating. 

For example: Figure 4 (f), shows the result of get-predecessors(Si) 
on the spatial instance N2. The operation reports instances N5 and 
N6 as the results.  

get-predecessor-of-successor (Si): Retrieve the predecessors of 
the successor of Si 

This operation returns the nearest uncolored spatial instance to the 
successor of Si. A predecessor is a spatial instance Sj that does not 
have the same color as spatial instance  Si.  

For example: Figure 4(d) shows the result get-predecessor-of-
successor(Si) applied two times on the spatial instance N2. The 
operation reports instances N4 and N7 as the results. 

get-predecessors-of-successor (Si):  Retrieve the predecessors 
of the successors of Si.  

This operation retrieves the predecessors of the successor of a 
spatial instance Si. This operation is important to update the 
average edge weight of neighboring spatial instances of the 
neighbors of Si. 

For example: Figure 4(g) shows  the result of this operation on the 
spatial instance N2,where the first successor of N2 is N1 and its 
first predecessor is N5 gets reported. 

update-successors (Si, <successors>): Un-colors all the 
successors of Si 

Checks whether the spatial instance Si is colored; if it is colored 
then it un-colors the spatial instance. <successors> represents a 
list of successors to be updated. 

Statistic W(SD,R) Consecutive  
W Subsets 

Frequency 
Based 

Average Edge  
Weight Based 

Join Computation:  
On the Fly 

Join Computation: 
Look up 

Ripley's K Function Yes Yes Yes NO NO Yes 

Nearest Neighbor Statistic Yes Yes Yes NO NO Yes 

Hotspots Yes Yes Yes Yes NO Yes 

Moran’s I NO NO NO NO Yes Yes 

Geary’s C NO NO NO NO Yes Yes 

Local Moran (LISA) Yes NO NO NO NO Yes 

Table 1: W-Queries from CrimeStat[6] 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example: Figure 4 (e) shows the result of update-
successors(Si) on the spatial instances N5 and N6. 

update-average edge weight (Sj): Update the average edge 
weight of a spatial instance. 

This operation updates (reduces) the average edge weight of a 
given spatial instance Si.  

For example: This operation is applied on the instances N5 and 
N6, which are shown in Figure 4(f,g). N5 is updated two times in 
this example. 

2.4 Problem Statement 
      This section defines the spatial index type selection problem 
given a set of operations that are relevant to W-Queries.  
Given: 

• A spatial crime data warehouse 

• A set of operations O 

Find: 

• A suitable secondary memory index structure type. 

Objective: 

• To minimize the I/O cost of the set of operations O. 

Constraints: 

• Spatial datasets are updated infrequently.  

• Concurrency control and recovery considerations are 
addressed separately. 

• There are no storage overheads. 

• User response time is minimized. 

Example: To compute a W-Query such as the Ripley K Function, 
given a spatial dataset and a set of operations, namely get-
neighbors-in-relationship() and get-successors(). The objective of 
the above problem is to find a suitable spatial index type that 

minimizes the I/O cost of the operations get-neighbors-in-
relationship(), get-successors() and the user response time of the 
W-Query. Different W-Queries may have different workloads 
which are provided as an input to the query. For example, 
Ripley's K has parameters such as maximum neighborhood size 
and number of spatial neighborhoods. 

3. Self-Join Index and Its Variants 
In this section, we formally define a self-join index (SJI) and 

propose two variants, namely the Self-Join edge list index 
(SJELI) and the Self-join adjacency list index (SJALI). We 
formally define the self-join index as: 
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where SD is the spatial dataset, RS  is a set of  neighborhood 
relationships that are defined for a spatial framework S.  
For example: From Figure 5, RS = {R1,R2}. R(Si ,Sj ) is either R1 
or R2. 

3.1 Representations of the SJI 
       Traditionally, the join index has been represented as a bi-
partite graph. Since W-Queries repeatedly compute self-joins, the 
modeling of the self-join index as a bi-partite graph needs to be 
modified to that of an undirected neighborhood graph, G=(SD, E). 
The neighborhood graph G consists of a set of spatial instances SD 
and an edge set E. Each element SiєSD is a spatial location in a 
uniform spatial framework S. The set of edges E is a subset of the 
cross product, DD SS × . Each element (Si, Sj ) in E is an edge 
that joins instances Si, and Sj, where i≠j. Also each edge has a 
weight which is the level of spatial interaction, distance or 
adjacency. 

 

Figure 4 Effect of W-Query operations on sample dataset. (a)get-neighbors-in-relationship(N2,R1). (b) get-
successors(N2). (c) get-successor(N2) (d)get-predecessor-of-successor(N2) applied two times. (e) update-
successors(N2). (f) get-predecessors(N2).(g) get-predecessors-of-successor(N2). (h) get-predecessor(N2). 
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This neighborhood graph can be represented in two different 
ways, namely, the edge list and the adjacency list. Figure 5(a) and 
5(b) are the neighborhood graphs for the relations R1 and R2 
respectively. We present the design of the two representations and 
evaluate the effect of the operations on the two variants.  

3.1.1 Self – Join Index: Edge List Representation (SJELI) 
        The edge list representation of the self-join index is 
illustrated in Figure 5(c). In this representation, the join index is 
ordered by column 1 and within column 1 by the value of the 
relation R(Si,Sj). This representation does not provide any 
information on the successors or the predecessors of a spatial 
instance Si. This is clearly evident from its representation. A clear 
challenge with this representation is to determine an optimal 
partitioning of the SJELI to minimize the I/O costs of the set of 
operations.  

3.1.2 Self – Join Index: Adjacency List Representation(SJALI) 
          The adjacency list representation of the self-join index is 
illustrated in Figure 5(d).The adjacency list representation has 
clear advantages compared to that of the edge list representation. 
First, the adjacency list representation maintains a list of 
successors and predecessors that are critical for processing W-
Queries. Second, the coloring scheme used by the set of 
operations can easily exploit the adjacency list representation to 
retrieve the successors or predecessors with lesser I/O. Also, 
processing updates on the adjacency list is easier due to the same 
reasons. 

3.1.3 Design Issues 
          We make use of the connectivity clustering heuristic [17] to 
cluster the spatial instances of the SJALI and SJELI. CCAM 
(Clustered Connectivity Access Method) [17] makes use of 

separate lists for successors and predecessors and does not exploit 
the concept of a spatial neighborhood. The self-join indices, 
SJALI and SJELI are primarily neighborhood graphs that are 
represented as adjacency lists and edge lists.  

We apply the connectivity clustering heuristic for the two 
neighborhood graphs to store them into disk pages. In the design 
of the SJALI, we  maintain only one list of adjacent neighbors of 
a particular spatial instance. 

The proposed set of W-Query operations, for example, get-
neighbors-in-relationship(Si,R), makes use of a coloring heuristic 
to retrieve the successors and the predecessors of a particular 
spatial instance. To allocate these spatial instances to disk 
pages,we make use of the same connectivity clustering heuristic 
on the neighborhood graph. For example, in Figure 4(d), a typical 
page allocation would involve storing N1, N2, and N3 in the same 
page; N4,N5, and N6 in another page; and N7 in a separate page. 
This allocation scheme changes with the maximum size of a page 
and the value of the Connectivity Residue Ratio (CRR) [17]. CRR 
is defined as the probability that two neighboring spatial instances 
are present in the same disk page. 
      Utilizing the same heuristic on the SJELI involves storing the 
edge lists of spatial instances in the same disk page such that the 
number of cut edges is minimized. This allocates the edge lists of 
spatial instances to pages where each edge of the spatial instance 
corresponds to a page entry. In some cases for large neighborhood 
sizes, it is possible that the edge list of one spatial instance itself 
may exceed one single page.  
For example, in Figure 5(c), a typical page allocation would 
involve allocating the edge lists of N1, N2, and N3 to the same 
page, edge lists of N4,N5, and N6 to another page, and N7 to a 
separate page. 

Figure 5: Self-join index representations.(a). Neighborhood graph for relation R1.(b). Neighborhood graph for 
relation R2.(c) Self-join edge list index (SJELI).(d). Self-join adjacency list index.(SJALI) 



 
 

The key trade-off in the two different representations is in 
the value of the connectivity residue ratio (CRR) they yield. . The 
SJELI would yield a lower value of CRR for small page sizes, 
thus  resulting in larger I/O costs. SJELI would also incur more 
I/O costs for larger neighborhood sizes than the other 
representation. This clearly indicates that the value of the CRR in 
the case of both the SJELI and the SJALI depends on the value of 
the neighborhood relation R. An in-depth evaluation of the 
variation in CRR for the two self-join indices is beyond the scope 
of this paper. 

4. W-Query Processing Algorithms 
In this section, we propose two query processing algorithms 

using the set of operations get-neighbors-in-relationship(), get-
successors(), get-predecessors(), get-successor(), get-
predecessor(), get-predecessor-of-successor(), get-predecessors-
of-successor(), update-average-edge-weight(), and update-
successors(). These operations are used to design the algorithms 
for  W-Queries, namely Ripley's K- Function computation and 
identification of hotspots.  

4.1 Ripley's K Function Computation 
       The Ripley K Function computation involves the use of two 
operations, get-neighbors-in-relationship(Si,R) and get-
successors(Si).  Algorithm 1 lists the computational process for 
the Ripley K Function. The trace of the algorithm is listed in 
Table 2.  

4.2 Identification of Hot Spots 
The identification of hotspots involves the use of the 

operations get-neighbors-in-relationship(Si,R), get-
successors(Si,R), get-successor(Si), update-successors(Si), get-
predecessors(Si), and update-average-edge-weight(Si). Algorithm 
2, Hotspot_JI lists the computational process for the identification 
of hotspots. 

 
The trace of the Hotspot_JI Algorithm is listed in Table 3. 

The trace clearly shows that the number of hotspots computed 
decreases as the size of the neighborhood increases. Also, the 
effect of the set of operations is listed in the trace.  
 

Neighbor
Relation

get-neighbors-in-
relationship(Si, R) 

get-successors(Si) Frequency 

R2 N2:[N3,N1,N5,N6] 

N1:[N2,N3,N5,N4,N6] 

N3:[ N2,N1,N5,N7] 

N4:[N5,N6,N7,N1] 

N5:[N4,N6,N2,N1,N3 ] 

N6:[N7,N5,N4,N1] 

N7:[ N6,N4,N3] 

[N3,N1,N5,N6] 

[N2,N3,N5,N4,N6] 

[ N2,N1,N5,N7] 

[N5,N6,N7,N1] 

[N4,N6,N2,N1,N3 ]

[N7,N5,N4,N1] 

[ N6,N4,N3] 

4 

5 

4 

4 

5 

4 

3 

Total = 28 

R1 N2:[N3,N1,N5,N6] 

N1:[N2,N3,N5,N6] 

N3:[ N2,N1] 

N4:[N5,N6] 

N5:[ N4,N6,N2,N1] 

N6:[N7,N5,N2 ] 

N7:[N6 ] 

[N3,N1,N5,N6] 

[N2,N3,N5,N6] 

[ N2,N1] 

[N5,N6] 

[ N4,N6,N2,N1] 

[N7,N5,N2 ] 

[N6 ] 

4 

4 

2 

2 

4 

3 

1 

Total = 20 

Algorithm 1: CalcRipleyK: Computation process for computing  
Ripley’s K Function 

Inputs: 

• Spatial sataset SD, Query: Is data spatially clustered?, 

• Total number of levels, Study Area 
Output: 

• K – Function: Measure of spatial randomness. 
Procedure: CalcRipleyK 

1. do 

2.   begin 

3.      for every spatial instance Si in SD  

4.           get-neighbors-in-relationship(Si,R[i]) 

5.           F[i] := F[i]+size(get-successors(Si,R[i])) 

6.           update-successors(Si) 

7.      endfor 

8.      K [i] :=   calculate_ripley_k from F[i] 

9.       i:= i+1 

10.      R [i]  :=  decrease_neighborhood(R[i-1]) 

11.   end 

12. While(i<= Total Number of Levels)  

Algorithm 2: Hotspot_JI: Computation process for extracting 
hotspots from a spatial dataset. 

Inputs: 
Spatial Dataset SD, Query: Are there concentrations of crime that 
warrant increased police targeting at the block ,city and county 
level? 
HotspotSizeThreshold, Set of Neighbor Relations 
Output: Set of hotspots corresponding to each neighbor relation 
Procedure: Hotspot_JI 

1.  While ( Size(HotspotQueue >= HotspotSizeThreshold ) 
2.    begin 
3.   while( Terminate when there are no more seeds) 
4.          Si := Retrieve New Seed 
5.           get-neighbors-in-relationship(Si,R) 
6.           Successor_List:= get-successors(Si) 
7.           while(R[i](predecessor-of-successor(Si))<R[i](get-successor(Si)) 
8.                     upd_succ_list.Enque( Successor_List.Deque()) 
9.           endwhile 
10.           update-successors(Si,upd_succ_list)     
11.           HotspotQueue:= Successors_List 
12.           while(Successor_List!=NULL) 
13.                   p:=get-predecessor(Successor_List.Deque()) 
14.                    update-average-edge-weight(p) 
15.           endwhile         
16. i := i+1 
17. R[i] := increase_neighborhood R[i-1] 
18. end 

 

Table 2: Trace of CalcRipleyK Algorithm 



 
 

 

 
 
 
 
 
 
 

4.3 Algebraic Cost Model 
       In this section, we provide algebraic cost models for the I/O 
costs of W-Query operations. We make use of the CRR to 
measure the worst case I/O costs of the operations. Table 4 lists 
the symbols used to develop the cost formulas. 
 

        For both self-join index variants, let the costs of retrieving 
one spatial instance be Z. The value of Z is equal to 1, which is 
the cost of a simple look-up from the join indices. As described 
earlier, the CRR of SJELI is expected to be lower as compared to 
SJALI due to the presence of a large number of cut edges on a 
single page. Hence, the I/O costs of the W-Query operations are 
expected to be greater for  SJELI. 
        The get-neighbors-in-relationship(Si,R) operation retrieves 
all the instances that satisfy the neighborhood relationship R with 
Si. The cost of one get-neighbors-in-relationship operation equals 
the product of the cost of retrieving the neighbors of Si multiplied 
by the probability that the neighbors are not in the same disk 
page. The get-successors(Si.) operation retrieves all the successors 
of Si. The cost of one get-successors() operation involves the cost 
of retrieving all the successors and the probability that the 
successors are not in the same page as Si. 

The get-predecessors(Si) operation retrieves all the 
predecessors of Si. The cost of one get-predecessors() operation 
involves the cost of retrieving all the predecessors of Si and the 
probability that they are not in the same page as Si. The cost of 
one get-successor(Si) operation is the probability that the 

successor of Si is not in the same page as Si. The cost of one get-
predecessor(Si) operation is also the same.  

The cost of one get-predecessors-of-successor(Si) operation 
involves the cost of extracting one successor and then the cost of 
extracting the predecessors of that successor, accounting for the 
probability that they are not in the same disk page. The cost of 
one update-successors(Si) operation is the cost of un-coloring the 
successors of Si which is the cost of retrieving the successors 
multiplied the probability that they are not in the same page. The 
cost of one update-average-weight(Si) operation is the cost of 
retrieving Si and also moving Si to an appropriate secondary 
memory bucket which maintains potential seeds for handling W-
Queries such as identification of hotspots. These costs are 
summarized in Table 5. 

 
 

Operation Data Page Accesses 

get-neighbors-in-
relationship(Si,R) 

{|SR|/(|SD|-1)} |SD|  Z  (1-CRR)  
 = ρ  Z  |SD|  (1-CRR) 

get-successors(Si) |S|   Z   (1-CRR) 

get-successor(Si) Z  (1-CRR) 

get-predecessor-of-
successor(Si) 

2 Z  (1-CRR) 

update-successors(Si) Z  (1-CRR)X|S| 

get-predecessors(Si) |P|  Z  (1-CRR) 

get-predecessors-of-
successor(Si) 

(|P|  Z + 1)  (1-CRR) 

get-predecessor(Si) Z  (1-CRR) 

update-average-edge-
weight( Si) 

2 Z 

5. Experimental Evaluation 
The self-join indices were evaluated using a set of 

experiments that measure the response time of the two queries, 
namely Ripley’s K Function and hotspots. The experiments were 
implemented in C++/CLI and conducted on a Pentium Xeon 3.2 
GHz Machine with a 4GB main memory. We make use of real 
crime datasets to demonstrate the utility of the self-join index 
variants to process W-Queries and their set of operations 
efficiently. We measured the user response time for the queries. 

Neighbor 
Relation 

Seeds get-successors (Si) get-successor(Si) get-predecessor-
of-successor(Si)

update-
successors

Hotspots get-
predecessors(Si) 

update-average-
edge-weight 

R1 N2:[N3,N1,N5,N6] [N3,N1,N5,N6] N6,N5,N1,N3 N7,N4 N6,N5 N2:[N3,N1] N5,N6 N5,N6,N5 

N5:[ N4,N6,N2,N1] [N4,N6] N6,N4 N7 N6 N5:[N4] N6 N6 

N6:[N7,N5,N4,N1] [N7] N7 - - N6:[N7] - - 

R2 N5:[N4,N6,N2,N1,N3 ] [N4,N6,N2,N1,N3 ] N3,N1,N2,N6,N4 Null, Null, Null, 
N7, Null 

N6 N5:[N4,N6,N2,N1,N3] N6 N6,N6,N6,N6 

Symbol Meaning 

|S| Average number of successors of a particular node 

|P| Average number of predecessors of a particular 
node. 

CRR Connectivity residue ratio : The probability that the 
page(Si ) = page( Sj )  for edge(Si , Sj) 

|SR| is the average number of instances satisfying the 
Neighbor Relation R 

|SD | is the total size of the spatial dataset. 

Ρ selectivity of a Range Query for a neighbor relation, 
R, {|SR|/(|SD|-1)}X|SD| 

ZLI = Z Cost of accessing a single spatial instance from the 
SJALI 

ZEL= Z Cost of accessing a single spatial instance from the 
SJELI 

Table 3: Trace of Hotspot_JI Algorithm for identifying Hotspots from the sample dataset. 

Table 5. Worst case I/O cost analysis of W-Query operations. 

Table 4:  Symbols used in Cost Analysis. 



 
 

We compared our proposed self-join index-based direct join 
computation method with an R-Tree-based tree matching self-join 
computation method that computes the W-Matrix for every new 
neighborhood relationship. We performed experiments for 
different dataset sizes ranging from 1182 spatial instances to 
14852 spatial instances. We also compared the response time of 
the self-join index based algorithms with that of the ones 
implemented in a modularized single threaded version of 
CrimeStat. The experimental evaluation addresses the following 
questions: 

Question 1: What is the user response time of the Ripley K 
Function Query? 
We implemented the W-Query processing algorithm 
CalcRipleyK, proposed in Section 4, on a self-join adjacency list 
index (SJALI). We also implemented the same queries by 
repeated computation of self-joins on the R-Tree index. Figure 6 
shows the comparison of the R-Tree-based on-the-fly join 
computation method and the method using the self-join index. 
The total response time also includes the time for performing I/O. 
It can be concluded from Figure 6 that the self-join index-based 
implementation gives a better performance as compared to the R-
Tree-based on-the-fly join computation. We have omitted the 
details of the algorithm for space considerations. This algorithm 
involves  a repeated computation of only the self-join operation. 
The algorithm was executed for 100 neighborhood relationships.  

 
  

Table 6 shows the comparison with a single threaded version 
of CrimeStat where the self-join index speeds up the query 
processing time by a factor of 40 for the computation of Ripley's 
K function.  

 

Datase
t Size 

User response time for 
CrimeStat (seconds) 

User response time for 
self-join index (seconds) 

14852 4892 92.672 

4489 2688 48.763 

2290 388 19.668 

1182 69.763 9.778 

 
Question 2: What is the user response time of the hotspot 
identification query? 

We implemented the W-Query processing algorithm for 
hotspot Identification, Hotspot_JI, on the SJALI. The user 
response time of the hotspot identification process was compared 
with the Tree matching self-join algorithm using the R Tree 

Figure 7 shows the comparison of the self-join index based 
method with the R-Tree-based method. The total response time 
also includes the time taken for performing I/O. It was observed 
that the self-join index-based hotspot identification method takes 
more response time because of the seed selection process that 
incurs more updates on the average edge weight of the spatial 
instances. However, the self-join index outperforms the R-Tree- 
based on-the-fly join computation, which has processing 
overheads for removing false positives from identified hotspots.  

 
 
Table 7 shows the user response time of the self-join index based 
algorithms with a single threaded CrimeStat. As can be seen,  the 
self-join index improves the user response time by a factor of 50 
for the identification of hotspots 
 

Datase
t Size 

User Response time for 
CrimeStat (seconds) 

User response time for 
self-join index (seconds) 

14852 9000 169.982 

4489 3000 79.363 

2290 699 35.262 

1182 90 22.038 

6. Conclusions and Future Work 
        We characterized the computational structure of a class of 
spatial statistical queries called W-Queries. We defined a set of 
operations that can be used to process these queries. These 
operations have been identified as a basic set that is  required to 
process two simple W-Queries such as Ripley's K and hotspots. 
Table 1 lists other types of W-Queries that are frequently 
observed in spatial analysis and identifies the two simple W-
Queries as the most representative queries. This paper does not 
claim about the completeness of the set of operations.  
      We defined the spatial index type selection problem for 
selecting a suitable spatial index type for handling these 
operations efficiently. We proposed two variants of the self-join 
index and presented our design decisions. We proposed 
algorithms for two simple W- Queries. We presented an algebraic 

Figure 6.User-response time comparison for Ripley's K Computation 

Table 6. User response time comparison with CrimeStat 

Figure 7. User-response time comparison for hotspot identification 

Table 7. User response time comparison with CrimeStat. 



 
 

cost model for the proposed set of operations. We performed 
experimental evaluation on real crime datasets to demonstrate that 
the self-join index guarantees better user response time as 
compared to an R-Tree-based on-the-fly self-join computation 
and a repetitive W-Matrix computation-based CrimeStat. These 
observations establish the utility of the join index to process W-
Queries efficiently and we have identified a suitable 
representation of the join index to achieve this objective. This 
result validates our claim that the self-join index should be 
supported by SDBMS for processing such queries.  
      In future work, we plan to evaluate the detailed I/O costs of 
the W-Query processing algorithms for the proposed variants of 
the self-join index. We also plan to address critical issues such as 
concurrency control and recovery, optimal query processing 
strategies, and extraction of optimal page access sequences for the 
proposed self-join index variants. We also want to consider more 
spatial statistical queries such as the Local Moran Index, Moran's 
I, Geary's C, as well as other hotspot algorithms. 
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