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ABSTRACT

The use of centralized, real-time position tracking is proliferating

predicting more accurately future travel times, thus improving user
experience and reducing operational costs. Commercial systems
in the areas of logistics and public transportation. Real-time po- g!reaﬁy feX'St that manage mede phqslltlons in real tmlle ak:]d prte)-
sitions can be used to provide up-to-date information to a variety dICt the future movements of the vehicles. For example, the pub-
¢ buses in the Aalborg region (Denmark) are equipped with PCs,

of users, and they can also be accumulated for uses in Subsequer{({SPRS based e | 4 GPS devi ;
data analyses. In particular, historical data in combination with -based connectivity to a central server, an evices for

real-time data may be used to predict the future travel times of ve- Positioning. The system also includes on-line displays at the cen-

hicles more accurately, thus improving the experience of the users,tral terminal and major bus stops that provide real-time bus arrival

who rely on such information. We propose a Nearest-Neighbor |r!fo_rmation to the Passengers. While m_ethods fOF travel time pre-
Trajectory (NNT) technique that identifies the historical trajectory d|ct|9n for buses are available today (d|scus_3(_ed in more detail n
that is the most similar to the current, partial trajectory of a vehicle, S€Ction 2), more accurate and general predlctlonhls needed that is
The historical trajectory is then used for predicting the future move- easy to integrate into various existing systems. The prediction ac-

ment of the vehicle. The paper’s specific contributions are two-fold. curacy is of interest not only to passengers, but also to the carriers.

First, we define distance measures and a notion of nearest neighbo}n some cquntrles ('”C'Pd'”g Denmark and th? UK), the carriers are
that are specific to trajectories of vehicles that travel along known Penalized if the bus arrival times that are provided to the passengers

routes. In empirical studies with real data from buses, we evaluate &€ NOt close to the actual times.

how well the proposed distance functions are capable of predicting The travel times of vehicles trav_ellng on public road_s are _|nf|u-
future vehicle movements. Second, we propose a main-memory in_enced by a nu_rr_]ber of hard-to-predict factors (e.g., traffic accidents,
dex structure that enables incremental similarity search and that is Ve&ther conditions, unscheduled events) as well as factors that are

; P ; ; known in advance (e.g., the time of the day, the day of the week,
capable of supporting varying-length nearest neighbor queries. holidays, major public events). Itis infeasible to enumerate all such
factors, but it may also not be necessary. We believe that by using
1. INTRODUCTION similar trajectories from the past, in many cases it is possible to
Geographical positioning and wireless communication technolo- predict the future travel of a vehicle en route with good accuracy.
gies enable centralized, continuous position tracking of moving ve- Specifically, as the vehicle moves along its route, it is possible to
hicles. A number of applications in the areas of logistics, transit find the past trajectory that most resembles the travel by the vehicle
services, cargo delivery, and collective transport involve the man- so far, denoted the Nearest Neighbor Trajectory (NNT). The future
agement of fleets of vehicles that are expected to travel along knownpart of this trajectory is then used for predicting the future travel
routes according to fixed schedules. Positions accumulated duringbehavior of the vehicle.
this process form vehicle trajectories. A trajectory is a function ~ The use of historical trajectories for real-time prediction of vehi-
that, given a time, returns the position of a vehicle as it traverses its cle movement requires a notion of similarity (or distance) between
route. Such trajectories are useful for subsequent analysis and forvehicle trajectories. A number of authors (discussed in Section 2)
propose distance measures for time series and two-dimensional tra-
*This work was funded in part by the Danish Research Agency’s jectories, where the main focus is on spatial similarity. In our case,
Programme Commission on Nanoscience, Biotechnology, and IT. the requirements are different:

The early stages of this work were performed at School of Com-
puting, National University of Singapore, where the guidance of

e Since the vehicles are traveling on known routes, their move-
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ment can be considered as one-dimensional: the position of
a vehicle is defined as the distance it has traveled from the
start of its route.

The trajectories to be compared are expected to have the
same lengths. The samples that make up the trajectories are
taken at fixed locations, called timing points, along a route;
times for some timing points may be missing.

Since the timing points are fixed, it makes little sense to
stretch, shift, or otherwise transform a trajectory. It is only of
interest to compare travel patterns on exactly the same seg-
ments of a route.

e The similarity measure should allow to choose such trajec-



tory that is expected to give the best prediction for the future,  Hwang et al. [12] propose a similarity measure for spatio-tem-
even though the past may differ at some points. poral trajectories of vehicles. Similar trajectories are required to
traverse the sampgoints of interes{POIs). TheL?-norm is mea-

As a vehicle proceeds along its route, the NNT-based predic- syred in-between arrival times to the POIs. Subsequent work by
tion of its movement has to be revised periodically—it is possible the authors [13] also introduces TOls, times of interest, which is
that the actual movement has deviated from the prediction, making g general concept used to define peak times, weekends, etc. The
it appropriate to form a new prediction. Having available a large trajectories we consider are different in that only the relative tem-
amount of historical trajectories is expected to result in more accu- poral component is of interest, while the positions (timing points)
rate predictions. As the real-time trajectory has to be compared to re fixed according to pre-defined routes. Furthermore, the simi-
all historical trajectories, it may be beneficial to use a data access|arity measure has to be predictive: trajectories that are similar in

structure that enables pruning of some of the historical trajectories. the past are expected to be similar in the future. To the best of our
The requirements differ from those associated with the usual index- knowledge, similarity search in our context of collective transport

ing of multi-dimensional data or time series. First, the query length has not been discussed yet.

is not known in advance. Even if its length is fixed foverlapping Real-time prediction of bus arrival times has been studied for
indexes have to be created for each sub-sequence of lenigtin- a couple of decades, and automated vehicle location (AVL) sys-
thermore, the real-time trajectory grows as the vehicle proceeds.tems is an active research area within intelligent transport systems.
We thus expect that an incremental search algorithm may improve gys arrival-time prediction is an important part of an AVL system.
the average query performance. Commonly used prediction methods include Kalman filtering (KF),
The problem addressed in this paper is two-fold. First, we ana- g g., [4, 9, 22], and artificial neural networks (ANNs), e.g., [7, 11,
lyze possible distance measures for trajectories of vehicle moving 14, 15, 18]. Other machine learning methods such as support vector
on known routes. More specifically, we retrieve the NNT among machines [2] are also applicable.
the historical trajectories, using the available, partial real-time tra- A model that utilizes historical data and current conditions (in-
jectory from the start of the route until the most recently visited cluding weather) has been proposed [8]. Some researchers use
tlmlng point. The evaluation criterion is the prediCtion accuracy. Simp|e a|gorithms, e.g., prediction according to deviation from a
The near-future travel times may be of higher interest than later schedule [17]. A prediction model that includes detection of routes
ones; therefore, the system enables the prioritization of the pre-and continuous queries on future arrival times has also been pro-
diction accuracies of those. Second, efficient, real-time access topgsed [20]. KF prediction is mainly based on real-time data, al-
similar trajectories is needed. We propose a main-memory index though historical data can also be used as an external influence pa-
that enabies the I’etrieval Of trajectories Similar to a partiaL reai' rameter. KF Works well When On|y Short_term prediction is needed’
time trajectory and also enables updates to the query result as timesgyt deteriorates when prediction is needed for more than one time
for more timing points are received for the real-time trajectory. The step. ANNs and other learning methods are based on historical
index extends an existing approach to be incremental [10]. data. Their learning is computationally expensive; therefore, ANNs
The remainder of this paper is organized as follows. Section 2 cannot be updated in real time. In contrast, our proposed arrival-
covers I’e|ated Work in the areas Of Simiiarity Search and Vehicie time prediction technique aims to exp|0it all the historical data
travel time prediction. Section 3 defines the terms to be used throughyyajlable, and it does not require any external data, such as real-

out the paper and also the problem to be solved. Section 4 analyzesime traffic information, which promises easier integration into ex-
the distance measures and travel time prediction using those, whilejsting transport management systems.

Section 5 describes the data structure and algorithms for similarity
search. Section 6 presents experimental results. Finally, Section 7. PROBLEM DEFINITION

concludes. ) ] o ) ) ]
The problem discussed in this paper is two-fold. First, a distance

measure has to be found that allows the prediction of the future

2. RELATED WORK travel times of a vehicle based on historical data. Second, efficient
Considerable research has been conducted on similarity-basedaccess to historical trajectories is needed.

retrieval of one-dimensional time series, including sensor data, e.g., . .

[3], as well as 2-dimensional trajectories of moving objects. Vla- 3.1 Functionsand Data Representation

chos et al. [24] study the retrieval of longest common subsequences A vehicle's geometrical route in two-dimensional space is repre-

from vehicle trajectories, and they use a hierarchical clustering tree sented in a one-dimensional space using linear referencing, where

for data access. They compare only spatial coordinates, excludingthe position of each point is the distance from the start of the route.

the temporal component. Chen et al. [5, 6] use edit distance with A number of points of interest, termeiining points are chosen,

extensions (EDR). They propose pruning based on the combinationand are used for the representation of both routes and trajectories.

of Q-grams, a table of pre-calculated EDR distances, and frequencyn the area of collective transport, a natural choice of such points is

histograms. Pekelis et al. [19] propose a number of distance mea-the bus stops, since it is of interest to predict the arrival times for

sures for spatial, spatio-temporal, and speed-spatial similarity for those. Two subsequent time samples for the same timing point on a

the purpose of clustering. In their experiments, their measures out-route correspond to the arrival to and the departure from that point.

perform the EDR distance when used for clustering. Bakalov et

al. [1] group spatio-temporal trajectories into boundenyelopes Def. 1. A route R is represented as a sequence of poiRtsx

and further into an R-tree-like structure. Commonly used mea- (p,, ..., p,), where each poinp; is termed atiming point. The

sures, such as Dynamic Time Warping (DTW) that was first pro- points belong to a metric spad® and the value of; denotes its

posed for speech recognition [21], involve shifting and stretching total distance along the route from the start of the route; thus

and are therefore not suitable for the trajectories considered in thisp, ;.

paper. When the search space is restricted, as it is in the problem

discussed here, it is desirable to use those restrictions to obtain a A raw trajectory is formed straightforwardly by measuring the

faster performance and a more precise match. vehicle’s arrival at each timing point iR. Depending on the track-



ing policy used, position updates from a vehicle may, however, ar-  Def. 5. A distance measure is a functidn F, x F,, — RTUOQ

rive at different positions than those ® The movement predic-  that expresses the similarity between a real-time trajectary=

tion function used during the tracking can be used together with the (At ..., At,) and a historical trajectoryy, = (At], ..., At;). A
position updates to calculate the approximate travel times -betweensmaller value means that the argument trajectories are more similar.
the timing points. Issues related to trajectory representation are
covered elsewhere [23]. Here, it is assumed that a time sample is
available for each timing point, i.e(p;,t;) is available for all,
whether obtained directly or by approximation.

The optimalnearest neighbor of the trajectofy; is a trajectory
fonn that minimizes the prediction error for the future travel times
of the trajectoryfi,. Since the future is not known at the current
time, the fonn is only known after all travel times have been mea-

Def. 2. A raw trajectory functionf.., : T — R represents a sured.

vehicle’s positiorp € R attimet € T', and fraw (0) = 0. Def. 6. Given the current positiop..., the trajectoryfonn, is
defined as the trajectory from the set of historical trajectofigs
Function f..w is @ bijection: it is a non-decreasing, monotonous that minimizes the prediction errerr (to be defined shortly) with
function. The inverse function i§.. : R — T, where the time respect to the future segment of the query trajecfory
t € T is the travel time from the start of the route to the position . ,
p € R. From the above, a new functigh is derived by setting the fonn = argmin err(fux[peur+1, Pnl, ficlpeur+1,Pn]) -
time At to be the travel time between two subsequent pgingnd fael
pi+1. This representation is used by the distance measures covered When more than ong,., candidate is available, ties are bro-
in Section 4. Measuring the travel times instead of speed patternsken arbitrarily. The distancé(fur[peur+1, Pn], fonn[Peur+1, Pn])
enables the comparison of waiting times as well, whgre: p; ;1. is called the optimal distance.
At the current timet.., the optimal nearest neighbor is only
Def. 3. The trajectory functionf,, : R — AT € Fi, defines hypothetical. Theactual nearest neighbor of the trajectofy; is
the travel times between positions such tifiafp;) = At; is the the trajectoryf,, that minimizes the distance for the past segment
travel time betweep; 1 andp;. A trajectory is then represented as trajectory fi,. It is expected that the actual nearest neighbor will
a sequence of point®;, At;), where some or all of the time values  yield a distance that is close to the optimal when it is used in place
At; may be missing. On a fixed route, a trajectory is compactly of fo,n.

represented as a sequegdy, ..., At,), whereAty = 0. . " .
Def. 7. Given a current positiop.., and a distance measuie

the nearest neighbor of a query trajectgryis a trajectoryfn, €

In some cases, it is necessary to refer only to a part of a trajectory, L ;
Y y P J Y Fi, that satisfies the following:

denoted as a sub-trajectory, osegment.
fnn = argmin d(fr,r [po, pcur]y ft/r [pr pcur]) .

Def. 4. The part of a trajectory;, that is delimited by pointg; fireFi
andp; (i < j) inclusively, is denoted af. [p;, p;] and is termed a As before, ties are broken arbitrarily.
segment.

Finally, a vector that prioritizes the up-coming timing points with

When it is clear from the context, the limifs;, p;] are omit- respect to the prediction accuracy is needed. The points that are
ted, and the trajectory segment is simply denotegi.asWhen a more important are given higher weights, while the less important
real-time trajectoryf;. is considered, the segmefi [po, peur| IS points are given lower weights.
assumed, wherg.,, is the most recent timing point with a know . — .
time sample Ber gp Def. 8. A priority vector PV = (keur+1, ..., kn) defines the

importance of prediction accuracy for each future timing point. A
coefficientk; € [0, 1] indicates a higher priority when it is closer to
1. The valued means that prediction for the associated timing point
I’is not of interest. IfPV is not given,k; = 1 for all 7 is assumed.

The distance measure for trajectories is closely related to the
representation of the trajectories. Trajectory functfghcan be
viewed as am-dimensional point. It is desirable that the distance
measure be a metric, although this is not necessary. In general
pruning by distance requires that at least in some cases, it can be3.2 Problem Statement
inferred that “if | am far away from you, | am also far away from
your neighbors.” This enables comparison of only some pairs of 3.2.1 The Prediction Problem
trajectories in the given dataset, thus enabling pruning. Given a routeR = (po, ..., p), @ set of historical trajectories

The following requirements exist for a distance measure: F.,. and a real-time sub-tyrajéctoy'yr [P0, Pewr] ON FOUER (cur <

) . n — 1), atrajectoryfnn € F:: has to be found that gives the most
e Adelay dunn_g a segment should not cause a penalty during gccyrate prediction fofi: [pewr1, pn] With respect to the priority
subsequent timing points along the route. vectorPV.
e The measure should apply to subsequences of trajectories. The notion of “the most accurate prediction” still needs defini-

e The measure should compare only pairs of travel times in- tion. The prediction errogrr of the prediction/,,, = (Atiurits s
between the same positions of each trajectory. t,,) with respect to the future query trajectofy = (tcur+1, ..., n)
is a weightedL? distance, divided by the number of points where

k; # 0. Higher values of parameter suggest a preference for

) ~lower error variance, while lower values of parameteuggest a

e The measure should to some extent tolerate outliers (e.g., in- preference for a smaller average error, while some outliers can be
correct data). tolerated. The error is defined as follows:

n

e The measure should allow to compare trajectories with miss-
ing times for some timing points.

We proceed to define a general distance measure. Specific dis- ¢ (f,,, for, PV) =

_ _ ‘ ki(At; — AP .
tance measures are introduced in Section 4. Zk,ﬁeo 1 imcurtl



The trajectory that gives the minimum errat- is the optimal near-
est neighbotf,,, with respect to functiorerr. The problem de-

fined above is, however, unsolvable before the actual travel times

(Ateurs1, ..., Aty) are known. Therefore, heuristics are needed.
To make the problem solvable, it is redefined as follows.

Given a set of historical trajectorids, for route R, a distance
measurel has to be found such thdt, as defined by Definition 7
would give a small erroerr(fu: [peur+1, Pnls for, PV).

3.2.2 The Search Problem

Given a real-time trajectoryi,, an NNT has to be retrieved ef-
ficiently from the historical datasét... The length of the query is

divided by the query length

cur

>

i=cur—I+1

4.3 Other Measures

A number of distance measures for one-dimensional sequences
exist that might be applicable for trajectories when considering
these as-dimensional vectors. A correlation-based distasige=

(1,p

LP(for, fix) = (At; — ALL)P .

~|

B . . - .
m) , wherep is Pearson’s correlation coefficient, considers the
trajectories similar when they are proportional to each other. When

variable, and different distance measures must be accommodated¥Sing this measure, the times, predictedfpy, should be multi-
The aim is to propose a main-memory data structure and associ-Plied by the coefficient of the proportion. _
ated algorithms that reduce the search time when compared to a The Chebyshev distane&,, is the maximum distance between

sequential scan (SS), and that return correct results.

Given a routeR and an associated query trajectgky with an
arbitrary number of points, a threshaltlr4, and a distance mea-
sured, the trajectoryf,, that minimizesd (Definition 7) has to be
retrieved. The approximation threshafd-4 restrictsfn, to be no
further thandmin + thrq from the query, wheré.,i, is the distance
to the actual NNT.

4. DISTANCE MEASURES

two points in the trajectoriesi., = max |At; — At;|. This mea-
sure does not tolerate any outliers. It is an extreme case of the
LP-norm, wherep — co.

The Canberra distance is given by, = >, Atgai- The

point O is the furthest point when compared to any other point.
This measure would penalize unequal waiting times highly: the
time At; is often 0 when it is measured between the arrival to and
departure from a timing point.

In this paper, we further consider the”S S, andL? distances.

|At; — At

In this section we consider specific distance measures that are4.4  Relationship Between 7 and LCSS .,

appropriate for our problem setting. Many measures that are com-

monly used for comparison of time series, including Dynamic Time

Warping, are not appropriate: when the routes are fixed, exact po-

sitions have to be matched, and trajectory transformation (shifting
or stretching) is not allowed.

4.1 Longest Common Subsequence

Vlachos et al. [24] propose similar trajectory search based on a

We first consider the case where the data are normalized: the
value for each dimension is betweerand1. The L? distancel
between the trajectories that bound the datasetaad the distance
between identical trajectoriesis When L C'SS¢h: = 0 this means
that for each dimension |t; — t;| < thr. A distance ofl implies
that for each, |t; — t;| > thr. However, thel? distances between
trajectories that havé C'SS., distances 1 and 0, correspondingly,
can differ within an arbitrarily small value. Giveli = 0 implies

Longest Common Subsequence (LCSS) measure. With the help of LCSSy,, = 0. Itis true that:

hierarchical clustering, a tree is built and then used for the efficient
access to similar trajectories. Our setting with one-dimensional

LCSSihy - thr? < L < (1 — LOSSne)thr” + LOSS iy -

routes makes it possible to simplify the measure because the correfor non-normalized data, the” distance is divided bymaz —
sponding subsequences of two trajectories must be matched. Also,n)?, and the thresholdhr is divided by(maz — min), where

non-contiguous subsequences are possible.
Given the thresholdhr, the distancd. C'SSn, between two tra-
jectoriesf, and f{, is:

, 1
LCSSene(for, fle) = M 7
whereAt; € fi., At; € fi,, andl is the number of points used in
the query. The thresholthr is introduced to reduce unpredictable
(“white”) noise. The measure is robust to the presence of a small
amount of outliers; however, it is important to choose the right
that filters outliers and still captures the near trajectories.

4.2 1» Distance

Each point in the trajectory, can be viewed as a point in an
n-dimensionalL?-norm space. The most common variant of the
LP-norm is the Euclidean distance 3dhorm). This measure is a
metric, and its computation is efficient. Given the representation
of a trajectory as in Definition 3, the delays at some segments in
a trajectory do not influence the error penalty at other segments.
The higher thep value, the less tolerable are outliers. Given that
the trajectories are of equal length, th&-norm does not cause the
problem of choosing which segments correspond to which during
the matching. We use the”-norm distance to the power @f

min andmax are the boundaries of the data for each dimension.

The measures can be used in combination. We observe that: (1)
small LP and smallL CSSn, imply that for most dimensions, the
trajectories are close to each other; (2) sméland largel CSS in,
indicate that for most dimensions, the threshold is only slightly ex-
ceeded; (3) largd.” and smallL CSS.y, indicate the presence of
outliers; and (4) largd.? and largeL C'SStn, mean that for most
dimensions, the trajectories are far apart.

45 Weighted r» Distance

It may be expected that the most recent segment of a trajectory is
more important when predicting the near future that are older seg-
ments. In real road networks, the traffic is distributed unevenly in
different parts of a network. For example, while a vehicle is cross-
ing the downtown area, it will be faced with heavy traffic. Once it
enters a highway, its speed pattern changes. To accommodate this,
we propose to use a weightéd distance:

cur

1
% Z wi(Ati — At;)p )
=1

WL (fer, fir) =
whereW = (wo, ..., Weur), At; € fur, At; € fir, andk is the
number of non-zero weights;.

Weights may be constructed in several ways:



. No weights, meaning that all parts are equally important, and
w; = 1 for all 4.

wherewy...wx—1 = 0 andwyg...w, = 1. This generalizes
the above scheme.

. Linear weights, where; 1 = w; +a, if 1 > k—1; w; =0,
otherwise. This approach is a further generalization.

4. Polynomial weights of the forma; +1 = aw; if i > k; wy, =
1; andw; = 0, otherwise.
5. Pre-defined weights learned from historical data. Such corre-

lation-based weights are discussed next.

We propose to use the Kendalrank correlation coefficient [16]
for calculating correlation-based weights. This coefficient is ap-
plicable when non-linear correlations exist between the variables.
The travel times on different segments are likely to have complex
correlations. The variation. makes adjustments for ties (equal
values). It is defined as the number of pajrst;, At;) ordered
concordant (») minus the number of pairs ordered discordanf)(n
divided by the total number of pairs: = (n. — naq)/(ne + naq)-
A correlation table is built where each entry; is a correlation
coefficient between pointsandj. The table has(n — 1)/2 en-
tries (z; = 75 and7; = 1). Assuming that the real-time tra-
jectory fi. ends at poinp..r, the query length i, andj points
ahead should be predicted. Then the weighin the vectoriV =

(Weur—1, -y Weur) 1S defined as follows:
cur+j
w; = Z |le|PVk .
k=cur+1

Other correlation coefficients are possible (e.g., Pearson’s). We use

the Kendall rank correlation in our empirical evaluation, as higher
correlations exist (Section 6).

4.6 Using f.. for Prediction

The algorithm presented in Algorithm 1 explains how theg
can be used to predict future travel times. In the initialization phase,
an initial prediction is formed (line 1). When a new positignat
timet; is received, the valug € f;, is calculated, and the predic-

tion is revised. If the distance between the actual trajectory and the

prediction is less than the known (conservative) minimum distance
dmin plus a pre-defined thresholtir 4, the previous predictioffinn,

is returned (lines 5-7). The threshald-4 renders it possible to re-
duce the possibly time-consuming similarity searching. If needed,
a new (approximatef,, is located in the trajectory databage

and is returned as the current prediction (line 8). If more than one
fun €Xists, one is chosen at random.

Algorithm 1: Predict: continuous prediction

Input: Candidate sekt,, thresholdthry, distance functioml.
Output: Predictionfnn
1! fun < initial prediction; fir — (po, 0)
2: while Vehicle is on the routelo
3. Receive new; att;; At; «— t; —t;_1

D for — fero (ps, At;) Il new point

if d(fth fnn) < dmin + th"‘d then

return fon

end if

return argminft/rEFtr max(d(fer, f{;), dmin + thra)
end while

4
5:
6:
7.
8

9:

5. SIMILARITY SEARCH

When there is no index present, the NNT method requires a se-

. Equal weights considering only the most recent sub-trajectory,guential scan of the historical data every time the prediction needs

to be revised: the distance is computed for each historical trajec-
tory, and the one that minimizes this distance is returned. This
procedure can be time-consuming, especially when the queries are
long and the trajectory database is extensive. We propose a main-
memory index that reduces the amount of the trajectories that have
to be compared. The list-based index with the threshold algorithm
(TA) [10] is extended to support continuous queries. We present an
incremental algorithm ITA that updates tlfig, when a new point

in fi is received. The index supports various distance functions,
including LCSSthy, LP, and WL?, and it also allows NNT search
using more than one distance function simultaneously.

51 Queries

A static queryQsx~ = (fir[pi, pj], d, PV, thra) consists of a
trajectory segmenf:, with times (At,, ..., At;), a distance func-
tion d, a priority vectorPV, and a thresholdhrq. The most sim-
ilar trajectory fnn that minimizes the distance functiahhas to be
retrieved with an approximation threshafq.

Aicontinuous querWCNN - <ftr[p07pcur—l]7 <pcu'r,Atcur>7
d, PV ,thrq) receives subsequent points as the vehicle proceeds
along its route. The initial query is a static queigt:[po, 1], d,
PV, thra), wherel > 1 is the query length. Given the most recent
query trajectoryfi:[po, pcur—1], an update of the quer)onn at
time ... is the travel timeAt.,, between point®cur—1 andpcur-.

5.2 Data Structure

For a routeR = (po, ..., pn ), a structureC = (L1, ..., L, ) with
n lists, where each list; corresponds to the segment between tim-
ing pointsp;_1 andp;, is created. Each entryin a list L; is a
nodeL;[j] = (At;,id), whereAt; € fi, is theith travel time in
the trajectoryf.., andid is the identifier of the trajectory,. List
L; is ordered by the travel timA¢; of all trajectories in the data-
base. Each entry in the list can be accessed randomly by the index
j. The main memory has to store both the list structure and the
array of the trajectories (it is not necessary to store the valtes
repeatedly—they can be accessed in constant time from the indexed
array of trajectories byd and:). The trajectory that corresponds
to an entryj in list L; is denoted a€;[j] 1.

5.3 Search Al

5.3.1 Threshold Algorithm

The Threshold Algorithm (TA), proposed in [10], uses the index
structure£ from above. It was originally designed to answer top-
k queries, where the attributes of the objects in the database are
stored in lists, one list per attribute, ordered by the ranks of the at-
tributes. A monotonic, continuous functigfws, ..., v., ) grades an
object, where; is the value of an attribute from the corresponding
list L;. The lists can be searched using an arbitrary set of attributes,
given the functiory. The query trajectory i0, ..., 0), the lists are
accessed starting from the top in parallel, and the fungtisreval-
uated for each objedt;[j] T that has not been seen yet. A lower
boundB = f(v1,...,Um) is calculated when a new entry is ac-
cessed, wherg; isthe most recently seen value in the list When
k objectsL;[j] 1 are found such that(L;[j] 1) < B, the algorithm
stops. Itis proved that the correct témbjects are returned. The
TA algorithm can be used to answer a static qu@gun, where
g(ft/r[p’“pj}) = d(ftr[phpj}?ftlr[pivpj])’ and ftr[pi,pj} is the
query.

We extend the TA algorithm to be incremental (ITA), and to an-

gorithms



swer NNT queries from a givel-dimensional point. The focus is
on top-1queries, though the algorithm is easily extended to sup-

Algorithm 3: SortedLists.IncrementalSearch (ITA): a new
point is received in the current trajectory.

port top-kqueries: rather than stopping when one NNT not further
than the bound is found, the algorithm continues UntINTs are
found. The middleware that passes the incremental query to the
index can be responsible for maintaining the history.

5.3.2 Static Query

The Qsnn~ query processing algorithm is listed in Algorithm 2.
The algorithm is similar to TA, except that only one listis searched.
This is done so that binary search needs to be performed only once;
furthermore, by choosing the optimal li&t for search, the bound
B is expected to grow faster than in TA for some measurdsor
example, ifp > 1 in the L? distance, a greater difference at one
point to the power op grows faster than the sum of the differences
to the power ofp spread out among points. The WL? search
is presumably more efficient when the list with the highest corre-
sponding weightv; is chosen.

Algorithm 2: SortedLists.StaticSearch: search once.
,t;), thresholdthrq, query

Input: Real-time trajectoryftr = (4, ...
lengthl.
Output: Predictionfyn

Input: Real-time trajectoryfs,, the most recent predictiofun;, a
new point(pcur, Atcur), thresholdihrq, distance functiom,
query lengthl.

Output: Predictionfun;

1 ftr — ftr o} (pcu'm Atcur)
2:if dl(ftr,fnnl) > Bj_1 + thrq then

3: i« BinarySearch(Lcur, Atcur); B1 « d1(Atcur, Leur[i])

4: while dl(ftr, fnnl) — thrq > Bi_1 + dl(Atcur, Lecur [Z]) and
L ¢y has more elementio

5: for all k € 2..1do

6: if dk(LCUT'[i]T7ftr) < di(frmk7 ftr) then

7 fnn]g — Lcur[l]T

8: end if

9: end for

10: i« next(Lcur, Atcur)

11: endwhile

12: end if

13: for all k € 2..1do

14: if fun, is foundthen

15: By = dg—1(fer; fang—1)

16: dse

17 By < Bg—1 + d(Atcur'y Lcur[l})
18:  endif

19: end for

20: return fnn,

1: Ly « searchlistinZ, s € [, ..., j]

2: i < BinarySearch(Ls, Ats)

3: frm — Lé[l}T

4: whiled;(fer, fan) — thrq > d(Ats, Ls[i]) and L, has more
elementgo

5 it di(Ls[i] T, ftr) < di(fun, fer) then

6: fon < Ls[i]T

7.  endif

8. i« next(Ls, Atcur)

9: end while

10: return fon

5.3.3 Continuous Query

The incremental algorithm for processing tlien~ query is
listed in Algorithm 3. It remembers the search results from the
previous run. Denotd., as the query using the most recent
points. Thenf.n, is the nearest neighbor ¢f.,, dx is the dis-
tanced( fany, firy,), @nd By is the minimum bound fot,. The
trajectoriesfun,, £ = 1,..,1 are simultaneously searched using
the 1 to [ most recent points. The algorithm is applicable for all
functionsd that satisfy:

dk(f“mft,rk) = dkfl(ftrkfhft,rkfl) + dl(ftrhft/rl) . (1)

The WL? satisfies (1) in-between the iterations, while in the same
iteration, the distance functiod, uses the weight vectdi/;
(Weur—1y -y Weur—1+k) that is different for eack.

The minimal boundB;. is maintained for eacll; during the
search. When the query is issued for the first tilBg, = 0 for
all £ = 1,...,1, and thef,n,, are unknown. Otherwise, the algo-
rithm starts withBy, = Bk_1, and fun, = fany_; Or unknown,
k = 2,...,1. The starting point_..,[¢] that is closest ta\t.,, is
located in the search lidt.., using binary search (line 3). The
algorithm continues untif..,; is located (lines 4-11), in each itera-
tion shifting L... [¢] to be the next closest point iyt (line 10).
Oncedy, < By, the NNT fun, = Leur[i] T is located, and the
bound is set taB;, = d;. for the next iteration (line 15). If it is of
interest to locatefyy, for all k, the algorithm can only stop when
they all are found. If thresholthrq > 0, this is added to the bound
B,. Atthe end of an iteration, the bounds are calculated for the next
iteration (lines 13-19).

The lists are visualized in Figure 1. The query lenbth 4, and
At € fany is used to predici\t.... When the actual\t.., be-
comes known, the prediction is revised. The valMg,,,. € funs
limits the search: the new.,, is listed no further thanl, =
|Atcyr — Aty | inthe list Ley,. With LOSS 4, it is never neces-
sary to search more than withinin (¢hr, ds) from the query point.

fr  eeeeemeeeseenes frna fna
L1 L2 L3 L4 cur
At
max.
search
A
U
At
v

Figure 1: List-based indexing

The correctness of the algorithm, when all lists are searched in
parallel and the query is static, is proved elsewhere [10]. Though
our proposed both static and incremental algorithms search only
one list, the principles are the same: the lower bound is calcu-
lated according to the most recently read values in the list that is
searched, and the other points do not contribute to the increase of
the bound. Next we prove that the incremental algorithm returns
the correct result.

LEMMA 1. Given a query of length on points(pcur—i+1, ...,
Dewr)y for = Ateur—i41, ..., Ateur, and a database that contains
the corresponding ordered listSLcyr—i+1,...,Leur (@S described
above). Then algorithm ITA returns th&,, that minimizes the



distanced; = d( fir, fan;) (With an allowed approximation thresh-
old thra).

PROOF. The case when all entries in the list,,. are accessed
is trivial: the fun, that are within the minimum distance from the
query are found for each. Otherwise, the algorithm has found an
Sang, Whend(fir, fang) < B, if thrqa = 0, orwhendy (fer, fang)
< By + thra, if thra > 0. We prove it whenB;, > 0 using the
induction principle, where the iterater is the sequence number
of the most recently received poiji,, At ) in the query. First
let's consider the case whehrq = 0. At step0, B, = 0 for all &,
and the algorithm works as in [10], except that ITA searches only
one list, and the lower bounB;, is d(0, ..., 0, L;[i]). Assume that
the algorithm works correctly at step — 1: after it has stopped, if
di(fery fang_1) < Br—1, the trajectoryfun,_; is an NNT of the
query of lengthk — 1; otherwise,fun,_ is still not located, and
the actual shortest distandg_1 > Bx_1. Now consider stepn,
renamingBy, from the previous iteration t&;,. Using (1), for any
trajectoryfi.:

di(for, fix) = di—1(fers fex[Pm—k41,Pm—1]) +
d(ftr[p'm]: ft’r[prnD 2 Blfcfl + d(ftr[p'm}» ft/r[p'm]) = Bk .

This means that going further in the liBt, (increasingd( fx[pm],
fte[pm])), the current minimum bounB;, will only increase. Once
the currentfy,y,,, is within a smaller distance from the query than
the bounddy (fir, fi-) < Bx, no closer trajectories exist. If the
algorithm terminates beforg.,,, is located, for the next step, the
boundB;, is setto beBy, = Bj,_1 + d(fo[pm)], fiz[Pm]), Which is
the currently known smallest possible distance. The trajegiary
is always found as this is the stopping condition of the iteration.
Approximate NNT search is also discussed elsewhere [10]. |
the algorithm stops whed; (., fun;) < Bi + thrq, the closest
trajectory that can exist is within distanés, i.e., no further away
thanthrq from the returned approximag@,;. [

=

Figure 2 illustrates ITA by an example. The identifiers of the
trajectories aref;, i = 1,...,4, and each arrow points to a value
At; in the corresponding list;. Assume that a queryfi,, =
<"'[p1€—3a 3]5 [pk—27 4]3 [pk—lv 3])7 [pk7 3]7 d = le thra = 0> is
issued. The query length is= 3, and the most recent NNT i,
whered(fs, fir[pk—3,pr—1]) = 6. The initial bounds before list
Ly is first accessed arB, = 0, Bo = 4, Bs = 5 (they were ob-
tained in the previous steps, when searching lists; andLj_o).
After the binary search i, where the closest entrfs — 4 is
located, the bounds are updated toBe= 1 B, = 5, B3 = 6,
andd(fs, fe|[pr—s, prk—1]) = 6. As this distance equals the value
of Bs, the search stops, and the current nearest neighbor igsstill

Ly L2 L1 L
fi>11 >3 | f;>1]| f,>1
fz>2 1 f1>4 | ,>2 | f;>1
f4->5 || f3->5| f3->5| f3->4
fo->7 || f4,>6 | f4,->6 | f,->6

Figure 2: I TA search example

5.4 Memory Resources
We expect that the main memory is sufficient to store the index

containing 5000 trajectories on a route of length 50, the data takes
up only 500kb. The index as a minimum stores the identifiers of
the trajectories im x m positions. If each identifier is allowed 2
bytes, this results idnm kb = 1 MB. The algorithm itself needs
to remember only a small constant number of values for each real-
time trajectory. Hence, even with few hundreds of different routes,
the data does not need to be looked up on the disk during the search.
The index can also be used by different applications than trans-
port systems, where very large databases have to be handled. In
general, the prediction model can be applied to any time series
where one dimension is fixed (e.g., the times when a measurement
is taken), and where the past behavior is expected to predict the fu-
ture. A disk-based TA is available elsewhere [10]. A disk-based
ITA is also possible; however, the discussion is beyond the scope
of this paper.

6. EMPIRICAL EVALUATION

The NNT-based prediction was empirically evaluated using both
real and synthetic data, and the prediction accuracy was measured.
Furthermore, CPU time was measured for ITA, the proposed search
algorithm, comparing it to both TA and sequential scan (SS).

6.1 Experimental Setup

Our data generator produces trajectories on a route of length
clustered intacnum overlapping clusters. Each point on the center
of the clusterC;, i = 0, ..., cnum — 1, is uniformly distributed
in the interval[start, end], where the start of the interval is deter-
ministic, start = min 4+ (maz — min)i/cnum, and the length
of the interval is a random multiple dfmaz — start)/c. Here
[min, maz] is the range of values thaki¢; can take. Each clus-
ter hasm/cnum trajectories, wheren is the total number of tra-
jectories. Each point in a trajectory is randomly displaced from
the center of the cluster within the maximum radius A clus-
ter is further divided into two overlapping clusters, each of them
with a radius of3/4r. A given percentage of point outliergeut,
uniformly distributed in[min, maz], are picked randomly among
all points. A given percentage of cuts in the trajectorjes;, in-
troduces random “jumps” to another cluster at random points. A
change of clusters at pre-defined points for all trajectories is de-
fined by the numbeseg. If seg > 1, the trajectory is divided into
equal segments, every second segment being assigned to another
randomly chosen cluster. More details and the source code can
be found atht t p: / / t ransdb. cs. aau. dk/ under “publica-
tions”. The default parameters are listed in Table 1.

The real data was collected from the buses traveling on line 1
in Aalborg, Denmark. A sub-route (having the most data) with 23
stops and 228 traversals was chosen, atihiag pointis either an
arrival to or a departure from a bus stop. The mean travel or wait-
ing time per segmerip;, pi+1] is 43.5s, and the average standard
deviation ofAt; is 27.6 s.

6.2 Evaluation of the Similarity Measures

A set of experiments was performed, where the value of one pa-
rameter is varied in each experiment, and the average prediction
error err per point is measured. The error with two different’
is evaluated: predicting the arrival time only for the nearest point
in the future (“next’,PV = (1,0, ...,0)), and predicting the full
future trajectory (“all’,PV = (1,...,1)). The distanced' (“L”)
and LCSS,, (“LCSS™) were tested in most experiments. Fur-

and data for transport-related applications. The travel times of the thermore, we experiment with incremental weights= (1, ..., n)

historical trajectories are stored in an indexed array of sizem,
wherem is the number of trajectories andis the total number of
points in one trajectory. Allowing 2 bytes fdx¢;, with a database

(“WL"), correlation-based weights (“*CWL”), and different thresh-
olds thr. The prediction is revised every time a new point is re-
ceived. The parameteris set tol as the initial tuning showed



Table 1: Default parameters Real dataj: 1-25, next Real dataj; 1-25, all

Route lengtm 50 25 ; Wﬁ e ;g o W% ———
Query lengthl 5 24 CWL ---o--- o L\ LCCVgg ---0---
Number of trajectoriesn 500 23 *o? .
Point and trajectory distortiopout, peut 5%, 50 %
Number of clustergnum 10 22 |
Time interval per segmeituin, maz] [60, 600] s 21
Cluster radius- 20s 20
Thresholdthr in LCSS ¢hr 10s
Prediction thresholdhr 4 0 19
Weight incremeninc = wiy+1 — w; 0 18
Number of segments gf, in different clusterseg 1 0 5 10 15 20 25
Prediction errorerr L’ (a) err against, next point (b) err against, all
that increasing reduces the prediction accuracy. The combination LCSS, thr: 2-100 l:1-25
of the WL? and LCSS,, measures does not appear to improve 80— n.r=20 ------- 65 — nextl, — —
the prediction accuracy. This method requires a carefully designed 70 r?.' :zgg o _,0"9 60 | Lglgg fffff
switching mechanism, which is beyond the scope of this paper. ar=50 —o? o 550 n:)I(ItLCSS T
R : S 1\
6.2.1 Real Data Doy oo™ 8 =
The query length was varied from 1 to 25 points in steps of 50 [ ’,ef:g/./ g K
2, and the performance of various measutegas evaluated (Fig- 40 :\6_9.0;"/ -
ures 3(a), 3(b)). The prediction error is quite similar for all dis- R
tance measures, and it decreases when the query length grows. The 30 |- -
correlation-based weights yield the best prediction, when used to- N
gether with long queries. Such weights are the most flexible and al- 2o L LI LI

20
low to select thef,,,, based on those points that are expected be the 0 20 40 60 80 100 o 5 10 15 20 25

most informative. The average optimal distance g, (the min- (c) err against, r = 20 orr = 50 (d) err against
imal err) was measured to be around 10 s—only with very long

queries does the actual error approach this number. In the sub-
sequent experiments we use synthetic data, which allows to test

various parameters and search in a more extensive dataset.
. best results, when long queries are allowed. Wi’ measure can

6.2.2 Varylng Threshold achieve similar accuracy, ard’ is the least accurate. This is be-

The thresholdthr in LOSS¢n, distance was varied from 10 to  cause only some segments of trajectories are correlated, while the
100s in steps of 10s (Figure 3(c)). The optimal threshold for the others should be left out. Very short queries are not sufficient, as
data generated with default parameters is around 10's, though it in-they do not have time to “learn” the repeating pattern. However,
creases when the within-cluster deviatiomcreases. The thresh-  when no correlations are discovered, the correlation-based weights
old is directly related to the variance of “white noise”, i.e., the un- diverge to equal weights for all points. The observations lead to the
predictable deviation from the travel pattern. general conclusion that the weights and the query length should be

chosen according to the properties of the data.

Figure 3: Prediction error

6.2.3 Varying Query Length

The length of the query was varied from 1 to 25 points in steps of 6.2.5  Varying the Number of Clusters
2 (Figure 3(d)). For bottL? and L C'SS. distances, the short-term The number of clustersnum was varied from 0 to 20 in steps
prediction is the most accurate when the query length is around 5of 2 (Figure 4(b)). For all measures, the prediction error grows
points, while for longer term prediction, longer queries (10 points) together with the number of clusters—the overlap of the clusters
are preferred. Both distance measures give similar prediction er-increases, and the points are spread out in a larger space. The in-
ror for short-term prediction, and the” distance is slightly better  crease is especially rapid for the prediction of the full trajectory: the
for long term prediction. The reason for the decrease of accuracy choice of thef,,, from an incorrect cluster has a significant effect
when too long queries are used is that the trajectories may changeon the prediction error.
their patterns unexpectedly—Ilong queries do not adjust to rapidly

changing conditions, while shorter queries are more flexible. 6.2.6 Varying the Percentage of Outliers
. . . The percentage of outliefs,.. was varied from 0% to 20 % in
6.2.4 Testing Weight Assignment Methods steps of 2% (Figure 4(c)). The prediction error increases rapidly in

We have evaluated th&L” measure using correlation-based all cases, as more points in the trajectories become unpredictable,
weights (“CWL"), incremental weights (“W), and no weights and these points also prevent the indentification of similar trajecto-
(“L™), when seg = 5: each trajectory changes its cluster every 10 ries that would give adequate predictions. We have noticed that in-
points, though some of the clusters periodically repeat. The query creasing the query length does not improve the prediction either—
length! was varied from 1 to 25 points in steps of 2 (Figure 4(a)). presumably, more outliers in long queries lead to the selection of
Similarly to the real data, the correlation-based weights give the incorrect patterns (trajectories from further away clusters).



significantly more efficient. The incrementally updated bounds in

Test weights]: 1-25 cnum: 0-20 ITA allow to stabilize the CPU time, even when the query length
110 - nextL 40 — R increases, while the efficiency of TA drops more noticeably. Using
100 [\ nextayvﬁ T 38 e weights decreases performance slightly: they do not allow the dis-
90 7\\\\ all WL —— - 6~ - *J’/ tance function to be calculated incrementally in the same iteration.
N next CWL ---o--- 34 7,77 The LCSStnr measure is the most efficient with real data, since the
80— X \all CWL -~-- 320/ nextl —— threshold limits the search.
70 A 30 7’/ tLg!]Sé ***** ITA with synthetic data, when queries are long, gives the im-
60 28 1 n%>|<| LOSS - .- provement ratio of 4 to 6 (Figure 5(b)), while TA only works well
50 with very short queries. Though the CPU time increases linearly
together with the increasing number of clusters (Figure 6(a)), the
40 increase is much slower when compared to SS. TA gains much less
30

in performance with clustered data, as it has no prediction mem-
0 5 10 15 20 25 ory. With a high number of outliers (Figure 5(c)), the performance
(@) err against, seg = 5 (b) err againstcnum of TA approaches the performance of SS, and ITA stays efficient.
When the future becomes less predictable (Figure 5(d)), the incre-
mental search becomes less efficient, though the advantage of ITA

Pout: 0-20% Peut: 0-200% versus TA remains significant. Only with large amounts of data and
65 —  nextL 80 — nextL clusters is TA preferable over ITA (Figure 6(b)) due to a large num-
- alL ——--- = al, ————- - . !
60 nextLOSS s L 70 next LSS L ber pf candidate NNTs for each query (the numbgr of (;Iusters did
55 — AN L.OSS —.—— . all LCSS - - -, 7" not increase together with the total amount of trajectories). When
50 — 4 60 . queries are long, ITA always preserves the advantage.
45 |- il -
40 |- P
35— //'//” Real dataj: 3-25 l: 3-25
30 -7 8 12
25— 7L \ LITA ——
20 |- 10 | 4\ WLITA —--—-
15 \ \ \ I 10 \ \ \ \ 6 \ LCSSITA -------
0 5 10 15 20 0 50 100 150 200 81\ LIA —— -
S \\ LCSS TA —o—
(c) err againstpout (d) err againstpcus 4~ 6 - .
3 Al
Figure 4: Prediction error 2
2 —
1+~
. . 0 0 | | | | |
6.2.7 Varying the Percentage of Trajectory Cuts 0 5 10 15 20 25 0 5 10 15 20 25
The number of random cujs.. in the trajectories was varied (a) CPU ratio against (b) CPU ratio against

(at a random point a trajectory “jumps” from its current cluster
to a new one) from 0% to 200% of in steps of 20% (Fig-
ure 4(d)). The prediction error increases with the number of cuts Pout: 0—40% Peus: 0—200 %
for both types of distance measures, especially when predicting fur- 7
ther away into the future. This is as expected because the segment
of the trajectory after the cluster has changed is unpredictable. The
observations lead to the conclusion that only short-term prediction
is useful wherpe, is high.

o

(&)]

6.3 Evaluation of CPU Performance

The experiments were performed on a PC with an Intel Pentium
3 996 MHz processor, 512 kb of RAM, and the Windows XP OS. 2
The code was written in C#, running on the .NET Framework 2.0.
The performance measure is the ratio of the total CPU time for SS 1
against TA and ITA, CPU(SS)/CPU(TA) and CPU(SS)/CPU(ITA).
The CPU performance was evaluated for the different distance mea-  (c) CPU ratio againStout (d) CPU ratio againgtcut
sures, using both real and artificial data, and varying the default
parameters, cnum, m, pout, @Ndpcus, &S iN the experiments that
evaluate the prediction accuracy. Whes 1, the list search uses
log, m time instead ofn as does SS. This result is omitted from
the graphs.

The real data requires similar CPU time as the data generated7- CONCLUSION
with no clusters (Figures 5(a) and 6(a)): the improvement of ITA  This study reported upon in this paper aims to explore the suit-
with L?, when compared to SS, is nearly a factor of 2 in most ability of similarity measures for history-based travel-time predic-
cases, and the queries that look only into the most recent past ardions for vehicles traveling on known routes. The underlying hy-

0 5 10 15 20 25 30 35 40 0 50 100 150 200

Figure5: CPU performance



pothesis was that similar trajectories from the past can be used to
predict the future travel behavior of a vehicle. Although propos-
als exist for similarity measures for trajectories of moving objects,
the settings corresponding to collective transport applications have

(a) CPU ratio againstnum

0

cnum: 0-20 m: 0.5K-5K
— 8 —
L o
6 Eal
5 )
4 TAl=5 ——
3 TAl=5 ————
ITA [ =25 ——-me-
2 TAL=25 - ——-
Y il e iy
1K 2K 3K 4K 5K

(b) CPU ratio against,

Figure 6: CPU performance

not yet been explored. We propose variations of the weighted
norm, WL?, and Longest Common Subsequent€SS ., which

are applicable for the comparison of trajectories that are restricted

(4]

(5]

(6]

(7]

8

—_

[9

—

(20]

(11]

[12]

to pre-defined routes. Furthermore, we propose a main-memory [13]
index for the efficient access to historical trajectories.

Empirical studies were performed with both real and synthetic
data. The trajectories in the real data do not form apparent clusters,
and they appear to be quite unpredictable. As a result, both the
prediction accuracy and performance are worse when compared

[14]

to the synthetic data, where the trajectories can be grouped into [15

clusters. Use of carefully chosen weights offers advantage over
the LP-norm, especially when only some segments of the trajec-

tories are correlated. TheCSS:y,, distance is in many cases the

most efficient to compute; it is also slightly less accurate than the
other measures considered. The proposed incremental algorithm,
ITA, proves to be robust and it processes the query several times

[16]

(17]

faster when compared to the sequential scan. When the data is[lg]

“predictable” (partially similar trajectories exist), and this is what
we expect when using similarity search, the incremental algorithm
(i.e., ITA) is significantly more efficient than the static threshold

algorithm (i.e., TA).

As a continuation of this work, we are developing an adaptive al-
gorithm that evaluates the accuracy of a library of available predic-

[19]

tion algorithms in real time and then uses the prediction algorithm [20]

that yields the most accurate predictions for the near past. The
objective is to always use the most accurate prediction algorithm

given the (ever changing) environment.
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