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ABSTRACT

Data warehouses and On-Line Analytical Processing (OLAP)
provide an analysis framework supporting the decision mak-
ing process. In many application domains, complex analysis
tasks often require to take geographical information into ac-
count. Several proposals exist for integrating OLAP and
Geographic Information Systems (GIS). However, there are
very few attempts to support continuous fields, i.e., phe-
nomena that are perceived as having a value at each point
in space and/or time. Examples of such phenomena include
temperature, altitude, or land use. In this paper, we extend
a conceptual multidimensional model with continuous fields,
showing that this can be achieved by defining an appropriate
data type that encapsulates the different operations needed
for manipulating such fields. We also define a query lan-
guage based on relational calculus that allows expressing
spatial OLAP queries involving continuous fields, and use
this language to formally characterize this class of queries.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial Databases and
GIS; H.4.2 [Information Systems Applications]: Deci-
sion Support

Keywords

GIS, OLAP, Query Languages

1. INTRODUCTION
In the last few years, efforts have been carried out to inte-

grate On-Line Analytical Processing (OLAP) [13] and Geo-
graphic Information Systems (GIS). This integration is usu-
ally called SOLAP (standing for Spatial OLAP), a paradigm
aimed at being able to explore spatial data by drilling on
maps, in the same way as OLAP operates over tables and
charts. This concept was introduced by Rivest et al. [23],
who also describe the desirable features and operators a SO-
LAP system should have. SOLAP concepts and operators
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have been implemented in a commercial tool called JMAP1.
A survey on the topic can be found in [4]. Moreover, the
need for sophisticated GIS-based Decision Support Systems
(DSS), for the analysis of organizational data with respect
to geographic information, is encouraging OLAP and GIS
vendors to increasingly integrate their products.

These advances in data analysis technologies attracted the
attention of many GIS practitioners (for instance, in the en-
vironmental domain), who envisioned the possibility of per-
forming complex analysis tasks. This raises new challenges,
like the need to handle continuous fields, which describe
the distribution of physical phenomena that change contin-
uously in time and/or space. Examples of such phenomena
are temperature, pressure, or land elevation. Besides phys-
ical geography, continuous fields (from now on, fields), like
land use and population density, are used in human geogra-
phy as an aid in spatial decision making process.

Although some work has been done to support querying
fields in GIS (see Section 2), the area of spatial multidimen-
sional analysis of continuous data is still almost unexplored.
Integrating spatiotemporal continuity within multidimen-
sional structures poses numerous challenges [2]. Further, ex-
isting multidimensional structures and models dealing with
discrete data, are not adequate for the analysis of continuous
phenomena. Multidimensional models and associated query
languages are thus needed, to support continuous data.

The main contribution of this paper is a conceptual mul-
tidimensional model that supports fields. This model ex-
tends the one introduced in [16] in a natural way. We dis-
cuss the rationale underlying the choice of this model, study
the problems that a conceptual multidimensional model for
fields must address, and show how our proposal accounts for
these problems. We also show why the few existing proposals
fail in this attempt. We then characterize multidimensional
queries over fields, denoting this class of queries SOLAP-CF
(standing for SOLAP with Continuous Fields). Along the
lines of previous work [27], for this characterization we make
use of the relational calculus supporting aggregate functions,
and extend it with a field data type. We build on the type
system defined by Güting et al. [10], and extension their ab-
stract model with a field data type.We provide an in-depth
study of the operators that this data type must include to
support (and extend to the multidimensional setting) the
classic Map Algebra introduced by Tomlin [26], and its ex-
tensions proposed by Câmara et al. [5], and Cordeiro et
al. [6]. Tomlin’s work was later extended to support spa-
tiotemporal data by Mennis et al.[17], yielding the so-called

1http://www.kheopstech.com/en/jmap/solap.jsp
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cubic map algebra. We show how our type system supports
multidimensional analysis over time-varying fields, and for-
mally define the class of STOLAP-CF queries. We also pro-
vide a comprehensive set of SOLAP-CF and STOLAP-CF
queries. Finally, we discuss, also following [10], different
choices for the implementation of the abstract model, using
regular gridded digital elevation models (DEM), and trian-
gulated irregular networks (TIN) as data structures [15].

This paper is organized as follows. Section 2 provides
an overview of related work dealing with fields. Section 3
presents the conceptual model, and introduces the field data
type as well as the relational calculus we use to express mul-
tidimensional queries. Section 4 studies the extension of
SOLAP with spatial fields, while spatio-temporal fields are
covered in Section 5. In Section 6 we discuss different possi-
bilities for a discrete model that can implement our proposal.
We conclude in Section 7.

2. RELATEDWORK
Fields are well-known in physics, where, for example, mag-

netic or gravitational fields are such that every spatial loca-
tion has a value for a magnetic or gravitational force, re-
spectively. They are modeled mathematically by a function
that maps a spatial location to a force vector. In GIS, fields
model phenomena that can be represented by a function of
space and time [12]. A field is formally defined as composed
of [20]: (a) a domain � which is a continuous set; (b) a range
of values R; and (c) a mapping function f from � to R.

In a pioneering work on defining algebra for fields, Tomlin
[26] proposed a so-called map algebra, based on the notion
that a map is used to represent a continuous variable (e.g.,
temperature). There are three types of functions in Map
algebra: local, focal, and zonal. Local functions compute
a value at a certain location as a function of the value(s)
at this location in other map layer(s), allowing queries like
“Compute the total desert land in a country, where a re-
gion is classified as desert if the annual rain is less than
500 mm per year.” Focal functions compute each location’s
value as a function of existing values in the neighboring lo-
cations of existing layers (i.e., they are characterized by the
topological predicate touches), allowing aggregate queries
like “Local altitude in clay soil regions, in a map containing
soils distribution in some portion of land”. Zonal functions
(characterized by the topological predicate inside), compute
a location’s new value from one layer (containing the values
for a variable), associated to the zone (in another map) con-
taining the location. An example of a query associated to
these functions is “Total area in a province, with elevation
greater than 1000 m above sea level”. Câmara et al. [5]
and Cordeiro et al. [6] formalized and extended these func-
tions, supporting more topological predicates. We base our
proposal on this work, and on the proposal of Mennis et
al. [17], where map algebra operators are extended to query
time-varying fields. Therefore, the model and query lan-
guage we present in this paper cover those proposals, and
extend them to the multidimensional setting.

Further, Paolino et al. [20] introduced Phenomena, a vi-
sual language for querying continuous fields, based on a con-
ceptual model where users view the world as consisting of
both continuous fields and discrete objects, and are able to
manipulate them in a uniform manner.

Regarding fields and multidimensional models, the joint
contribution of the GIS and OLAP communities to this

problem has been limited. Shanmugasundaram et al. [24]
propose a data cube representation that deals with continu-
ous dimensions not needing a predefined discrete hierarchy.
They focus on using the known data density to calculate
aggregate queries without accessing the data. The represen-
tation reduces the storage requirements, but continuity is
addressed in a limited way. Ahmed et al. use interpolation
methods to estimate (continuous) values for dimension lev-
els and measures, based on existing sample data values [2].
Continuous cube cells are computed on-the-fly, producing a
continuous representation of the discrete cube. Sequels of
this proposal introduce SOLAP concepts, and a SOLAP ap-
plication supporting some form of continuous data [1]. These
proposals are based on a data model devised for OLAP, not
for spatial OLAP, which we believe does not favor compre-
hensive representation of spatial dimensions. Opposite to
this, our approach is based on a conceptual multidimensional
model designed with spatial data in mind. Thus, continuous
fields are introduced as a natural evolution of this model.

With respect to standards, the ISO standard 19123:2005
[11] defines a conceptual schema for fields, referred to as
coverages. A coverage is defined as a function from a spa-
tial, temporal, or spatiotemporal domain to an attribute
range. It associates a position within its domain to a record
of values of defined data types. Examples of coverages in-
clude rasters, triangulated irregular networks, point cover-
ages, and polygon coverages. This standard has an asso-
ciated Implementation Specification for Grid Coverages de-
fined by the Open Geospatial Consortium [18].

Several tools support fields. For example, GeoRaster2

is a feature of Oracle Spatial that allows storing, index-
ing, querying, analyzing, and delivering raster data, and its
associated metadata. GeoRaster provides specialized data
types and associated operators, as well as an object rela-
tional schema, which can be used to store and manipulate
multidimensional raster layers.

In spite of the many existing proposals, only recently
a precise definition of spatial and spatiotemporal OLAP
queries was proposed by the authors of the present paper [27].
That work defines a taxonomy of models that integrates
OLAP, spatial data, and moving data types, defining, for
each of the classes in this taxonomy, the queries that they
must support. We extend this classification to support fields,
defining two new query classes, for spatial and spatiotempo-
ral OLAP over fields: SOLAP-CF and STOLAP-CF.

3. PRELIMINARIES

3.1 The MultiDim model
In this paper we extend the MultiDim model [16] to sup-

port fields. We give next a brief review of the main features
of this model. A multidimensional schema is as a finite set
of dimensions and fact relationships. A dimension comprises
at least one hierarchy, which contains at least one level. A
hierarchy with only one level is called a basic hierarchy. Sev-
eral levels can be related to each other through a binary rela-
tionship that defines a partial order � between levels. Given
two consecutive related levels li� lj , if li � lj then li is called
child and lj is called parent. A level representing the less
detailed data for a hierarchy is called a leaf level, related to

2http://download.oracle.com/docs/html/B10827_01/
geor_intro.htm
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Figure 1: Notation of the MultiDim model.

at least one fact relationship. The latter represents an n-ary
relationship between two or more leaf levels. If these lev-
els are spatial, the relationship may also be topological and
requires a spatial predicate, e.g., intersection. These oper-
ators are indicated in the model, as we explain below. A
fact relationship may contain measures that can be spatial
or thematic. The latter are numeric and express analysis
needs in a quantified form, the former can be represented
by a geometry or field, or calculated using spatial operators,
such as distance or area.

The dimension levels contain category attributes and prop-
erty attributes. A category attribute of a parent level shows
how child members are grouped for applying aggregation
functions to measures. A category attribute in a leaf level
indicates the aggregation level of a measure in the associ-
ated fact relationship, e.g., monthly sales if a leaf level of
a time dimension is represented by a month. A property
attribute contains additional features of a level; it can be
spatial (represented by a geometry or field) or thematic (al-
phanumeric data types). The spatiality of a level depends
on whether it has at least one spatial property attribute.
Similarly, the spatiality of a hierarchy (resp. dimension)
depends on whether it has at least one spatial level (resp.
hierarchy). Additionally, a hierarchy name is derived from
the name of its leaf level and a criterion name; similarly, a
dimension name is obtained from its leaf level name.

Figure 1 presents the graphical notation for represent-
ing different elements in the multidimensional model we de-
scribed above. Further, for representing the geometry of spa-
tial levels, measures, and different kinds of spatial predicates
in the MultiDim model, we use MADS (standing for Model-
ing of Application Data with Spatio-temporal features)[21],
a spatio-temporal conceptual model that allows to define
intuitive, easy-to-understand schemas supporting a wide va-
riety of spatio-temporal features associated to any kind of
object in the data model.

Throughout the paper we use the following (simplified)
real-world example. The Agriculture Agency of a country
collects information about the crops produced at land plots.
The application has maps describing the location of land
plots in counties, as well as the political division of the coun-
try into states and counties.

Figure 2 shows the conceptual schema depicting the above
scenario using the MultiDim model explained in the previ-
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Figure 2: An example of a spatial data warehouse.

ous section. There is one fact relationship, Yield, which has
two measures: production and cropArea. The fact relation-
ship Yield is related to three dimensions: Crop, LandPlot,
and Time. Dimensions are composed of levels and hierar-
chies. For example, the LandPlot dimension is composed of
three levels, LandPlot, County, and State, related by one-
to-many parent-child relationships. For example, the three
levels in the LandPlot dimension are spatial; they have a ge-
ometry representing a region. Similarly, the attribute capital
in State, and the measure commonArea in the fact relation-
ship, are spatial as well. Finally, topological relationships
may be represented in fact relationships and in parent-child
relationships. For example, the topological relationships in
the LandPlot hierarchy indicate that a land overlaps a county
(it may be located in more than one county) while a county
is covered by its parent state.

3.2 Extending the conceptual model
To address continuous field scenarios, we extend the data
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types defined by Güting et al. [10]. We work at the abstract
model level, which simplifies the model definition, making it
independent of the implementation choice, thus making the
presentation clearer. We define a new field data type, its
corresponding operations, and use them in a relational cal-
culus supporting aggregate functions. We start with a quick
overview of the data types, and refer to this work for the
complete definition of the type system and the correspond-
ing operations. There is a set of base types: int, real, bool,
string, and an identifier type id, used to identify dimension
level members. There are also time types namely instant and
periods, the latter being a set of time intervals. Finally, there
are four spatial data types, point, points, line, and region. A
value of type point represents a point in the Euclidean plane.
A points value is a finite set of points. A line value is a finite
set of continuous curves in the plane. A region is a finite set
of disjoint parts called faces, each of which may have holes.
All the above types are called discrete types.
Field types capture the variation in space of base types.

They are obtained by applying a constructor field(·). Hence,
a value of type field(real) (e.g., representing altitude) is a
continuous function f : point → real. Field types have
associated operations that generalize those of the discrete
types. This is called lifting. For example, the compari-
son predicates (e.g., >) with signature α × α → bool are
generalized by allowing any argument to be a field, as in
field(α)×field(α) → field(bool). Intuitively, the semantics of
such lifted operations is that the result is computed at each
point in space using the non-lifted operation. Formally, we
define the semantics of the field type by means of its carrier
set, i.e., a set containing the possible values for the type.

Definition 1. �Carrier set of field) Let α, with carrier set
Aα, be a type to which the moving�.) operator is applicable.
The carrier set for moving�α) is given by:

Afield(α) = {f |f : Apoint → Aα}

There are also moving types, that capture the evolution
over time of base types, spatial types, and field types. They
are obtained by applying a constructor moving(·). For exam-
ple, a value of type moving(point) (e.g., representing a vehicle
that changes its position in time) is a continuous function f :
instant → point. Similarly, a value of type moving(field(real))
defines a continuous function f : instant → (point → real). It
can be used to represent temperature, which varies on time
and space. Operations on non-temporal types are general-
ized (or lifted) to moving types. For example, a distance
function with signature moving(point) × moving(point) →
moving(real) computes the distance between two moving points
and returns a moving real, i.e., a real-valued function of time.
As in the case of field types, the semantics of lifted opera-
tions for moving types is that the result is computed at each
time instant using the non-lifted operation.

Definition 2. �Carrier set of moving�field)) Let α, with
carrier set Aα, be a type to which the field�.) operator is
applicable. The carrier set for field�α) is given by:

Amoving(field(α)) = {f |f : Ainstant → Afield(α)}

Definition 3 summarizes the discussion above, spelling out
the data types we support in this paper.

Definition 3. �Data types) Let us denote Γ a set of discrete
types, composed of a set of base types β, a set of time types
τ , and a set of spatial types ξ. The set of field types φ is
obtained by applying the field constructor to elements of β.
Further, the set of moving types Θ is obtained by applying
the moving constructor to elements of β, ξ, and φ.

3.3 A relational calculus supporting aggregates
We address the issue of querying data warehouses, us-

ing a relational representation of the MultiDim conceptual
model. A dimension level is represented by a relation of
the same name, with an implicit identifier attribute denoted
id, an implicit geometry attribute (if the level is spatial),
and other explicitly indicated attributes. The id attribute
(e.g., County.id) identifies a particular member in a dimen-
sion instance. Dimension levels in hierarchies (e.g., Land-
Plot) have also an additional attribute containing the iden-
tifier of the parent level (e.g., LandPlot.county), and there is
a referential integrity constraint between such attributes and
the corresponding parent (e.g., County.id). A fact relation-
ship is represented by a relation of the same name having
an implicit id attribute, one attribute for each dimension,
and one attribute per measure. There is a referential in-
tegrity constraint between the dimension attributes in the
fact relationship (e.g., Yield.district) and the identifier of the
corresponding dimension (e.g., LandPlot.id).

In the remainder of the paper we use a query language
based on the tuple relational calculus (e.g., [8]) extended
with aggregate functions and variable definitions. We first
show that this language expresses standard SOLAP and spa-
tial OLAP queries. Then, we show that extending this cal-
culus with field types is enough to express multidimensional
queries over fields. We now introduce the language through
an example. Consider the following relations from the data
warehouse shown in Fig. 2.

County�id, geometry, name, population, area, . . . , state)
State�id, geometry, name, population, area, capital, . . .).

The following query asks the name and population of
counties in California.

{c.name� c.population | County(c) ∧ ∃s (State(s)∧
c.state = s.id ∧ s.name = ‘California’)}

Suppose that we want to compute the total population of
counties of California. A first attempt to write this query
would be:

sum({c.population | County(c) ∧ ∃s (State(s)∧
c.state = s.id ∧ s.name = ‘California’)})

Notice that however, since the relational calculus is based
on sets (i.e., collections with no duplicates), if two counties in
California happen to have the same population, they would
appear only once in the set to which the sum operator is
applied. We adopt Klug’s approach [14], where this problem
is solved by using aggregate operators that take as argument
a set of tuples (instead of a set of values) and specifying
on which column the aggregate operator must be applied.
Therefore, the above query is written as follows.

sum2({c.id� c.population | County(c) ∧ ∃s (State(s)∧
c.state = s.id ∧ s.name = ‘California’)})
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In this case, the sum operator is applied to a set of pairs
�id� population� and computes the sum of the second attribute.

Finally, suppose that we want to compute the total pop-
ulation by state provided that it is greater than 100,000. In
this case we need a recursive definition of queries and vari-
ables that bind the results of inner queries to outer queries:

{s.name� totalPop | State(s) ∧ totalPop = sum2(
{c.id� c.population | County(c) ∧ c.state = s.id})∧

totalPop > 100� 000 }

Here, the outer query fixes a particular state s and the
inner query collects the population of counties for that state.
The sum of these populations is then bound to the variable
totalPop. Notice that this query corresponds to an SQL
query with the GROUP BY and HAVING clauses.

We denote Ragg the relational calculus with aggregate
functions defined above. It is easy to prove that Ragg has
the same expressive power than Klug’s calculus [14].

3.4 Expressing OLAP and SOLAP queries
In this section we characterize the classes of OLAP and

spatial OLAP (SOLAP) queries, based on the language Ragg

defined in Section 3.3. In Section 4 we characterize multidi-
mensional queries over fields. We start by showing examples
of OLAP queries.

1. For land plots located in counties of California and crops
in the cereals group give the maximum production by
month.

{l.number� c.name�m.month�maxProd | LandPlot(l)∧
Crop(c) ∧Month(m) ∧ ∃g (Group(g) ∧ c.group = g.id∧
g.name = ‘Cereal’ ∧maxProd = max1(
{y.production | Yield(y) ∧ y.landPlot = l.id∧

y.crop = c.id ∧ ∃u� ∃s� ∃t ( County(u) ∧ State(s) ∧
Time(t) ∧ l.county = u.id ∧ u.state = s.id ∧
s.name = ‘California’ ∧ y.time = t.id∧
t.month = m.id)})}

2. For each county, give the number of landplots where,
for at least one crop, the production in March 2008 was
greater than 100,000 tons.

{c.name� nbLandPlots | County(c) ∧ nbLandPlots =
count({l.id | LandPlot(l) ∧ ∃p (Crop(p) ∧
sum2({y.id� y.production | Yield(y) ∧ y.crop = p.id ∧

y.landPlot = l.id ∧ l.county = c.id ∧ ∃t (Time(t)∧
y.time = t.id ∧ t.date ≥ 1/3/2008∧
t.date ≤ 31/3/2008)}) > 100� 000)})}

Definition 4. �OLAP queries) Let us call Ragg the rela-
tional calculus with aggregate functions defined in Section
3.3. The class of OLAP queries includes all the queries ex-
pressible in Ragg.

Next, we give some examples of SOLAP queries, where
spatial features come into play. Therefore, we need the spa-
tial data types defined in Section 3.1.

3. Total area of landplots located within 10 km from Orange
county that intersect San Diego county.

sum2({l.id� l.area | LandPlot(l) ∧ ∃c1� ∃c2 (County(c1)∧
County(c2) ∧ c1.name = ‘Orange’ ∧ distance(l.geometry�
c1.geometry) < 10 ∧ c2.name = ‘San Diego’∧
intersects(c2.geometry� l.geometry))})

Class Operations

Projection to defspace, rangevalues, point, val
Domain/Range
Interaction with atpoint, atpoints, atline, atregion, at,
Domain/Range atmin, atmax, defined, takes,concave,

convex, flex
Rate of change partialder x, partialder y
Aggregation integral, area, surface, favg, fvariance,
operators fstdev
Lifting (all new operations inferred)

Table 1: Classes of operations on field types.

Note that this query does not use a fact relationship. The
function distance verifies that the geometries of the land plot
and the Orange county are less than 10 km away from each
other and the predicate intersects verifies that the land plot
intersects the San Diego county.

4. For land plots that are located in the border of the San
Diego county, compute the yield by acre for the produc-
tion of cereals in 2008.

{l.number� yield | LandPlot(l) ∧ ∃c (County(c)∧
c.name = ‘San Diego’ ∧ touches(l.geometry� c.geometry)∧
yield = sum2({y.id� y.production | Yield(y)∧

y.landplot = l.id ∧ ∃p� ∃g (Crop(p) ∧ Group(g)∧
y.crop = p.id ∧ p.group = g.id ∧ g.name = ‘Cerals’∧
∃t (Time(t) ∧ y.time = t.id ∧ t.date ≥ 1/1/2008∧
t.date ≤ 31/12/2008)})/area(l.geometry))}

Here, the outer query fixes a landplot that satisfies the
topological predicate touches and the inner query computes
the total production of cereals during 2008 for that landplot,
which is then divided by its area.

Definition 5. �SOLAP queries) Let us call Rξ
agg the lan-

guage Ragg augmented with spatial types in ξ. The class of
SOLAP queries is the class composed of all the queries that
can be expressed by Rξ

agg.

4. EXTENDING SOLAP WITH CONTINU

OUS FIELDS

4.1 The field data type and its operations
We now introduce field types in order to extend SOLAP

to support fields. A field type is a function from the spatial
domain to a base type. Field types are obtained by apply-
ing the field type constructor to a type α. In this section
we discuss nontemporal field types, temporal field types are
covered in next section. Notice that field types are partial
functions, i.e., they may be undefined for certain regions of
space. Further, a type constructor inspace yields for, a type
α, a corresponding type whose values are pairs consisting of
a point in space and a value for α.

Field types come equipped with a set of operations, which
may be grouped in several classes, shown in Table 1. We
discuss next some of these operations.

A set of operations realize the projection into the domain
and range. Operations defspace and rangevalues return, re-
spectively, the projection of a field type into its domain and
range. For values of inspace types, operations point and val
return the point and the value of the type.
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Another set of operators allow the interaction with domain
and range. Operations atpoint, atpoints, atline, and atregion
restrict the function to a given subset of the space defined
by a spatial value. Operation at restricts the function to a
point or to a point set (a range) in the range of the function.
Predicates atmin and atmax reduce the function to the points
in space when its value is minimal or maximal, respectively.
The defined predicate allows checking whether the spatial
function is defined at a subset of the space defined by a spa-
tial value. Analogously, predicate takes checks whether the
function somewhere assumed (one of) the value(s) from the
range given as the second argument. Operations concave and
convex restrict the function to the points where it is concave
or convex, respectively. Finally, operation flex restricts the
function to the points where convexity changes.
Rate of change operators compute how a field changes

across space. Functions partialder x and partialder y give,
respectively, the partial derivative of the function defining
the field with respect to the one of the axis x and y. For
example, partialder x is defined by

∂f

∂x
(x� y) = limh→0

f�x+h�y)−f�x�y)
h

.

There are three basic field aggregation operators that take
as argument a field over numeric values (int or real) defined
over a spatial extent S and return a real value. They are
defined as follows [20]:

• integral:
��

S
f(x� y) dxdy

• area:
��

S
dxdy

• surface:
��

S

�
1 + df2

dx
+ df2

dy
dxdy

From these operators, other derived operators can be defined
(prefixed with an ‘f’ (field) in order to distinguish them from
the usual aggregation operators generalized to fields, which
we discuss below).

• favg: integral/area

• fvariance:
��

S

�f�x�y)−f�vg)2

�re�
dxdy

• fstdev:
√

fvariance.

All operations on discrete types are generalized for field
types. This is called lifting (following [10]). An operation op
for discrete types is lifted to allow any of the argument types
to be replaced by the respective field type and also return
a corresponding field type. As an example, the + operator
with signature α × α → α has lifted versions where one or
both of its arguments can be field types and the result is
a field type (e.g., field(α) × α → field(α)). Intuitively, the
semantics of such lifted operations is that the result is com-
puted at each point using the non-lifted operation. Several
definitions of an operator may be applied when combining
two fields that are defined on different spatial extents. A first
solution could be that the result is defined in the intersec-
tion of both extents, and be undefined elsewhere. Another
solution could be that the result is defined on the union of
the two extents, and a default value (e.g., 0 for the addi-
tion) is used for combining over the extents that belong to
only one field. Aggregation operators are also uplifted in
the same way. For instance, an uplifted avg operator com-
bines several fields, yielding a new field where the average

is computed at each point in space. These uplifted aggrega-
tion operations correspond to Tomlin’s local functions [26].
Notice that these operators are used in particular for gran-
ularity transformations. For example, when transforming a
temperature field of granularity day to granularity month
an uplifted average could be used.

4.2 SOLAPCF queries
We now define the class of multidimensional queries over

fields, which we denote SOLAP-CF queries. We modify
our running example in Fig. 2 by adding the field dimen-
sions SoilType, SoilPHLevel, and Temperature, a field mea-
sure suitability (with values between 0 and 10)), and a mea-
sure avgTemp, as shown in Fig. 3. Non-temporal field levels
and measures are identified by the �� � pictogram, while

temporal ones are identified by the �� ���� � pictogram. For
example, the level SoilType is a field, which means that each
point in the space of interest has a value for its soil type
(like clay or limestone). Similarly, Temperature is a tempo-
ral field, which means that each point in the space of interest
has a value of temperature, and this value changes at each
time instant. Field levels have a geometry attribute, which
keeps track of the value of the field at each point in space
(and time, for temporal fields). The type of such attribute is
field(α) or moving(field(α)), depending on whether the field
is temporal or not. Here we discuss non-temporal fields,
while Section 5 is devoted to temporal fields.

Notice that in our model the field dimensions are not
connected to a fact relationship. This contrasts with tra-
ditional multidimensional models, as well as models intro-
ducing fields in spatial data warehouses (e.g., [2]). In these
approaches, the dimension instances are the possible values
of the underlying domain (probably obtained through inter-
polation). Since we consider continuous domains, there may
be an infinite number of instances, each one corresponding
to one possible value of the domain. Therefore, field di-
mensions contain only one instance, and the attributes of
the field dimension correspond to metadata describing it.
Also, the model allows the combination of spatial data rep-
resented by geometries and by fields. Thus, users can decide
to represent a spatial phenomenon using either of the two
representations depending on their specific needs. This en-
ables complex analysis scenarios, and supports, in particular
Tomlin’s zonal operators [26], as we show below.

In our example there is a field hierarchy composed of levels
SoilType and SoilGroup. This models a two-level soil classi-
fication, such as the one in World Reference Base for Soil
Resources3. Alternatively, other hierarchies for soil classi-
fication could be used, such as the USDA Soil Taxonomy
that contains 6 levels. For field data, it is usual practice
to create hierarchies to reduce the resolution of data in or-
der to speed-up display and reduce the level of detail, while
keeping the same spatial extent. Different techniques can be
applied for these task, like spatial aggregation of fields [3],
clustering data based on approximation methods [22], and
map layer generation operation [9], among other ones.
Field measures, represented by a field data type, are also

supported. An example is the measure suitability in the fact
relationship Yield, which could be precomputed in the pre-
processing stage as a function of many factors (for exam-
ple, soil type, soil pH level, and temperature). In addition,

3http://www.fao.org/ag/agl/agll/wrb/default.stm
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Figure 3: Field dimensions and field measures added to the example in Fig. 2.

traditional numerical measures can be calculated from field
data. An example is measure avgTemp, which keeps the
average temperature (a real value) of each instance of the
fact relationship, and which is computed from the dimen-
sions Temperature, LandPlot, and Time. An issue that arises
with field measures is their aggregation along hierarchies.
It is well-known that aggregation functions for numerical
measures can be distributive (e.g., sum), algebraic (e.g., av-
erage), or holistic (e.g., median). This classification also
applies for spatial aggregation functions manipulating ge-
ometries [25]. For example, spatial distributive aggregates
include convex hull and geometric intersection, spatial al-
gebraic functions include center of n geometric points and
center of gravity, and spatial holistic functions include equi-
partition and nearest-neighbor index. Since field measures
are defined over some spatial extent, similar aggregation
functions can be used.

We characterize next the class of SOLAP-CF queries. We
start by giving some examples of these queries.

5. Total area of clay soil in the state of Utah.

{area(intersection(s.geometry� defspace(at(t.geometry�
‘Clay’)))) | State(s) ∧ SoilType(t) ∧ s.name = ‘Utah’}

In this query, the function at restricts the SoilType field
to the points in space that have the value ‘Clay’, and func-
tion defspace yields the region containing such points. This
region is then intersected with the region of the Utah state
and the area operator is applied to the intersection.

6. For land plots having at least 30� of their surface of
clay soil, give the average suitability value for wheat on
February 1st, 2009.

{l.number� favg(y.suitability) | LandPlot(l) ∧ ∃s� ∃y�
∃t� ∃c (SoilType(s) ∧ Yield(y) ∧ Time(t) ∧ Crop(c)∧
y.landplot = l.id ∧ y.time = t.id ∧ t.date = 1/2/2009∧
c.name = ‘Wheat’ ∧ (area(defspace(atregion(
at(s.geometry� ‘Clay’)� l.geometry)))/

area(l.geometry)) ≥ 0.3)}

Here, the soil type field is restricted to the value ‘Clay’ by
means of the function at, and then is restricted to the geom-
etry of the land plot with function atregion. The operator
defspace obtains the geometry of the restricted field, the area
of this geometry is computed, and this is finally divided by
the total area of the land plot. The favg function is applied
to compute the overall average suitability as a real value.

7. Give parcels that, having a minimum pH value of less than
4, had average suitability greater than 8 for any kind of
crop during March 2009.

Class Operations

Projection to deftime, rangevalues, inst, val,
Domain/Range locations, trajectory, routes, traversed
Interaction with atinstant, atperiods, initial, final, present,
Domain/Range at, atmin, atmax, passes
Rate of change derivative, speed, turn, velocity
Lifting (all new operations inferred)

Table 2: Classes of operations on moving types.

{l.number | LandPlot(l) ∧ ∃s (SoilPHLevel(s) ∧ element(
rangevalues(atmin(atregion(s.geometry� l.geometry)))) <
4 ∧ favg({avg(y.suitability) | Yield(y) ∧ ∃t� ∃m (Time(t)∧

Month(m) ∧ y.landPlot = l.id ∧ y.time = t.id∧
t.month = m.id ∧m.month ≤ 3/2009}) > 8)}

Here, function atregion restricts the pH field to the geom-
etry of the landplot; function atmin further restricts it to the
points of minimum value. Function rangevalues obtains the
set of values of the field (a singleton), and element is used
to get the value from the singleton. In the inner query, the
set of suitability fields of the land plot during March 2009
are first aggregated into a single field with function avg and
then favg is used to obtain the overall average value.

Definition 6 formalizes the class of SOLAP-CF queries.

Definition 6. �SOLAP-CF queries) Let us call Rξφ
agg the

language Ragg augmented with spatial types ξ and field
types φ. The class of SOLAP-CF queries, is the class com-
posed of all the queries that can be expressed by Rξφ

agg.

5. SPATIOTEMPORALOLAPWITHCON

TINUOUS FIELDS
Temporal fields model phenomena whose value change

along time and space. Typical examples are temperature
or precipitation. We model temporal fields using the mov-
ing types defined by Güting et al. [10], introduced in Section
3. Moving types have a set of associated operations, shown
in Table 2. In addition, a type constructor intime yields,
which, for a type α, a corresponding type whose values are
pairs consisting of a time instant and a value for α.

A set of operations realize the projection into the domain
and range. Operations deftime and rangevalues return, re-
spectively, the projection of a moving type into its domain
and range. For values of intime types, the two operations
inst and val return the instant and the value of the type.
Several operations project moving objects into the plane.
The projection of a moving point into the plane may consist
of points and lines, returned by the operations locations and
trajectory, respectively. The projection of a moving line into
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the plane may consist of lines and regions, returned by the
operations routes and traversed. Finally, the projection of a
moving region into the plane consists in a region, which is
also returned by the operation traversed.

Another set of operators allow the interaction with domain
and range. Operations atinstant and atperiods restrict the
function to a given time or set of time intervals. Operations
initial and final return, respectively, the (instant,value) pairs
for the first and last instant of the definition time. Operation
at restricts the function to a point or to a point set (a range)
in the range of the function. Predicates atmin and atmax
reduce the function to the times when it was minimal or
maximal, respectively. The present predicate checks whether
the temporal function is defined at an instant of time, or is
ever defined during a given set of intervals. Analogously,
predicate passes checks whether the function ever assumed
one of the values from the range given as second argument.

The derivative operator takes as argument a moving real
and yields as result a moving real. Four operations compute
the rate of change for points: speed yields the usual concept
of speed of a moving point at all times as a moving real;
mdirection returns the direction of the movement, i.e., the
angle between the x-axis and a tangent to the trajectory of
the moving point; turn yields the change of direction at all
times; and velocity returns the derivative of the movement
as a vector-based function.

Finally, as was the case for field types, all operations on
nontemporal types are generalized (or lifted) for moving
types. As an example, the ‘=’ operator has lifted versions
where one or both of its arguments can be moving types and
the result is a moving boolean. Intuitively, the semantics of
such lifted operations is that the result is computed at each
time instant using the non-lifted operation.

When fields change across time, they are denoted tem-
poral. Further, spatio-temporal OLAP (STOLAP) accounts
for spatial objects evolving over time. Moving types, defined
by moving(α) (where α is a spatial data type or a field type),
allow to define SOLAP over continuous fields (STOLAP-
CF). In order to give examples of STOLAP-CF queries, we
consider the Temperature dimension of our running example
in Fig. 3, which varies over time and space, as indicated by
the �� ���� � pictogram.

Q8. For each landplot and each month, give a field computing
the average temperature of the month at each point in
the land plot

{l.number�m.month� temp | LandPlot(l) ∧Month(m) ∧
first = min({t.date | Time(t) ∧ t.month = m.id} ∧
last = max({t.date | Time(t) ∧ t.month = m.id} ∧
temp = avg({atperiods(atregion(t.geometry� l.geometry)�

range(first� last)) | Temperature(t)})}

Variables first and last contain the first and last days of a
month, respectively. The temperature field is restricted to
an specific month with function atperiods, and to the geom-
etry of the land plot with function at. A field tempMonth is
computed for each land plot and month by applying the avg
operator. Function atregion restricts the temperature fields
to the points belonging to the geometry of the land plot.

Q9. Land plots of clay soil in the state of Utah with an average
temperature of 20 ◦C in March 2009 and with suitability
(at every point of the landplot) for a crop of wheat at
June 1st, 2009 greater than 1.4.

{l.number | LandPlot(l) ∧ ∃s� ∃t� ∃y� ∃m� ∃c (State(s) ∧
SoilType(t) ∧ Yield(y) ∧ Time(m) ∧ Crop(c) ∧
s.name = ‘Utah’ ∧ intersects(l.geometry� intersection(

s.geometry� defspace(at(t.geometry� ‘Clay’)))) ∧
favg(avg({atperiods(at(u.geometry� l.geometry)� range(

1/3/2009� 31/3/2009)) | Temperature(u)})) = 20 ∧
y.landPlot = l.id ∧ y.time = m.id ∧m.date = 1/6/2009∧
y.crop = c.id ∧ c.type = l.‘Wheat’ ∧
defspace(at(y.suitability� range(1.4� 10))) = l.geometry)}

Function intersection computes the region of clay soil in
Utah, and intersects verifies that the land plot overlaps this
region. In the inner query, the temperature field, restricted
to the geometry of the landplot and to March 2009, is ag-
gregated with the avg operator, resulting in a field to which
the field aggregation operator favg is applied to obtain the
average as a real value, which is then compared to 20. After
obtaining the instance of the fact relationship relating the
landplot, the date(June 1st 2009), and the wheat crop, the
suitability field for this instance is restricted to the points
that have a value in the range [1.4,10], the region contain-
ing those points is obtained with function defspace, and it is
verified that this region equals the geometry of the landplot,
ensuring that every point satisfies the condition.

We now formally define the class of STOLAP-CF queries.

Definition 7. �STOLAP-CF queries) Let us call RξφΘ
agg the

language Ragg augmented with spatial types ξ, field types
φ and moving spatial types Θ. The class of STOLAP-CF
queries contains all the queries expressed by RξφΘ

agg .

6. DISCRETE MODELS
In this section we study discrete models for implementing

the abstract model of Section 3.

6.1 Spatial Fields
We consider two discrete models for spatial fields. The

first one is based on a set of points defining the vertices of
a regular square grid of size δ. Each point (or vertex) has
an associated value for the field. Bilinear interpolation is
used for obtaining the value of the field at a point located
between the vertices of a grid cell. A second discrete model
is based on triangulated irregular networks (or TINs) de-
fined by a set of irregularly distributed nodes and lines that
are arranged in a network of non-overlapping triangles. The
value of the function at a point is obtained from a linear in-
terpolation from the values of the vertices of its containing
triangle. The choice of these two models is based on current
methods and tools that manipulate field (or raster) data.
Other discrete models may be designed to suit particular
applications. Note that the models and interpolation meth-
ods discussed here are included in the OpenGIS specification
for coverage geometry and functions of the OGC [19].

We begin by defining a set SPointβ whose elements de-
scribe sample 2D points with an associated value from a base
type β (i.e., an integer, real, boolean, or string value). Let
us denote Dβ the carrier set of type β.

Definition 8. �SPointβ)

SPointβ = {(x� y� z) | x� y ∈ DPoint ∧ z ∈ Dβ}

Here, DPoint is the carrier set that implements the type
Point in the discrete model. The type SPointβ allows us to
define the two alternative discrete models for spatial fields,
described next.
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Figure 4: A grid representing altitude.

Regular Grids� We first define the carrier set for type Gridδβ .

Definition 9. �The carrier set of Gridδβ)

DGridδ
β

= {P | P ⊂ SPointβ ∧ P defines the vertices of

a regular square grid of size δ in �
2}

A set of points P defines a regular square grid of size
δ in �

2 if for each pair of adjacent points pi� pj � pi �= pj �
either pi = (xi� yi)� pj = (xi ± δ� yi)� or pi = (xi� yi)� pj =
(xi� yi ± δ). Figure 4 illustrates a grid obtained using this
model to represent altitude.

The semantics of this type is defined by means of a bi-
linear interpolation, i.e., an interpolation performed over
the x and y axes. Formally, given four points P1� ..� P4 ⊂
SPointβ , such that P1 = (x1� y1� z1)� P2 = (x1 + δ� y1� z2)�
P3 = (x1� y1 + δ� z3)� P4 = (x1 + δ� y1 + δ� z4)� to obtain
the value z of a point Pi�j = (x + Δx� y + Δy� z) we first
linearly interpolate in the x-direction, yielding two points
Pi = (x1 + Δx� y1� zi)� and Pk = (x1 + Δx� y1 + δ� zk)�
such that zi = z1 ∗

δ−Δ�

δ
+ z2 ∗

Δ�

δ
. Analogously, zk =

z3 ∗
δ−Δ�

δ
+ z4 ∗

Δ�

δ
. Finally, the value z corresponding to

Pi�j is z = zk ∗
δ−Δy

δ
+ z4 ∗

Δy

δ
.

Triangulated Irregular Networks� We now define the dis-
crete model based on TINs. For this, we first define a set
STriangleβ . Elements in this set describe sample triangles
whose vertices are in SPointβ . These triangles are typi-
cally obtained through a Delaunay triangulation [7]. In this
method, triangles are generated such that no point lies in-
side the circumcircle of any triangle (the unique circle that
passes through each of the triangle’s vertices).

Definition 10. �The carrier set of TINβ)

STriangleβ = {(p1� p2� p3) | p1� p2� p3 ∈ SPointβ}

DTINβ
= {T | T ⊂ STriangleβ ∧ T defines a

tesselation of �
2}

A set T of triangles defines a tesselation of �
2 if

1. ∀t1� t2 ∈ T� t◦1 ∩ t◦2 = ∅, where t◦1 denotes the interior of t1

2.
��T �

i=1 ti = �
2

The semantics of this type is defined by linear interpola-
tion of the plane surfaces described by the triangles. For-
mally, a plane surface defined by three points P1 = (x1� y1� z1)�
P2 = (x2� y2� z2)� and P3 = (x3� y3� z3) has a formula that
may be expressed in matrix determinant form by:

�
�
�
�
�
�
�
�

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

�
�
�
�
�
�
�
�

= 0

Points in the planar triangle defined by the three (xi� yi)
coordinates (including the vertices) may be interpolated by
evaluating the determinant of the above matrix.

6.2 SpatioTemporal Fields
We now generalize the discrete models previously pre-

sented to spatio-temporal fields. This is realized by applying
the discrete model of Güting et al. [10] to the temporal di-
mension. In short, the approach consists in representing
spatio-temporal types by a so-called sliced representation.
The idea is to decompose the temporal development of a
type along the time dimension into fragment intervals called
slices, such that within each slice this development can be
represented by some kind of “simple” function. This is real-
ized by defining for each type α a unit type, a pair consisting
of a time interval and a value describing the “simple” func-
tion. Unit types for the base types and spatial types are
defined as in [10]. For example, the unit type ureal repre-
sents moving real values. The carrier set for this type is

Dure�l = Interval(Instant)×
{(a� b� c� r) | a� b� c ∈ real� r ∈ bool}.

The semantics of a unit type is given by a function of time
ι defined during the unit interval. In the case of ureal, this
semantics is given by

ι((a� b� c� r)� t) =

�
at2 + bt + c if ¬r√
at2 + bt + c if r.

Therefore, a ureal value can represent a quadratic polyno-
mial in t or a square root of such a polynomial.

We begin by generalizing the regular grid concrete model
for the spatio-temporal case. For this we define a set UPointβ
whose elements describe sample 2D points with an associ-
ated couple of values from a base type β, and then define
the carrier set for type UGridδβ .

Definition 11. (UPointβ)

UPointβ = {(x� y� z1� z2) | x� y ∈ DPoint ∧ z1� z2 ∈ Dβ}

Definition 12. �The carrier set of UGridδβ)

DUGridδ
β

= Interval(Instant)×

{P | P ⊂ UPointβ ∧ P defines the vertices
of a regular square grid of size δ in �

2}

A value ((t1� t2)� {P1� . . . � Pn}) where Pi = (x� y� z1� z2) rep-
resents that at point (x� y) the value of the field changed
from z1 to z2 during the time interval [t1� t2]. Formally,
each unit point Pi defines a linear interpolation given by

ι((t1� t2)� (x1� x2� z1� z2)� t) = mt + z1 −mt1

where m = y2−y�

x2−x1
is the slope of the straight line connecting

the points (t1� z1) and (t2� z2).
There are at least two possible generalizations of the TIN

concrete model for the spatio-temporal case. In the first
one, the vertices of the triangles do not evolve on time, only
the value of the field evolves at each vertex does. In an
alternative generalization, computationally more complex,
the vertices of the triangles evolve on time as well as the
value of the field on each vertex. For the sake of space we
only consider next the first generalization.

176



Definition 13. �The carrier set of UTINβ)

UTriangleβ = {(P1� P2� P3) | P1� P2� P3 ∈ UPointβ}

DUTINβ
= Interval(Instant)× {T | T ⊂ UTriangleβ∧

T defines a tesselation of �
2}

A value ((t1� t2)� {T1� . . . � Tn}) where Ti = (P1� P2� P3) and
Pj = (xj � yj � z

j
1� z

j
2) represents the fact that for each trian-

gle Ti the planar surface defined by its three vertex points
(xj � yj) changed linearly its slope during the time interval.
More formally, the planar surface defined by Ti at an instant
t is obtained from the linear interpolation of the unit points
composing its vertices, as given by Definition 12.

7. CONCLUSION AND FUTUREWORK
We have presented a conceptual multidimensional model

for spatial data analysis, where continuous fields support is
achieved extending the MultiDim model for spatial OLAP
[16], with a field data type, following the approach of Güt-
ing et al. [10]. We also provided a thorough analysis of the
operators associated to this data type. In addition, we de-
fined the classes of SOLAP-CF and STOLAP-CF queries,
i.e., non-temporal and temporal multidimensional queries
including continuous fields, respectively. We discussed pos-
sible discrete implementations of the abstract model, for spa-
tial and spatio-temporal fields. Our future research direction
is headed to the implementation of a prototype based on the
models studied in this paper.
Acknowledgments� This research has been partially funded
by the Research Foundation Flanders, project G.0344.05,
the European Union under the FP6-IST-FET programme,
Project n. FP6-14915, GeoPKDD: Geographic Privacy-Aware
Knowledge Discovery and Delivery, and the Argentina Sci-
entific Agency, project PICT 2004 11-21.350.

8. REFERENCES
[1] T. O. Ahmed. Continuous spatial data warehousing.

In 9th International Arab Conference on Information
Technology, 2008.

[2] T. O. Ahmed and M. Miquel. Multidimensional
structures dedicated to continuous spatiotemporal
phenomena. In BNCOD, pages 29–40, 2005.

[3] C. Bailey-Kellogg, F. Zhao, and K. Yip. Spatial
aggregation: Language and applications. In
AAAI/IAAI, Vol. 1, pages 517–522, 1996.

[4] Y. Bédard, S. Rivest, and M. Proulx. Spatial online
analytical processing (SOLAP): Concepts,
architectures, and solutions from a geomatics
engineering perspective. In Data Warehouses and
OLAP: Concepts, Architectures and Solutions,
chapter 13, pages 298–319. IRM Press, 2007.

[5] G. Câmara, D. Palomo, R. C. M. de Souza, and
D. de Oliveira. Towards a generalized map algebra:
Principles and data types. In GeoInfo, pages 66–81,
2005.

[6] J. P. Cordeiro, G. Câmara, U. F. Moura, C. C.
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