
Qualitative Geocoding of Persistent Web Pages

Albert Angel*
Dept. of Computer Science

University of Toronto
Canada

(+1) 416-946-8878

albert@cs.toronto.edu

Chara Lontou
Dept.of Electrial Engineering and

Computer Science
National Technical University of

Athens, Greece

clontou@dblab.ece.ntua.gr

Dieter Pfoser
Alexandros Efentakis

RA Computer Technology Institute
University Campus Patras

26500 Rion, Greece
+30 210 6930 700

{pfoser|efedakis}@cti.gr

ABSTRACT
Information and specifically Web pages may be organized,
indexed, searched, and navigated using various metadata aspects,
such as keywords, categories (themes), and also space. While
categories and keywords are up for interpretation, space
represents an unambiguous aspect to structure information. The
basic problem of providing spatial references to content is solved
by geocoding; a task that relates identifiers in texts to geographic
co-ordinates. This work presents a methodology for the semi-
automatic geocoding of persistent Web pages in the form of
collaborative human intervention to improve on automatic
geocoding results. While focusing on the Greek language and
related Web pages, the developed techniques are universally
applicable. The specific contributions of this work are (i)
automatic geocoding algorithms for phone numbers, addresses
and place name identifiers and (ii) a Web browser extension
providing a map-based interface for manual geocoding and
updating the automatically generated results. With the geocoding
of a Web page being stored as respective annotations in a central
repository, this overall mechanism is especially suited for
persistent Web pages such as Wikipedia. To illustrate the
applicability and usefulness of the overall approach, specific
geocoding examples of Greek Web pages are presented.

Categories and Subject Descriptors
H.2.8 [Database Applications] – Data Mining

General Terms
Algorithms.

Keywords
Multilanguage content, digital libraries, indexing, multilingual
metadata, spatiotemporal databases

1. INTRODUCTION
 “The map is the new search interface. Geography is another way

to organize information. As human beings, we inherently
understand geography.” 1 In turn maps can become a user
interfaces to many things. Geographic information, be it maps or
3D virtual worlds, are believed to be the future way for people to
socialize, shop, and share information. In the foreseeable future,
the map will become the interface of choice for the internet [29].
All of this works, however, only if information on the web is
indexed geographically, i.e., if documents, paragraphs or key
phrases thereof are annotated with the location information to
which they refer.
Studies have shown that up to 10% of all Web pages contain
references such as zip codes, complete address information and
phone numbers that can be directly use to assign location
information to the page [22]. Further, it is estimated that 60-80
percent of web pages contain overall geographically relevant
information that can be used to geo-tag them [29]. The basic
problem is to find such identifiers in text (geoparsing) and then to
relate them to location information (geocoding).
This work presents a methodology for the semi-automatic
geocoding of persistent Web pages, i.e., relating identifiers in
texts to geographic co-ordinates using a combined automatic and
human-centered approach. Specifically, we will focus on Greek
Web pages and related geo information. The methods however are
universally applicable. Automatic geoparsing and geocoding
algorithms are successfully applied to identify phone numbers and
addresses. When more generic geo identifiers are involved,
automatic algorithms produce a significant number of false
positives (Venizelos as a person) and false negatives (Venizelos
as the name of Athens international airport). This work advocates
human intervention to improve on automatic geocoding results (in
the spirit of [9]) and develops therefore a Web browser extension
that (i) allows for the manual geocoding of text portions and (ii)
the updating, including deletion of automatically generated
results. This proposed approach is especially helpful for persistent
Web pages such as Wikipedia, i.e., pages that have a certain value
to the community, are well cared for and change rather slowly.
Here, geocoding can become a regular part of Web page
authoring!
Location information extracted from a persistent Web page is
stored in a central repository; for every page, identified by its

* Work done while at National Technical University of Athens,

Greece.
1 Quoting John Hanke, Director Google Earth and Maps.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM GIS '08, November 5-7, 2008. Irvine, CA, USA
(c) 2008 ACM ISBN 978-1-60558-323-5/08/11...$5.00.

URL, the repository maintains the geocoded text portions, in
terms of their position on the page, the respective geographic co-
ordinates, as well as a timestamp, indicating the version of the
Web page. The geocoded portions of a Web page are highlighted,
and their geographic extent displayed on a map interface
(powered by Google Maps [16]); clicking on a text portion shows
its position on the map. The respective functionality is accessible
through a Firefox browser extension. This work also includes a
set of use cases that illustrate the applicability and usefulness of
the overall approach.
Related work in the area of geocoding is manifold, both in terms
of research and commercial applications.
Geocoding Web pages can be a means for indexing content, as in
[18]. In addition, the spatial extent of the geocoding is used to
reason about the importance of the content, e.g., a web page about
a small village in Greece may interest less people than one about
the Balkans. Web-a-Where [1] is another system for geocoding
Web pages. It assigns to each page a geographic focus — a
locality that the page discusses as a whole. The tagging process
targets large collections of Web pages to facilitate a variety of
location-based applications and data analyses. Their experiments
show that 80% of individual name place occurrences can be
tagged correctly and the correct focus of a page can be established
91% of the time. One of the first works on geocoding [23]
describes a navigational tool for browsing web resources by
geographic proximity as an alternative means for Web navigation.
The approach presented in [4] proposes the use of the Web’s
geographic information to populate address databases, i.e., parse
Web pages for useful address information and populate an address
database with the available information. A method for calculating
the geographic breadth of a Web page is given in [10]. A
geographic search tool is used in the context of personalized
search, where user’s position is an element of her profile. The
proximity of the position of the Web page in relation to the user’s
position is a criterion for the ranking of the page in the search
results.
In the realm of geocoding, a range of related commcercial
products exist. Google has developed the web service Google
Local (integrated now in Google Maps) [16]. This service offers a
search which is based on a combines geographic and keyword-
based search (e.g., Pizza in Athens). A similar service is Yahoo
Yellow Pages [30]. MetaCarta [22] provides tools and services
that geoparse and geocode text content using natural language
processes and highly refined geodata. The results can be used for
geographic search on the Web, in GIS applications, for
categorizing documents, etc. Beyond those service is the GazDB
[2] that enables the efficient production of customizable
gazetteers. The GazDB separates names from features while
storing the relationships between them. Geographic names are
stored in a variety of resolutions to allow for internationalization
and for multiplicity of naming. Geographic features are
categorized along several axes to facilitate selection and filtering.
The purpose of the MetaCarta GazDB is to provide both a place
and supporting mechanisms for storing, maintaining, and
exporting everything we know about our collection of geographic
entities. A converter for RSS to GeoRSS [12] is available as an
open source service that finds geographic identifiers in RSS feeds
using natural language processes (for information extraction) and
machine learning processes (for updating its results as it interacts
with the users). It is mainly applicable to news articles, presenting

a global map with the event places marked and finally offering the
ability to search or read the events using geographic criteria.
What is common to all existing work is that it typically advocates
an ad-hoc automatic geocoding approach with little or no quality
control besides the established accuracy of the algorithm. This
work goes beyond that in that we advocate automatic geocoding,
user/community-based control and a public repository to store the
geocoding (cf. [9]).
The outline of the paper is as follows. Section 2 discusses the
employed automatic geocoding approach customized for Greek
Web pages. Section 3 introduces the semi-automatic,
collaborative approach for geocoding persistent Web pages.
Section 4 gives an experimental evaluation. Finally Section 5
presents conclusions and directions for future work.

2. AUTOMATIC GEOCODING
Geocoding refers to (i) identifying text portions that might have a
spatial aspect (geoparsing) and (ii) linking this text to location
information, typically coordinates (geocoding). Ideally, this
overall process can be automated as discussed in the following
and illustrated in Figure 1.
This section presents the specific approach that was developed
for the automatic geocoding of Greek Web pages. Although
representing a standalone solution, Section 3 will show how this
solution can be wrapped in browser extension to allow for a semi-
automatic geocoding approach for Web pages.
The overall automatic geocoding framework includes (i) an
HTML Parser for removing tag information and detecting the
character encoding of the page, (ii) a module for the
standardization, composition and presentation of the geocoding,
(iii) a module for approximate string matching and a (iv) a
database containing geo data needed for relating, e.g., address
information to geographic co-ordinates.

Figure 1: Automatic geocoding system architecture

The following sections will discuss each module in more detail.

2.1 HTML Parser
One of the main issues that arise during the parsing of Web pages
is that most of the times the HTML code is malformed and does
not usually conform to the stricter XHTML standard. Most
programming languages (including Java that was used during the
development of our system) do not directly support parsing of non
valid XML documents. Since regular HTML code is not valid

GeoParser GeoCoder

Geo data Fuzzy + Phonetic
Matching

HTML Parser +
Charset Detector

Lang. + Phonetic
Utilities

Result
Integration

Reporting/
Visualization

XML code, TagSoup [7], an external Java library capable of
parsing typical HTML code, was used to clean up the content.

2.2 Geoparsing
In our testing system, we used a combination of cascaded regular
grammar transducers and approximate String searching and
matching algorithms (those algorithms will be discussed in detail
later on this paper). Every regular grammar level is based on the
results of the previous grammar level applied and traces
information on a higher abstraction level. In our earliest lower
level, our bare character input is converted into words, postal
codes, spaces and candidate Placenames. In the highest grammar
level, our postal codes and placenames (created from previous
grammar levels) are converted into valid addresses. The cascaded
regular grammar level parsing implementation was realized using
JFlex [19] (the free lexical analyzer generator for Java). The
approximate String searching and matching algorithms were used
for comparing words residing in the test Web pages, with those
inside our database index entries.
The traced geographic information is then normalized and
standardized. For example the raw address: Agiou Sosti 3,
Chalandri, 23135 will be normalized as: Street: Agiou Sosti,
Number: 3, Postal Code: 23135, Area: Chalandri. This is a
necessary process for the geocoding phase that follows.
Although previous research approaches tried to exploit the
hyperlink information of the parsed Web pages, we decided after
extensive testing, that the geographic information that was
retrieved through hyperlinks utilization, was rather minimal
compared to the effort required to obtain it.

2.2.1 Brill matching for place names
In order to identify all potential Placenames inside a Web page,
we used a concept proposed by Brill [5], and its implementation
for Greek texts [25], in which, if a group of words is a potential
placename match, each of its subgroup of words will also be
considered as a potential match. Consequently, if we have a
Greek phrase such as “Ατρόμητος η ποδοσφαιρική ομάδα του
Βόλου, Μαγνησίας” (meaning “Atromitos the football team of
Volos, Magnisia”), we will have to search for matches of the
following words and phrases: “Βόλου”, “Μαγνησίας”, “Βόλου,
Μαγνησίας”, which are all valid placenames and even search for
the word “Ατρόμητος”, for which we will not find a match, since
it is not a placename.
This extra matching process does not slow down our
implementation significantly, since the average Web page usually
includes a limited number of (usually) scattered Placenames.

2.3 Geocoding
The geocoding module takes the text portions identified by the
geoparser and relates them to geographic data and coordinate
information, typically stored in a data repository. The geographic
data consists of place names, addresses, telephone numbers, etc.,
and links these to a respective geographic location by means of
coordinates.
Relating phrases to geographic data required the development of
approximate string matching and searching algorithms. As we
will see in Section 2.4 and 2.5, these algorithms will return with
each approximate match a confidence factor indicating if (and to

what degree) the phrase represents in fact a geographic location.
The geocoding will be in the typical case a simple coordinate
pair, indicating a point location, but can also be a Minimum
Bounding Rectangle (MBR) of the geographic limits the phrase in
question describes.
With respect to the Greek language aspect in our work, one of the
most important aspects was the development and integration of
approximate string searching and matching algorithms.
Approximate String searching and matching is used, both, during
the geoparsing and geocoding phases, since focusing on finding
an exact match between the phrases found on a Web page and the
geo data would only produce a subset of geocoded phrases. In
addition, these techniques have been used to improve the overall
geocoding speed (filter step in candidate phrase retrieval).
The geo data that is used in the process is stored by means of a
DBMS. As all data is retrieved based on alphanumeric queries,
and there was no issue with respect to optimizing spatial queries,
the popular MySQL DBMS is utilized. However, our algorithms
work with any other DBMS, since it does not rely on any of
MySQL’s specific features.
The following sections introduce first approximate string
matching and search and subsequently survey the geo data that
was used in the process.

2.4 Approximate String Matching
One of the problems we had to address was how to effectively
compare and match two Greek phrases.

2.4.1 Pre-processing of phrases
Before the actual comparison of the two Strings, both Strings
phrases should be preprocessed, standardized and parsed. By
using external lexicons, relative to the domain, we can rectify
minor spelling mistakes and ensure that special keywords with
high frequency of appearance are converted into their normalized
form prior to the comparison. For example, the Greek word
“οδός” means “street”. Any other grammatical form or
abbreviation of the specific word, like “οδ.”, “οδού” will all be
converted to the normalized form “οδός”. We also use an
alternative form for each of the String phrases we are about to
compare that does not include any of those high frequency words.
This is a necessary step that greatly improves the number of
matches, since those words do not add significant information to
the Strings in question. Pre-processing of the two Strings prior to
comparison is a method that is recommended and considered
effective by other researchers as well (cf. [21] and [27]).
After initial pre-processing, both Greek String phrases are
converted into their intermediate phonetic equivalents based on a
custom phonetic alphabet for the Greek language. In that sense
the Greek word “Βενιζέλου” will be converted to its phonetic
equivalent “venizelu”. This was a realistic hypothesis after
observing that (in most cases) spelling mistakes for a specific
word do not significantly alter the word’s pronunciation. There
also very few Greek words (especially in the Geographic domain)
with different meanings and yet same pronunciation. The phonetic
conversion was based on Greek pronunciation rules along with
some custom heuristics.
The Greek phonetic alphabet we used, is comprised of 23
phonetic symbols (cf. [13] and [28]). We define “phonetic

distances” between the various phonetic symbols, based on their
phonetic pronunciation grouping. To this phonetic alphabet we
also added the character “/”, which means the presence of at least
one more character, e.g., the Greek phrase "Αιτ/νία" will be
matched with the phrase “Αιτωλοκαρνανία”. The addition of the
character “/” proved to be quite effective, since it allowed
shortened alternative forms for a specific word commonly used in
Greek geographic names.

2.4.2 Modified Levenshtein distance
After the initial preprocessing of both Greek String phrases and
their conversion according to the Greek phonetic alphabet, we
compare their phonetic equivalents according to their Levenshtein
distance. Originally, Damerau and Levenshtein proposed that the
distance between two words is defined as the number of
characters we must insert, delete, or modify in order to get an
exact match. We modified this classic algorithm for calculating
the Levenshtein distance [15], in order to exploit Greek
pronunciation similarities (e.g., the Greek word “Μάνου” is
similar to “Νάνου”) and the addition of the “/” character.
Experimental results showed that those minor additions do not
modify the algorithm’s complexity.

2.4.3 Threshold comparison
The calculated Levenshtein distance will be compared to a
threshold distance that depends on the two phrases’ length. The
threshold distance was calculated using heuristics such as
comparing significant number of words with similar
pronunciation and best threshold distance based on the F-
measure2. If the calculated Levenshtein distance is smaller than
the threshold distance, then the two phrases are considered
similar, with an approximation factor relative to their calculated
Levenshtein distance.

2.5 Approximate String Searching
To geocode a phrase, an approximate string look-up algorithm is
used to compare this phrase with our database entries; find a
potential approximate match and then geocode the phrase, using
the geographic location information.
The approach entails translating the phrase (we are looking for)
into a simplified hash key, searching the database for entries that
have the same hash key, and then performing an approximate
String comparison between the initial phrase and the phrases
found in our database.
Our hash key was generated using our custom version of
Metaphone [20] based on the custom Greek phonetic alphabet
described in the previous section. According to this method, each
sequence of identical characters is replaced by only one character,
the Greek character “ς” found only at words’ end is dropped
completely and so are all vowels (except the one found at the
beginning of the word). Thus, the Greek word “Βενιζέλου” will
be converted to its phonetic equivalent “venizelu” and the
resulting hash key will be “vmzl”. We also chose to preserve the
“/” character, during the hash building phase. So, even when
comparing hash keys, we may have “compatible” and yet not
exact matches. For example, the hash key for “Αιτωλοκαρνανία”

2 F-measure is a weighted precision and recall average.

will be “edlgm” and the hash key for “Αιτ/νία” will be “ed/m”.
These two hash keys are not exact matches, but are still
considered compatible.
We developed an Approximate String searching algorithm, which
searches for potential matches between a phrase inside the Web
page and the entries residing in the database based on ideas
proposed in [14] and [17]. Searches in the database table are
optimized by using phonetic indexes.

2.5.1 Phonetic Index
For the placenames stored in our database, each record is uniquely
identified by a single numeric field placenameId (Primary key),
which will be the result returned by our approximate String look
up algorithm in a case of a potential match. For each such table, a
new phonetic index table needs to be built (this process has to be
done once per table).
The phonetic index is created from the original placenames
according to the following procedure. Each placename phrase in
the original table is divided into single words. Each of these
words will be a separate record in the phonetic index table. Each
record in the phonetic index table will also include the following
attributes:

• The PlacenameId of the phrase that this word belongs to in
the original placename table.

• The Sequence index of the word (is this the second or the
third word in the original placename phrase?) inside the
original placename phrase.

• The phonetic hash key of the word. The word is initially
converted to its phonetic equivalent to create its phonetic
hash key

• The actual word

• The length of word in characters

• An isAbbreviation Boolean field (that shows if the word
includes the “/” character.

In order to accelerate searches in the phonetic index table, a B-
tree index was used for the following attributes set,
{isAbbreviation, Phonetic hash key, PlacenameId, Sequence
index of word}.

2.5.2 Approximate String Searching Algorithm
When we search a phrase identified on the Web page against our
database entries, we apply the following methodology:
First, split the original phrase found on the Web page into single
words.
Second, in a first filtering step, create a new temporary table with
all the records of the phonetic index table, where the phonetic
hash key for each entry matches the phonetic hash key of at least
one of the words traced in the original phrase.
Third, in a second filtering step, drop from the temporary table all
records that diverge significantly from the original phrase in terms
of total number of words and length of individual words. Here,
consider the following example. Let us assume that the Web page
includes the phrase "Λεωφόρος Ελευθερίου Βενιζέλου". In the
first step, the record "Πλατεία Βενιζέλου Σοφοκλή" contained in
our placename table is a potential match, since they share the

word “Βενιζέλου”. In order to obtain a match, two words must be
removed ("Πλατεία","Σοφοκλή") and, furthermore, two more
words must be added ("Λεωφόρος","Βενιζέλου"). In the second
filtering step, the algorithm will subsequently drop "Πλατεία
Βενιζέλου Σοφοκλή" as a potential match and all records that
correspond to its PlacenameId will be dropped from the
temporary database table.
After those steps, the database returns a limited number of records
that match the original phrase in terms of phonetic hash key
similarity (all String comparisons up to now were done at the
phonetic hash key level). These two filtering steps can be
performed efficiently, since they are supported by the indexes and
did not utilize the sequence index of words inside the original
phrase.
Fourth, a refinement phase compares word for word, all words
from the original phrase, with each word located inside each
potential match. This comparison is performed in memory and
uses the modified phonetic Levenshtein distance that was
described earlier. If during this comparison, a potential match is
found to differ significantly from the original phrase, it is
dropped. After finishing the word to word comparison, then and
only then do we take into account (with the use of an appropriate
weight factor) the sequence of words in the original phrase.
Although this exhaustive search process is significantly slower
than the first two filtering phases, it is still quite fast, because
after the first two phases we only have a limited number of
potential matches (in most cases 1-5 and very rarely up to 15
potential matches).
Finally, the remaining PlacenameIds are returned to the user, in
ascending order of the Levenshtein distance calculated from all
previous phases.

2.6 Geo Data
Although in several countries there is a wealth of quality
geographic information publicly available (for example in the
USA, all addresses, streets, postal codes are fully geocoded and
publicly available), in Greece there is no central government
agency to provide such data. Some organizations, such as the
Greek Postal services or the Greek telecommunications agency
offer their information for free on the Web, but only for limited
Web requests and not as a single downloadable file.
Another problem with Greek geographic data is its quality. Since
Greek geographic data originates from various sources, there is no
central organization for organizing and filtering duplicate or
erroneous data. Additionally, most of the providers of such data
are located outside of Greece. Therefore, most of this information
is depicted in Latin characters creating the issue of converting this
information to the Greek alphabet. There are also inconsistencies
with respect to the projection and reference system used for the
geo data, e.g., some providers use WGS84, others use the Greek
EGSA87 projection system.
The geographic data acquired from the various sources, had to be
filtered before it could be integrated. Such a process was
automated as much as possible to minimize costly human
intervention and allow for a general extensibility of our system.
The following Greek geographic data was stored in our database:

• Table attiki: This dataset includes about 6100 streets and
about 500 squares geocoded with 300m precision.

• Table gns: includes many (about 44,000) Greek placenames
with many alternative ways of expressing them and
including their approximate geographic location. This
dataset was derived from the GEOnet Names Server (GNS)
[24] that provides access to the National Geospatial-
Intelligence Agency's (NGA) and the U.S. Board on
Geographic Names' (US BGN) database of foreign
geographic feature names. This database is the official
repository of foreign place-name decisions approved by the
US BGN. This dataset was modified extensively, mainly
during the conversion of Greeklish names to Greek [6],
including alternative spelling. In this dataset, each
placename has a Unique Name Identifier, along with a field
containing information about the type of each placename
(city, state capital, village, river, etc.).

• Table mapdecode: contains the geographic location of
Greek placenames (6000) and various streets (66000) [11].
Some of the geographic data contained in this dataset is not
entirely correct, but its significant size was a good starting
point for the data collection process. The Greeklish issue
had to be addressed as well.

• Table telephone: contains all the telephone prefixes (~240)
for each Greek city and many (~1,800,000) telephone
numbers in Attiki, Greece, fully geocoded. This dataset
required extensive processing, in order to geocode the
telephone numbers, using from the previous datasets (phone
number address coordinate information).

• Table postals: includes all postal codes for Greece, fully
geocoded. This dataset was geocoded using the previously
mentioned datasets.

2.7 Performance Assessment
The performance of the geoparsing/geocoding toolkit was
evaluated by (i) comparing it to an alternative imeplementation of
the geoparser and by (ii) comparing the overall geocoding
performance to tools available in the market. What follows is a
brief overview of the obtained results.
As an alternative to the JFlex implementation, the Text Mining
toolkit GATE [8] was used for parsing. Using JFlex for the
implementation of the cascaded regular grammar transducers,
combined with optimized Java code, resulted in faster and more
effective parsing of Web pages when compared to the results that
GATE was able to produce. In our GATE implementation,
parsing a single page required an average time between 2 and 2.5
seconds. Using our new optimized system, the average time
required to parse the same Web page dropped to below 1 second.
For the tests to be comparable, the same hardware platform was
used.
To assess the performance of the proposed geocoding method, a
catalog of 1800 actual delivery addresses in Attika, Greece that
contain spelling errors, incomplete addresses, alternative place
names was geocoded. The overall process took less than 2
seconds on a typical PC. In comparison, using the geocoding
feature of the ESRI ARC software suite took one hour. When
comparing the actual number of addresses that was geocoded, the
result becomes even more impressive. Our geocoding tool

managed to geocode 95% of all addresses, while the ESRI tool
only identified 82%.

2.8 Summary
Our proposed geoparsing/geocoding module provides fast and
effective automatic geocoding of Web pages. However, there are
certain issues that this fully automatic approach cannot entirely
overcome. One such issue is the disambiguation of geographic
entities. Overall, there are two types of ambiguity, related with
geographic data:

• The geo/non-geo ambiguity occurs when the name of a
geographic location shares a non-geographic meaning as
well, such as a person’s name (e.g., Washington) or a
common word (Turkey). This type of ambiguity is very
common in Greek place names as in many cases, famous
person are used to name places, e.g., the Athens
International Airport is also referred to as Eleftherios
Venizelos airport, named after a famous Greek politician.

• The geo/geo ambiguity arises when distinct geographic
locations, possibly of different scale, share the same name,
as in London, England vs. London, Ontario or Ontario,
Canada vs. Ontario, California, USA.

Another issue is the quality of the geocoding result, which
depends heavily on the quality of the available geo data used.
Although, a large body of data was collected, i.e., ranging from
reverse phone directories to map data, certain errors in the
automatic geocoding due to inaccuracies in the geo data are
inevitable. The main errors encountered are as follows:

• Inaccurate coordinate information for a geographic
entity.

• Text portions of a Web page

o that do not contain geographic information are
erroneously geocoded,

o that contain geographic information are not
recognized by our automatic geocoding
system.

• Only a subset (e.g., “Korinthos”) of a phrase (e.g.,
“Ancient Korinthos”) that contains geographic
information is recognized by our automatic geocoding
system.

In order to overcome the inevitable limitations of our automatic
geocoding system, we decided to improve its efficiency by
allowing the user to manually intervene (add, delete and modify)
the results returned by the automatic geocoding results. This
semi-automatic geocoding process is described in the following
section.

3. SEMI-AUTOMATIC GEOCODING
A highly intuitive way to support semi-automatic geocoding of
Web pages, i.e., allow for human intervention in the process, is by
means of Web browser functionality itself. We developed a Web
browser extension that (i) allows the manual geocoding of text

portions of a Web page and (ii) allows updating (including
deletion) of automatically generated geocoding results. This
proposed approach is especially helpful for persistent Web pages
such as Wikipedia, i.e., pages that have a definite value to the
community, are well maintained and are modified rather
seldomly. In that sense, geocoding can become a regular part of
Web page authoring.
Our semi-automatic geocoding application should be embedded in
a web browser in order to be efficient and user friendly. We
achieve that by developing a custom Web browser extension for
Mozilla Firefox. We opted for Firefox since it is highly
customizable and supports most popular Operating Systems.
Moreover, the process of writing extensions for Firefox is well
documented. Most Firefox extensions are written in JavaScript.
JavaScript also contains libraries for modifying the layout of a
web page as it is displayed on an individual user's browser. Our
Firefox extension is the central node of our semi-automatic
geocoding application, controlling all interaction.
The basic idea behind the overall functionality is to highlight
geocoded content on the Web page itself, e.g., by means of
highlighted text. Should the user click on any highlighted content,
a map is displayed, showing the respective geographic location.
Geocoding results are stored centrally accessible through the
Web. The automatic geocoding tool of Section 2 is wrapped in a
Java Servlet. It is only executed when the Web page has never
been geocoded before or when its contents have changed. To
visualize the geocoding on a map, the Google Maps API [16] was
used. This API allows the embedding of Google Maps on web
pages.
The basic design of our semi-automatic geocoding application is
shown in Figure 2. The semi-automatic geocoding application is
divided into several components: The Firefox extension which
constitutes the system’s client side, and the Java Servlet, the
Google Maps web service and the central database, which
collectively constitute the server side of our application.
The following sections give a detailed description of the various
application components.

3.1.1 User Interface – Firefox Extension
The Firefox extension is the user interface of our application. One
of the actions that can take place is the marking - highlighting of
geographic entities located on a web page currently shown in the
web browser. This action is invoked by the pop-up menu entry
“View geo info” (cf. Figure 3). This pop-up menu becomes
available only after our extension is properly installed on the
user’s Firefox browser. The highlighted text portions in Figure 3
originate from the results of both automatic and manual
geocoding processes stored in our central database.
The automatic geocoder is invoked either when the loaded page
has never been geocoded before or when its content has changed
since the last time the page was geocoded. In persistent Web
pages like Wikipedia, where changes in content are rare and do
not affect the entire text, our geocoder only geocodes the
modified sections.

Figure 3: The Firefox pop-up menu, after installation of our

extension
In our implementation, the central database containing the geo
data and the geocoding results, and the automatic geocoder are
hosted on a server running Apache Tomcat and PHP. The
communication between the server and the Web browser
(extension) is achieved using AJAX. This approach involves
transmitting only a small amount of information (usually in XML
format) to and from the server, in order to give the user the most
responsive experience possible. A JavaScript function is called
whenever information needs to be requested from the server.
Instead of the traditional model of providing a link to another
resource (such as another web page), each link makes a call to the
AJAX engine, which schedules and executes the request. The
request is done asynchronously, meaning that client-side code
execution does not wait for a response before continuing.
Interaction with the central database is handled through PHP, a
server-side scripting language. All information exchanged

between the central database or the Java Servlet and the browser
extension is encoded in XML.
The geocoding of a Web page is highlighted as they are retrieved
from the central database (cf. Figure 4). Whenever the mouse
pointer is placed above a highlighted text portion, a hover-over
menu appears (cf. Figure 5) with the following three options:

• Locate the geocoding (using Google Maps).

• Locate the geocoding with the option to edit it (by
dragging the marker to the right location).

• Delete the geocoding

Figure 4: Marking – Highlighting of geocoding results

Figure 5: Hover–over Menu

The user can invoke any of the above three actions by clicking on
the appropriate submenu. The first submenu “Find in Google
Maps” opens a Google Map (in a new window) with the
geographic entity’s location marked. The second submenu,
“Change the map”, opens the same Google Maps window as
before, where the marker representing the entity can be dragged to
modify the geocoding. Upon modifying the geographic location,
the user need only to confirm the modification for the update to
be stored.
This functionality is demonstrated in Figure 6(a), where France
was erroneously linked to homonymous village in the Greek
island of Crete. This error can be rectified simply by dragging the
red marker to the actual location of France (cf. Figure 6(b)).
Finally, the last submenu can be used to delete entities that were
erroneously assumed to have a spatial extent by the geocoder.
Besides enabling the user to manually improve the geocoder’s
accuracy, the browser extension also allows her to add new
geocodings. The user simply has to mark the respective text
portion and select “geotag” (cf. Figure 7(a)) from the Firefox pop-
up menu. A new Google Map window appears, where she may
select the exact location (“geotag this point”) to geotag the text
portion (cf. Figure 7(b)). The geocoding is then stored in the
central database.

Figure 2: Basic semi-automatic geocoding system architecture

3.1.2 Visualization – Google maps
An important part of our application is the visualization of
geocoding. For this reason, we used the Google Maps web
service, which was essential for:

• visualizing the geographic extent of entities;

• rectifying said extent; and

• defining the geographic extent of newly added
geographic entities

3.1.3 Persistent Storage –Central Database
A central database is used for storing location information for
each web page. For every page, identified by its URL, and for
every geocoded text portion, identified by its position on the page,
the repository maintains (i) the respective geographic co-
ordinates; (ii) a timestamp, indicating the version of the Web page
that was geocoded; (iii) whether the geocoding was manual,
automatic, or manually modified after its creation; and (iv) the
desired zoom level for the map display.

4. EVALUATION
This section presents the results of geocoding the example
Wikipedia page of “Κόρινθος” (Korinthos), Greece to illustrate
the impact of our semi-automatic geocoding approach.
Figure 8 shows the automatic geocoding results. The phrase that
is geocoded is underlined. Phrases that were not recognized,
phrases like “κοινά” (commons) and “wiki” that have been
wrongly highlighted and other phrases (“Αρχαία Κόρινθος”) that
were not extracted in their entirety (only “Κόρινθος” was marked)
are circled.
Figure 9(a) is a visualization of the raw geocoding results in
Google Earth. Although the marked places should be around the
area of Korinthos (gray rectangle at the center of the map), some
of them are scattered all over Greece due to the above errors.
By manually updating the geocoding result, using the tool
described in Section 3, missed or mislabeled entries of Figure 8
can be corrected. Figure 9(b) presents the respective Google Earth
visualization of the results.
The differences between the two versions are obvious not only in
terms of marked phrases on the web page but also in terms of the

(a) original entry – “France” linked to Crete

(b) updated entry

Figure 6: Updating geo-coding information

(a) context menu - GEOTAG

(b) map interface – Google Maps

Figure 7: Adding a geocoding tag

Google Earth visualization, with the pins indicating the geocoding
being centered at the Korinthos area.

 not recognized

 wrongly marked
 not marked entirely

Figure 8: Automatic geocoding and missed information

5. CONCLUSIONS AND FUTURE WORK
The spatial aspect of information is becoming increasingly
important as it can be used as an unambiguous, yet discriminative
search criterion for information. This work presented (i) an
efficient automatic geocoding framework specifically tailored to
Greek content resources that was (ii) wrapped in a browser
extension to facilitate (a) manual correction of the geocoding
results, (b) public access to the tool and (c) the creation of a
public repository for storing the geocoding of persistent Web
pages. In that, the developed technologies advocate a community-
based effort for the creation of spatial metadata for Web
resources. The prototype implementation of the tool has been
tested using Greek Wikipedia pages and the next step will be to
make the software publicly available under an open-source
licensing scheme. The collaboration model advocated by this
work is community-based, similar to the one used by Wikipedia,
Freebase and other public collaborative data repositories. Our
approach, however, can be extended to less controlled scenarios,
where multiple users annotate a single page, possibly in
conflicting manners. We are investigating such extensions, by
incorporating a voting scheme, where the edits of all users,
optionally weighted by their “rating” in the system, are used to
obtain a single, non-conflicting answer
The directions for future work are to improve the overall quality
of the automatic geocoding result by adding additional geo data

resources. In addition, in cooperation with partners having the
respective language processing know-how, the tool should be
ported to other languages as well. With respect to geocoding Web
pages, one has to consider the significance of information
contained on a page with respect to the layout. Investigating the
spatial arrangement of text on the page could provide significant
insight and be used as a preprocessing step for the geocoding, i.e.,
weigh the geocoding with respect to where the content was found
on the page (cf. [26]).

References

[1] E. Amitay, N. Har’EL, R. Sivan, A. Soffer. Web-a-Where:

Geotagging Web Content. In Proc. of SIGIR, pages 273-
280, 2004.

[2] A. E. Axelrod. On Building a High Performance Gazetteer
Database. Technical Report, MetaCarta, electronically
available at

(a) automatic geocoding

(b) updated geocoding

Figure 9: Visualization of geocoding results

http://www.metacarta.com/Collateral/Documents/English-
US/Building-high-performance-gazetteer-Axelrod.pdf.
Current as of June 2008.

[3] M. Bacchin, N. Ferro, and M. Melucci. A probabilistic
model for stemmer generation. Information Processing and
Management, 41(1), pages 121-137, 2005.

[4] K. A. V. Borges, A. H. F. Laender, C. B. Medeiros, C. A.
Davis. The Web as a Data Source for Spatial Databases. In
Proc. 4th ACM Workshop on Geographical information
retrieval, pages 31-36, 2003.

[5] E. Brill. A Simple Rule-based Part of Speech Tagger. In
Proc. 3rd Conf. on Applied Natural Language Processing,
1992.

[6] A. Chalamandaris, A. Protopapas, P. Tsiakoulis, S. Raptis.
All Greek to me! An Automatic Greeklish to Greek
Transliteration System. In Proc. 5th Int’l Conf. on Language
Resources and Evaluation (LREC), 2006.

[7] J. Cowan. TagSoup parser.
http://home.ccil.org/~cowan/XML/tagsoup/. Web page,
current as of June 2008.

[8] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
GATE: A Framework and Graphical Development
Environment for Robust NLP Tools and Applications. In
Proc. 40th Anniversary Meeting of the Association for
Computational Linguistics (ACL'02), 2002.

[9] P. DeRose, X. Chai, B. J. Gao, W. Shen, A. Doan, P.
Bohannon, X. Zhu. Building Community Wikipedias: A
Machine-Human Partnership Approach. In Proc. ICDE,
pages 646-655, 2008.

[10] J. Ding, L. Gravano, N. Shivakumar. Computing
Geographical Scopes of Web Resources. In Proc. VLDB,
pages 545-556, 2000.

[11] R. Elsinga. www.elsinga.org. Web page, current as of June
2008.

[12] Explore Our Pla.Net. RSS to GeoRSS Converter. Web page
http://exploreourpla.net/2006-06-08/georss- feed-reader-
shows-podcasts.html, current as of June 2008.

[13] H. Foundalis. The Details of Modern Greek Phonetics and
Phonology. Web page
http://www.cogsci.indiana.edu/farg/harry/lan/grphdetl.htm,
current as of June 2008.

[14] A. Fuxman, E. Fazli, R.J. Miller, ConQuer: Efficient
Management of Inconsistent Databases., SIGMOD, pages
155-166, 2005

[15] M. Gilleland. Levenshtein Distance, in Three Flavors,
http://www.merriampark.com/ld.htm, 2000.

[16] Google Inc. Google Maps API.
http://code.google.com/apis/maps/. Web page, current as of
June 2008.

[17] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, Nick Koudas, S.
Muthukrishnan, Divesh Srivastava, Approximate String
Joins in a Database (Almost) for Free. In Proc. VLDB,
pages 491-500, 2001

[18] L. Gravano, V. Hatzivassiloglou, R. Lichtenstein.
Categorizing web queries according to geographical
locality. In Proc. of CIKM, pages 325-333, 2003.

[19] G. Klein, S. Rowe, and R. Décamps. JFlex - The Fast
Scanner Generator for Java. http://jflex.de/. Web page,
current as of June 2008.

[20] A.J. Lait, B.Randell. An Assessment of Name Matching
Algorithms, Technical Report, Dept. of Comp. Sci.,
University of Newcastle upon Tyne , 1993

[21] M.L. Lee, T.W. Ling, W.L. Low, IntelliClean: A
Knowledge-Based Intelligent Data Cleaner, In Proc. KDD,
pages, 290-204, 2000

[22] MetaCarta Inc. Company homepage.
http://www.metacarta.com/, Web page, current as of June
2008.

[23] K. McCurley. Geospatial mapping and navigation of the
web. In Proc. 10th WWW conf., pages 221-229, 2001.

[24] NGA. GEOnet Names Server (GNS). http://earth-
info.nga.mil/gns/html/index.html. Web page, current as of
June 2008.

[25] G. Petasis, G. Paliouras, V. Karkaletsis, C.Spyropoulos, I.
Androutsopoulos. Resolving Part-Of-Speech Ambiguity in
the Greek Language Using Learning Techniques. In Proc.
CoRR, 1999.

[26] S. Raghavan, H. Garcia-Molina. Crawling the Hidden Web.
In Proc. VLDB, pages 129-138, 2001.

[27] E. Rahm, H.H. Do, Data Cleaning: Problems and Current
Approaches, IEEE Bulletin on Data Engineering, vol 23(4),
pages 3-13, 2000.

[28] K. Sgarbas, N.Fakotakis, G.Kokkinakis, A PC-KIMMO-
Based Bi-directional Graphemic/Phonetic Converter for
Modern Greek, Literary & Linguistic Computing, Oxford
University Press, vol 13(2), pages 65-75, 1998.

[29] R. Waters. Way to go? Mapping looks to be the Web’s next
big thing. Financial Times, May 22, 2008.

[30] Yahoo Inc. Yahoo Yellow Pages. http://yp.yahoo.com/.
Web page current as of June 2008.

