
Similarity-Based Prediction of Travel Times for Vehicles
Traveling on Known Routes∗

Dalia Tiesyte
dalia@cs.aau.dk

Christian S. Jensen
csj@cs.aau.dk

Department of Computer Science
Aalborg University, Denmark

ABSTRACT
The use of centralized, real-time position tracking is proliferating
in the areas of logistics and public transportation. Real-time po-
sitions can be used to provide up-to-date information to a variety
of users, and they can also be accumulated for uses in subsequent
data analyses. In particular, historical data in combination with
real-time data may be used to predict the future travel times of ve-
hicles more accurately, thus improving the experience of the users
who rely on such information. We propose a Nearest-Neighbor
Trajectory (NNT) technique that identifies the historical trajectory
that is the most similar to the current, partial trajectory of a vehicle.
The historical trajectory is then used for predicting the future move-
ment of the vehicle. The paper’s specific contributions are two-fold.
First, we define distance measures and a notion of nearest neighbor
that are specific to trajectories of vehicles that travel along known
routes. In empirical studies with real data from buses, we evaluate
how well the proposed distance functions are capable of predicting
future vehicle movements. Second, we propose a main-memory in-
dex structure that enables incremental similarity search and that is
capable of supporting varying-length nearest neighbor queries.

1. INTRODUCTION
Geographical positioning and wireless communication technolo-

gies enable centralized, continuous position tracking of moving ve-
hicles. A number of applications in the areas of logistics, transit
services, cargo delivery, and collective transport involve the man-
agement of fleets of vehicles that are expected to travel along known
routes according to fixed schedules. Positions accumulated during
this process form vehicle trajectories. A trajectory is a function
that, given a time, returns the position of a vehicle as it traverses its
route. Such trajectories are useful for subsequent analysis and for

∗This work was funded in part by the Danish Research Agency’s
Programme Commission on Nanoscience, Biotechnology, and IT.
The early stages of this work were performed at School of Com-
puting, National University of Singapore, where the guidance of
Profs. Mong-Li Lee and Wynne Hsu was invaluable. The authors
also thank Man Lung Yiu for excellent ideas and fruitful discus-
sions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS ’08, November 5-7, 2008. Irvine, CA, USA
(c) 2008 ACM ISBN 978-1-60558-323-5/08/11 ...$5.00.

predicting more accurately future travel times, thus improving user
experience and reducing operational costs. Commercial systems
already exist that manage vehicle positions in real time and pre-
dict the future movements of the vehicles. For example, the pub-
lic buses in the Aalborg region (Denmark) are equipped with PCs,
GPRS-based connectivity to a central server, and GPS devices for
positioning. The system also includes on-line displays at the cen-
tral terminal and major bus stops that provide real-time bus arrival
information to the passengers. While methods for travel time pre-
diction for buses are available today (discussed in more detail in
Section 2), more accurate and general prediction is needed that is
easy to integrate into various existing systems. The prediction ac-
curacy is of interest not only to passengers, but also to the carriers.
In some countries (including Denmark and the UK), the carriers are
penalized if the bus arrival times that are provided to the passengers
are not close to the actual times.

The travel times of vehicles traveling on public roads are influ-
enced by a number of hard-to-predict factors (e.g., traffic accidents,
weather conditions, unscheduled events) as well as factors that are
known in advance (e.g., the time of the day, the day of the week,
holidays, major public events). It is infeasible to enumerate all such
factors, but it may also not be necessary. We believe that by using
similar trajectories from the past, in many cases it is possible to
predict the future travel of a vehicle en route with good accuracy.
Specifically, as the vehicle moves along its route, it is possible to
find the past trajectory that most resembles the travel by the vehicle
so far, denoted the Nearest Neighbor Trajectory (NNT). The future
part of this trajectory is then used for predicting the future travel
behavior of the vehicle.

The use of historical trajectories for real-time prediction of vehi-
cle movement requires a notion of similarity (or distance) between
vehicle trajectories. A number of authors (discussed in Section 2)
propose distance measures for time series and two-dimensional tra-
jectories, where the main focus is on spatial similarity. In our case,
the requirements are different:

• Since the vehicles are traveling on known routes, their move-
ment can be considered as one-dimensional: the position of
a vehicle is defined as the distance it has traveled from the
start of its route.

• The trajectories to be compared are expected to have the
same lengths. The samples that make up the trajectories are
taken at fixed locations, called timing points, along a route;
times for some timing points may be missing.

• Since the timing points are fixed, it makes little sense to
stretch, shift, or otherwise transform a trajectory. It is only of
interest to compare travel patterns on exactly the same seg-
ments of a route.

• The similarity measure should allow to choose such trajec-

tory that is expected to give the best prediction for the future,
even though the past may differ at some points.

As a vehicle proceeds along its route, the NNT-based predic-
tion of its movement has to be revised periodically—it is possible
that the actual movement has deviated from the prediction, making
it appropriate to form a new prediction. Having available a large
amount of historical trajectories is expected to result in more accu-
rate predictions. As the real-time trajectory has to be compared to
all historical trajectories, it may be beneficial to use a data access
structure that enables pruning of some of the historical trajectories.
The requirements differ from those associated with the usual index-
ing of multi-dimensional data or time series. First, the query length
is not known in advance. Even if its length is fixed tol, overlapping
indexes have to be created for each sub-sequence of lengthl. Fur-
thermore, the real-time trajectory grows as the vehicle proceeds.
We thus expect that an incremental search algorithm may improve
the average query performance.

The problem addressed in this paper is two-fold. First, we ana-
lyze possible distance measures for trajectories of vehicle moving
on known routes. More specifically, we retrieve the NNT among
the historical trajectories, using the available, partial real-time tra-
jectory from the start of the route until the most recently visited
timing point. The evaluation criterion is the prediction accuracy.
The near-future travel times may be of higher interest than later
ones; therefore, the system enables the prioritization of the pre-
diction accuracies of those. Second, efficient, real-time access to
similar trajectories is needed. We propose a main-memory index
that enables the retrieval of trajectories similar to a partial, real-
time trajectory and also enables updates to the query result as times
for more timing points are received for the real-time trajectory. The
index extends an existing approach to be incremental [10].

The remainder of this paper is organized as follows. Section 2
covers related work in the areas of similarity search and vehicle
travel time prediction. Section 3 defines the terms to be used through-
out the paper and also the problem to be solved. Section 4 analyzes
the distance measures and travel time prediction using those, while
Section 5 describes the data structure and algorithms for similarity
search. Section 6 presents experimental results. Finally, Section 7
concludes.

2. RELATED WORK
Considerable research has been conducted on similarity-based

retrieval of one-dimensional time series, including sensor data, e.g.,
[3], as well as 2-dimensional trajectories of moving objects. Vla-
chos et al. [24] study the retrieval of longest common subsequences
from vehicle trajectories, and they use a hierarchical clustering tree
for data access. They compare only spatial coordinates, excluding
the temporal component. Chen et al. [5, 6] use edit distance with
extensions (EDR). They propose pruning based on the combination
of Q-grams, a table of pre-calculated EDR distances, and frequency
histograms. Pekelis et al. [19] propose a number of distance mea-
sures for spatial, spatio-temporal, and speed-spatial similarity for
the purpose of clustering. In their experiments, their measures out-
perform the EDR distance when used for clustering. Bakalov et
al. [1] group spatio-temporal trajectories into boundingenvelopes
and further into an R-tree-like structure. Commonly used mea-
sures, such as Dynamic Time Warping (DTW) that was first pro-
posed for speech recognition [21], involve shifting and stretching
and are therefore not suitable for the trajectories considered in this
paper. When the search space is restricted, as it is in the problem
discussed here, it is desirable to use those restrictions to obtain a
faster performance and a more precise match.

Hwang et al. [12] propose a similarity measure for spatio-tem-
poral trajectories of vehicles. Similar trajectories are required to
traverse the samepoints of interest(POIs). TheLp-norm is mea-
sured in-between arrival times to the POIs. Subsequent work by
the authors [13] also introduces TOIs, times of interest, which is
a general concept used to define peak times, weekends, etc. The
trajectories we consider are different in that only the relative tem-
poral component is of interest, while the positions (timing points)
are fixed according to pre-defined routes. Furthermore, the simi-
larity measure has to be predictive: trajectories that are similar in
the past are expected to be similar in the future. To the best of our
knowledge, similarity search in our context of collective transport
has not been discussed yet.

Real-time prediction of bus arrival times has been studied for
a couple of decades, and automated vehicle location (AVL) sys-
tems is an active research area within intelligent transport systems.
Bus arrival-time prediction is an important part of an AVL system.
Commonly used prediction methods include Kalman filtering (KF),
e.g., [4, 9, 22], and artificial neural networks (ANNs), e.g., [7, 11,
14, 15, 18]. Other machine learning methods such as support vector
machines [2] are also applicable.

A model that utilizes historical data and current conditions (in-
cluding weather) has been proposed [8]. Some researchers use
simple algorithms, e.g., prediction according to deviation from a
schedule [17]. A prediction model that includes detection of routes
and continuous queries on future arrival times has also been pro-
posed [20]. KF prediction is mainly based on real-time data, al-
though historical data can also be used as an external influence pa-
rameter. KF works well when only short-term prediction is needed,
but deteriorates when prediction is needed for more than one time
step. ANNs and other learning methods are based on historical
data. Their learning is computationally expensive; therefore, ANNs
cannot be updated in real time. In contrast, our proposed arrival-
time prediction technique aims to exploit all the historical data
available, and it does not require any external data, such as real-
time traffic information, which promises easier integration into ex-
isting transport management systems.

3. PROBLEM DEFINITION
The problem discussed in this paper is two-fold. First, a distance

measure has to be found that allows the prediction of the future
travel times of a vehicle based on historical data. Second, efficient
access to historical trajectories is needed.

3.1 Functions and Data Representation
A vehicle’s geometrical route in two-dimensional space is repre-

sented in a one-dimensional space using linear referencing, where
the position of each point is the distance from the start of the route.
A number of points of interest, termedtiming points, are chosen,
and are used for the representation of both routes and trajectories.
In the area of collective transport, a natural choice of such points is
the bus stops, since it is of interest to predict the arrival times for
those. Two subsequent time samples for the same timing point on a
route correspond to the arrival to and the departure from that point.

Def. 1. A routeR is represented as a sequence of points,R =
〈p0, ..., pn〉, where each pointpi is termed atiming point. The
points belong to a metric spaceP , and the value ofpi denotes its
total distance along the route from the start of the route; thuspi ≤
pi+1.

A raw trajectory is formed straightforwardly by measuring the
vehicle’s arrival at each timing point inR. Depending on the track-

ing policy used, position updates from a vehicle may, however, ar-
rive at different positions than those inR. The movement predic-
tion function used during the tracking can be used together with the
position updates to calculate the approximate travel times -between
the timing points. Issues related to trajectory representation are
covered elsewhere [23]. Here, it is assumed that a time sample is
available for each timing point, i.e.,〈pi, ti〉 is available for alli,
whether obtained directly or by approximation.

Def. 2. A raw trajectory functionfraw : T → R represents a
vehicle’s positionp ∈ R at timet ∈ T , andfraw(0) = 0.

Functionfraw is a bijection: it is a non-decreasing, monotonous
function. The inverse function isf−1

raw : R → T , where the time
t ∈ T is the travel time from the start of the route to the position
p ∈ R. From the above, a new functionftr is derived by setting the
time∆t to be the travel time between two subsequent pointspi and
pi+1. This representation is used by the distance measures covered
in Section 4. Measuring the travel times instead of speed patterns
enables the comparison of waiting times as well, wherepi = pi+1.

Def. 3. The trajectory functionftr : R → ∆T ∈ Ftr defines
the travel times between positions such thatftr(pi) = ∆ti is the
travel time betweenpi−1 andpi. A trajectory is then represented as
a sequence of points〈pi, ∆ti〉, where some or all of the time values
∆ti may be missing. On a fixed route, a trajectory is compactly
represented as a sequence〈∆t0, ..., ∆tn〉, where∆t0 = 0.

In some cases, it is necessary to refer only to a part of a trajectory,
denoted as a sub-trajectory, or asegment.

Def. 4. The part of a trajectoryftr that is delimited by pointspi

andpj (i ≤ j) inclusively, is denoted asftr[pi, pj] and is termed a
segment.

When it is clear from the context, the limits[pi, pj] are omit-
ted, and the trajectory segment is simply denoted asftr. When a
real-time trajectoryftr is considered, the segmentftr[p0, pcur] is
assumed, wherepcur is the most recent timing point with a know
time sample.

The distance measure for trajectories is closely related to the
representation of the trajectories. Trajectory functionftr can be
viewed as ann-dimensional point. It is desirable that the distance
measure be a metric, although this is not necessary. In general,
pruning by distance requires that at least in some cases, it can be
inferred that “if I am far away from you, I am also far away from
your neighbors.” This enables comparison of only some pairs of
trajectories in the given dataset, thus enabling pruning.

The following requirements exist for a distance measure:

• A delay during a segment should not cause a penalty during
subsequent timing points along the route.

• The measure should apply to subsequences of trajectories.

• The measure should compare only pairs of travel times in-
between the same positions of each trajectory.

• The measure should allow to compare trajectories with miss-
ing times for some timing points.

• The measure should to some extent tolerate outliers (e.g., in-
correct data).

We proceed to define a general distance measure. Specific dis-
tance measures are introduced in Section 4.

Def. 5. A distance measure is a functiond : Ftr×Ftr → R+∪0
that expresses the similarity between a real-time trajectoryftr =
〈∆t1, ..., ∆tn〉 and a historical trajectoryf ′

tr = 〈∆t′1, ..., ∆t′n〉. A
smaller value means that the argument trajectories are more similar.

Theoptimalnearest neighbor of the trajectoryftr is a trajectory
fonn that minimizes the prediction error for the future travel times
of the trajectoryftr. Since the future is not known at the current
time, thefonn is only known after all travel times have been mea-
sured.

Def. 6. Given the current positionpcur , the trajectoryfonn is
defined as the trajectory from the set of historical trajectoriesFtr

that minimizes the prediction errorerr (to be defined shortly) with
respect to the future segment of the query trajectoryftr:

fonn = argmin
f ′
tr∈Ftr

err(ftr[pcur+1, pn], f ′
tr[pcur+1, pn]) .

When more than onefonn candidate is available, ties are bro-
ken arbitrarily. The distanced(ftr[pcur+1, pn], fonn[pcur+1, pn])
is called the optimal distance.

At the current timetcur , the optimal nearest neighbor is only
hypothetical. Theactual nearest neighbor of the trajectoryftr is
the trajectoryfnn that minimizes the distance for the past segment
trajectoryftr. It is expected that the actual nearest neighbor will
yield a distance that is close to the optimal when it is used in place
of fonn.

Def. 7. Given a current positionpcur and a distance measured,
the nearest neighbor of a query trajectoryftr is a trajectoryfnn ∈
Ftr that satisfies the following:

fnn = argmin
f ′
tr∈Ftr

d(ftr[p0, pcur], f
′
tr[p0, pcur]) .

As before, ties are broken arbitrarily.

Finally, a vector that prioritizes the up-coming timing points with
respect to the prediction accuracy is needed. The points that are
more important are given higher weights, while the less important
points are given lower weights.

Def. 8. A priority vector PV = 〈kcur+1, ..., kn〉 defines the
importance of prediction accuracy for each future timing point. A
coefficientki ∈ [0, 1] indicates a higher priority when it is closer to
1. The value0 means that prediction for the associated timing point
is not of interest. IfPV is not given,ki = 1 for all i is assumed.

3.2 Problem Statement

3.2.1 The Prediction Problem
Given a routeR = 〈p0, ..., pn〉, a set of historical trajectories

Ftr, and a real-time sub-trajectoryftr[p0, pcur] on routeR (cur <
n − 1), a trajectoryfnn ∈ Ftr has to be found that gives the most
accurate prediction forftr[pcur+1, pn] with respect to the priority
vectorPV .

The notion of “the most accurate prediction” still needs defini-
tion. The prediction errorerr of the predictionfpr = 〈∆t′cur+1, ...,
t′n〉 with respect to the future query trajectoryftr = 〈tcur+1, ..., n〉
is a weightedLp distance, divided by the number of points where
ki 6= 0. Higher values of parameterp suggest a preference for
lower error variance, while lower values of parameterp suggest a
preference for a smaller average error, while some outliers can be
tolerated. The error is defined as follows:

err(ftr, fpr,PV) =
1P

ki 6=0 1

nX
i=cur+1

ki(∆ti − ∆t′i)
p .

The trajectory that gives the minimum errorerr is the optimal near-
est neighborfonn with respect to functionerr . The problem de-
fined above is, however, unsolvable before the actual travel times
〈∆tcur+1, ..., ∆tn〉 are known. Therefore, heuristics are needed.
To make the problem solvable, it is redefined as follows.

Given a set of historical trajectoriesFtr for routeR, a distance
measured has to be found such thatfpr as defined by Definition 7
would give a small errorerr(ftr[pcur+1, pn], fpr,PV).

3.2.2 The Search Problem
Given a real-time trajectoryftr, an NNT has to be retrieved ef-

ficiently from the historical datasetFtr. The length of the query is
variable, and different distance measures must be accommodated.
The aim is to propose a main-memory data structure and associ-
ated algorithms that reduce the search time when compared to a
sequential scan (SS), and that return correct results.

Given a routeR and an associated query trajectoryftr with an
arbitrary number of points, a thresholdthrd, and a distance mea-
sured, the trajectoryfnn that minimizesd (Definition 7) has to be
retrieved. The approximation thresholdthrd restrictsfnn to be no
further thandmin + thrd from the query, wheredmin is the distance
to the actual NNT.

4. DISTANCE MEASURES
In this section we consider specific distance measures that are

appropriate for our problem setting. Many measures that are com-
monly used for comparison of time series, including Dynamic Time
Warping, are not appropriate: when the routes are fixed, exact po-
sitions have to be matched, and trajectory transformation (shifting
or stretching) is not allowed.

4.1 Longest Common Subsequence
Vlachos et al. [24] propose similar trajectory search based on a

Longest Common Subsequence (LCSS) measure. With the help of
hierarchical clustering, a tree is built and then used for the efficient
access to similar trajectories. Our setting with one-dimensional
routes makes it possible to simplify the measure because the corre-
sponding subsequences of two trajectories must be matched. Also,
non-contiguous subsequences are possible.

Given the thresholdthr , the distanceLCSS thr between two tra-
jectoriesftr andf ′

tr is:

LCSS thr(ftr, f
′
tr) =

P
|∆ti−∆t′

i
|≤thr 1

l
,

where∆ti ∈ ftr, ∆t′i ∈ f ′
tr, andl is the number of points used in

the query. The thresholdthr is introduced to reduce unpredictable
(“white”) noise. The measure is robust to the presence of a small
amount of outliers; however, it is important to choose the rightthr

that filters outliers and still captures the near trajectories.

4.2 Lp Distance
Each point in the trajectoryftr can be viewed as a point in an

n-dimensionalLp-norm space. The most common variant of the
Lp-norm is the Euclidean distance (L2-norm). This measure is a
metric, and its computation is efficient. Given the representation
of a trajectory as in Definition 3, the delays at some segments in
a trajectory do not influence the error penalty at other segments.
The higher thep value, the less tolerable are outliers. Given that
the trajectories are of equal length, theLp-norm does not cause the
problem of choosing which segments correspond to which during
the matching. We use theLp-norm distance to the power ofp,

divided by the query lengthl:

Lp(ftr, f
′
tr) =

curX
i=cur−l+1

1

l
(∆ti − ∆t′i)

p .

4.3 Other Measures
A number of distance measures for one-dimensional sequences

exist that might be applicable for trajectories when considering
these asn-dimensional vectors. A correlation-based distancedβ =�

1−ρ

1+ρ

�β

, whereρ is Pearson’s correlation coefficient, considers the

trajectories similar when they are proportional to each other. When
using this measure, the times, predicted byfnn, should be multi-
plied by the coefficient of the proportion.

The Chebyshev distancedch is the maximum distance between
two points in the trajectories:dch = max |∆ti − ∆t′i|. This mea-
sure does not tolerate any outliers. It is an extreme case of the
Lp-norm, wherep → ∞.

The Canberra distance is given bydca =
P

i

|∆ti−∆t′
i
|

∆ti+∆t′
i

. The

point 0 is the furthest point when compared to any other point.
This measure would penalize unequal waiting times highly: the
time ∆ti is often 0 when it is measured between the arrival to and
departure from a timing point.

In this paper, we further consider theLCSS thr andLp distances.

4.4 Relationship Between Lp and LCSS thr

We first consider the case where the data are normalized: the
value for each dimension is between0 and1. TheLp distance1
between the trajectories that bound the dataset is1, and the distance
between identical trajectories is0. WhenLCSS thr = 0 this means
that for each dimensioni, |ti − t′i| ≤ thr . A distance of1 implies
that for eachi, |ti − t′i| > thr . However, theLp distances between
trajectories that haveLCSS thr distances 1 and 0, correspondingly,
can differ within an arbitrarily small value. GivenLp = 0 implies
LCSS thr = 0. It is true that:

LCSS thr · thr
p ≤ Lp ≤ (1 − LCSS thr)thr

p + LCSS thr .

For non-normalized data, theLp distance is divided by(max −
min)p, and the thresholdthr is divided by(max − min), where
min andmax are the boundaries of the data for each dimension.

The measures can be used in combination. We observe that: (1)
smallLp and smallLCSS thr imply that for most dimensions, the
trajectories are close to each other; (2) smallLp and largeLCSS thr

indicate that for most dimensions, the threshold is only slightly ex-
ceeded; (3) largeLp and smallLCSS thr indicate the presence of
outliers; and (4) largeLp and largeLCSS thr mean that for most
dimensions, the trajectories are far apart.

4.5 Weighted Lp Distance
It may be expected that the most recent segment of a trajectory is

more important when predicting the near future that are older seg-
ments. In real road networks, the traffic is distributed unevenly in
different parts of a network. For example, while a vehicle is cross-
ing the downtown area, it will be faced with heavy traffic. Once it
enters a highway, its speed pattern changes. To accommodate this,
we propose to use a weightedLp distance:

WLp(ftr, f
′
tr) =

1

k

curX
i=1

wi(∆ti − ∆t′i)
p ,

whereW = 〈w0, ..., wcur 〉, ∆ti ∈ ftr, ∆t′i ∈ f ′
tr, andk is the

number of non-zero weightswi.
Weights may be constructed in several ways:

1. No weights, meaning that all parts are equally important, and
wi = 1 for all i.

2. Equal weights considering only the most recent sub-trajectory,
wherew0...wk−1 = 0 andwk...wn = 1. This generalizes
the above scheme.

3. Linear weights, wherewi+1 = wi +α, if i ≥ k−1; wi = 0,
otherwise. This approach is a further generalization.

4. Polynomial weights of the formwi+1 = αwi if i ≥ k; wk =
1; andwi = 0, otherwise.

5. Pre-defined weights learned from historical data. Such corre-
lation-based weights are discussed next.

We propose to use the Kendallτ rank correlation coefficient [16]
for calculating correlation-based weights. This coefficient is ap-
plicable when non-linear correlations exist between the variables.
The travel times on different segments are likely to have complex
correlations. The variationτc makes adjustments for ties (equal
values). It is defined as the number of pairs(∆ti, ∆tj) ordered
concordant (nc) minus the number of pairs ordered discordant (nd)
divided by the total number of pairs:τc = (nc − nd)/(nc + nd).
A correlation table is built where each entryτij is a correlation
coefficient between pointsi andj. The table hasn(n − 1)/2 en-
tries (τij = τji and τii = 1). Assuming that the real-time tra-
jectory ftr ends at pointpcur , the query length isl, andj points
ahead should be predicted. Then the weightwi in the vectorW =
〈wcur−l , ..., wcur 〉 is defined as follows:

wi =

cur+jX
k=cur+1

|τik|PV k .

Other correlation coefficients are possible (e.g., Pearson’s). We use
the Kendall rank correlation in our empirical evaluation, as higher
correlations exist (Section 6).

4.6 Using fnn for Prediction
The algorithm presented in Algorithm 1 explains how thefnn

can be used to predict future travel times. In the initialization phase,
an initial prediction is formed (line 1). When a new positionpi at
time ti is received, the valueti ∈ ftr is calculated, and the predic-
tion is revised. If the distance between the actual trajectory and the
prediction is less than the known (conservative) minimum distance
dmin plus a pre-defined thresholdthrd, the previous predictionfnn

is returned (lines 5–7). The thresholdthrd renders it possible to re-
duce the possibly time-consuming similarity searching. If needed,
a new (approximate)fnn is located in the trajectory databaseFtr

and is returned as the current prediction (line 8). If more than one
fnn exists, one is chosen at random.

Algorithm 1: Predict : continuous prediction
Input: Candidate setFtr, thresholdthrd, distance functiond.
Output: Predictionfnn

1: fnn← initial prediction;ftr ← 〈p0, 0〉
2: while Vehicle is on the routedo
3: Receive newpi at ti ; ∆ti ← ti − ti−1

4: ftr ← ftr◦ 〈pi, ∆ti〉 // new point
5: if d(ftr, fnn) ≤ dmin + thrd then
6: return fnn

7: end if
8: return argminf ′

tr∈Ftr
max(d(ftr, f

′
tr), dmin + thrd)

9: end while

5. SIMILARITY SEARCH
When there is no index present, the NNT method requires a se-

quential scan of the historical data every time the prediction needs
to be revised: the distance is computed for each historical trajec-
tory, and the one that minimizes this distance is returned. This
procedure can be time-consuming, especially when the queries are
long and the trajectory database is extensive. We propose a main-
memory index that reduces the amount of the trajectories that have
to be compared. The list-based index with the threshold algorithm
(TA) [10] is extended to support continuous queries. We present an
incremental algorithm ITA that updates thefnn when a new point
in ftr is received. The index supports various distance functions,
includingLCSS thr, Lp, andWLp , and it also allows NNT search
using more than one distance function simultaneously.

5.1 Queries
A static queryQSNN = 〈ftr[pi, pj], d,PV , thrd〉 consists of a

trajectory segmentftr with times(∆ti, ..., ∆tj), a distance func-
tion d, a priority vectorPV , and a thresholdthrd. The most sim-
ilar trajectoryfnn that minimizes the distance functiond has to be
retrieved with an approximation thresholdthrd.

A continuous queryQCNN = 〈ftr[p0, pcur−1], 〈pcur , ∆tcur 〉,
d,PV , thrd〉 receives subsequent points as the vehicle proceeds
along its route. The initial query is a static query〈ftr[p0, pl], d,
PV , thrd〉, wherel ≥ 1 is the query length. Given the most recent
query trajectoryftr[p0, pcur−1], an update of the queryQCNN at
time tcur is the travel time∆tcur between pointspcur−1 andpcur.

5.2 Data Structure
For a routeR = 〈p0, ..., pn〉, a structureL = 〈L1, ..., Ln〉 with

n lists, where each listLi corresponds to the segment between tim-
ing pointspi−1 andpi, is created. Each entryj in a list Li is a
nodeLi[j] = 〈∆ti, id〉, where∆ti ∈ ftr is theith travel time in
the trajectoryftr, andid is the identifier of the trajectoryftr. List
Li is ordered by the travel time∆ti of all trajectories in the data-
base. Each entry in the list can be accessed randomly by the index
j. The main memory has to store both the list structure and the
array of the trajectories (it is not necessary to store the values∆ti

repeatedly—they can be accessed in constant time from the indexed
array of trajectories byid andi). The trajectory that corresponds
to an entryj in list Li is denoted asLi[j]↑.

5.3 Search Algorithms

5.3.1 Threshold Algorithm
The Threshold Algorithm (TA), proposed in [10], uses the index

structureL from above. It was originally designed to answer top-
k queries, where the attributes of the objects in the database are
stored in lists, one list per attribute, ordered by the ranks of the at-
tributes. A monotonic, continuous functiong(v1, ..., vm) grades an
object, wherevi is the value of an attribute from the corresponding
list Li. The lists can be searched using an arbitrary set of attributes,
given the functiong. The query trajectory is〈0, ..., 0〉, the lists are
accessed starting from the top in parallel, and the functiong is eval-
uated for each objectLi[j] ↑ that has not been seen yet. A lower
boundB = f(v1, ..., vm) is calculated when a new entry is ac-
cessed, wherevi is the most recently seen value in the listLi. When
k objectsLi[j]↑ are found such thatg(Li[j]↑) ≤ B, the algorithm
stops. It is proved that the correct top-k objects are returned. The
TA algorithm can be used to answer a static queryQSNN, where
g(f ′

tr[pi, pj]) = d(ftr[pi, pj], f
′
tr[pi, pj]), and ftr[pi, pj] is the

query.
We extend the TA algorithm to be incremental (ITA), and to an-

swer NNT queries from a givenk-dimensional point. The focus is
on top-1queries, though the algorithm is easily extended to sup-
port top-kqueries: rather than stopping when one NNT not further
than the bound is found, the algorithm continues untilk NNTs are
found. The middleware that passes the incremental query to the
index can be responsible for maintaining the history.

5.3.2 Static Query
TheQSNN query processing algorithm is listed in Algorithm 2.

The algorithm is similar to TA, except that only one list is searched.
This is done so that binary search needs to be performed only once;
furthermore, by choosing the optimal listLs for search, the bound
B is expected to grow faster than in TA for some measuresd. For
example, ifp > 1 in the Lp distance, a greater difference at one
point to the power ofp grows faster than the sum of the differences
to the power ofp spread out amongl points. TheWLp search
is presumably more efficient when the list with the highest corre-
sponding weightwi is chosen.

Algorithm 2: SortedLists.StaticSearch: search once.

Input: Real-time trajectoryftr = (ti, ..., tj), thresholdthrd, query
lengthl.

Output: Predictionfnn

1: Ls ← search list inL, s ∈ [i, ..., j]
2: i ← BinarySearch(Ls ,∆ts)
3: fnn ← Ls [i]↑
4: while dl(ftr, fnn)− thrd > d(∆ts , Ls [i]) andLs has more

elementsdo
5: if dl(Ls [i]↑, ftr) < dl(fnn, ftr) then
6: fnn ← Ls [i]↑
7: end if
8: i← next(Ls , ∆tcur)
9: end while

10: return fnn

5.3.3 Continuous Query
The incremental algorithm for processing theQCNN query is

listed in Algorithm 3. It remembers the search results from the
previous run. Denoteftrk as the query using thek most recent
points. Thenfnnk is the nearest neighbor offtrk, dk is the dis-
tanced(fnnk, ftrk), andBk is the minimum bound fordk. The
trajectoriesfnnk, k = 1, .., l are simultaneously searched using
the 1 to l most recent points. The algorithm is applicable for all
functionsd that satisfy:

dk(ftrk, f ′
trk) = dk−1(ftrk−1, f

′
trk−1) + d1(ftr1, f

′
tr1) . (1)

TheWLp satisfies (1) in-between the iterations, while in the same
iteration, the distance functiondk uses the weight vectorWk =
〈wcur−l , ..., wcur−l+k 〉 that is different for eachk.

The minimal boundBk is maintained for eachdk during the
search. When the query is issued for the first time,Bk = 0 for
all k = 1, ..., l, and thefnnk are unknown. Otherwise, the algo-
rithm starts withBk = Bk−1, andfnnk = fnnk−1 or unknown,
k = 2, ..., l. The starting pointLcur [i] that is closest to∆tcur is
located in the search listLcur using binary search (line 3). The
algorithm continues untilfnnl is located (lines 4–11), in each itera-
tion shiftingLcur [i] to be the next closest point to∆tcur (line 10).
Oncedk ≤ Bk, the NNT fnnk = Lcur[i] ↑ is located, and the
bound is set toBk = dk for the next iteration (line 15). If it is of
interest to locatefnnk for all k, the algorithm can only stop when
they all are found. If thresholdthrd > 0, this is added to the bound
Bl. At the end of an iteration, the bounds are calculated for the next
iteration (lines 13–19).

Algorithm 3: SortedLists.IncrementalSearch (ITA): a new
point is received in the current trajectory.

Input: Real-time trajectoryftr, the most recent predictionfnnl, a
new point〈pcur , ∆tcur 〉, thresholdthrd, distance functiond,
query lengthl.

Output: Predictionfnnl

1: ftr ← ftr ◦ 〈pcur , ∆tcur 〉
2: if dl(ftr, fnnl) > Bl−1 + thrd then
3: i ← BinarySearch(Lcur ,∆tcur); B1 ← d1(∆tcur , Lcur [i])
4: while dl(ftr, fnnl)− thrd > Bl−1 + d1(∆tcur , Lcur [i]) and

Lcur has more elementsdo
5: for all k ∈ 2..l do
6: if dk(Lcur [i]↑, ftr) < di(fnnk, ftr) then
7: fnnk ← Lcur [i]↑
8: end if
9: end for

10: i← next(Lcur , ∆tcur)
11: end while
12: end if
13: for all k ∈ 2..l do
14: if fnnk is foundthen
15: Bk ← dk−1(ftr, fnnk−1)
16: else
17: Bk ← Bk−1 + d(∆tcur , Lcur [i])
18: end if
19: end for
20: return fnnl

The lists are visualized in Figure 1. The query lengthl = 4, and
∆t′′cur ∈ fnn4 is used to predict∆tcur . When the actual∆tcur be-
comes known, the prediction is revised. The value∆t′cur ∈ fnn3

limits the search: the newfnn4 is listed no further thands =
|∆tcur − ∆t′cur | in the listLcur . With LCSS thr it is never neces-
sary to search more than withinmin(thr , ds) from the query point.

L1 L2 L3 L4 Lcur

ftr fnn4 fnn3

max.
search1t∆

t∆

2t∆

3t∆

4t∆ curt∆

curt"∆

curt '∆

Figure 1: List-based indexing

The correctness of the algorithm, when all lists are searched in
parallel and the query is static, is proved elsewhere [10]. Though
our proposed both static and incremental algorithms search only
one list, the principles are the same: the lower bound is calcu-
lated according to the most recently read values in the list that is
searched, and the other points do not contribute to the increase of
the bound. Next we prove that the incremental algorithm returns
the correct result.

LEMMA 1. Given a query of lengthl on points〈pcur−l+1, ...,
pcur 〉, ftr = ∆tcur−l+1, ..., ∆tcur , and a database that contains
the correspondingl ordered listsLcur−l+1,...,Lcur (as described
above). Then algorithm ITA returns thefnnl that minimizes the

distancedl = d(ftr, fnnl) (with an allowed approximation thresh-
old thrd).

PROOF. The case when all entries in the listLcur are accessed
is trivial: thefnnk that are within the minimum distance from the
query are found for eachk. Otherwise, the algorithm has found an
fnnk whendk(ftr, fnnk) ≤ Bk, if thrd = 0, or whendk(ftr, fnnk)
≤ Bk + thrd, if thrd > 0. We prove it whenBk ≥ 0 using the
induction principle, where the iteratorm is the sequence number
of the most recently received point〈pm, ∆tm〉 in the query. First
let’s consider the case whenthrd = 0. At step0, Bk = 0 for all k,
and the algorithm works as in [10], except that ITA searches only
one list, and the lower boundBk is d(0, ..., 0, Ll[i]). Assume that
the algorithm works correctly at stepm− 1: after it has stopped, if
dk(ftr, fnnk−1) ≤ Bk−1, the trajectoryfnnk−1 is an NNT of the
query of lengthk − 1; otherwise,fnnk−1 is still not located, and
the actual shortest distancedk−1 ≥ Bk−1. Now consider stepm,
renamingBk from the previous iteration toB′

k. Using (1), for any
trajectoryf ′

tr:

dk(ftr, f
′
tr) = dk−1(ftr, f

′
tr[pm−k+1, pm−1]) +

d(ftr[pm], f ′
tr[pm]) ≥ B′

k−1 + d(ftr[pm], f ′
tr[pm]) = Bk .

This means that going further in the listLm (increasingd(ftr[pm],
f ′
tr[pm])), the current minimum boundBk will only increase. Once

the currentfnnk is within a smaller distance from the query than
the bound,dk(ftr, f

′
tr) ≤ Bk, no closer trajectories exist. If the

algorithm terminates beforefnnk is located, for the next step, the
boundBk is set to beBk = B′

k−1 + d(ftr[pm], f ′
tr[pm]), which is

the currently known smallest possible distance. The trajectoryfnnl

is always found as this is the stopping condition of the iteration.
Approximate NNT search is also discussed elsewhere [10]. If

the algorithm stops whendl(ftr, fnnl) ≤ Bl + thrd, the closest
trajectory that can exist is within distanceBl, i.e., no further away
thanthrd from the returned approximatefnnl.

Figure 2 illustrates ITA by an example. The identifiers of the
trajectories arefi, i = 1, ..., 4, and each arrow points to a value
∆ti in the corresponding listLi. Assume that a query〈ftr =
〈...[pk−3, 3], [pk−2, 4], [pk−1, 3]〉, [pk, 3], d = L1, thrd = 0〉 is
issued. The query length isl = 3, and the most recent NNT isf3,
whered(f3, ftr[pk−3, pk−1]) = 6. The initial bounds before list
Lk is first accessed areB1 = 0, B2 = 4, B3 = 5 (they were ob-
tained in the previous steps, when searching listsLk−1 andLk−2).
After the binary search inLk, where the closest entryf3 → 4 is
located, the bounds are updated to beB1 = 1 B2 = 5, B3 = 6,
andd(f3, ftr[pk−3, pk−1]) = 6. As this distance equals the value
of B3, the search stops, and the current nearest neighbor is stillf3.

Lk-3

f1 -> 1

f3 -> 2

f4 -> 5

f2 -> 7

Lk-2

f2 -> 3

f1 -> 4

f3 -> 5

f4 -> 6

Lk-1

f1 -> 1

f2 -> 2

f3 -> 5

f4 -> 6

Lk

f4 -> 1

f1 -> 1

f3 -> 4

f2 -> 6

Figure 2: ITA search example

5.4 Memory Resources
We expect that the main memory is sufficient to store the index

and data for transport-related applications. The travel times of the
historical trajectories are stored in an indexed array of sizen × m,
wherem is the number of trajectories andn is the total number of
points in one trajectory. Allowing 2 bytes for∆ti, with a database

containing 5000 trajectories on a route of length 50, the data takes
up only 500 kb. The index as a minimum stores the identifiers of
the trajectories inn × m positions. If each identifier is allowed 2
bytes, this results in4nm kb = 1 MB. The algorithm itself needs
to remember only a small constant number of values for each real-
time trajectory. Hence, even with few hundreds of different routes,
the data does not need to be looked up on the disk during the search.

The index can also be used by different applications than trans-
port systems, where very large databases have to be handled. In
general, the prediction model can be applied to any time series
where one dimension is fixed (e.g., the times when a measurement
is taken), and where the past behavior is expected to predict the fu-
ture. A disk-based TA is available elsewhere [10]. A disk-based
ITA is also possible; however, the discussion is beyond the scope
of this paper.

6. EMPIRICAL EVALUATION
The NNT-based prediction was empirically evaluated using both

real and synthetic data, and the prediction accuracy was measured.
Furthermore, CPU time was measured for ITA, the proposed search
algorithm, comparing it to both TA and sequential scan (SS).

6.1 Experimental Setup
Our data generator produces trajectories on a route of lengthn,

clustered intocnum overlapping clusters. Each point on the center
of the clusterCi, i = 0, ..., cnum − 1, is uniformly distributed
in the interval[start , end], where the start of the interval is deter-
ministic, start = min + (max − min)i/cnum, and the length
of the interval is a random multiple of(max − start)/c. Here
[min,max] is the range of values that∆ti can take. Each clus-
ter hasm/cnum trajectories, wherem is the total number of tra-
jectories. Each point in a trajectory is randomly displaced from
the center of the cluster within the maximum radiusr . A clus-
ter is further divided into two overlapping clusters, each of them
with a radius of3/4r. A given percentage of point outliers,pout,
uniformly distributed in[min,max], are picked randomly among
all points. A given percentage of cuts in the trajectories,pcut, in-
troduces random “jumps” to another cluster at random points. A
change of clusters at pre-defined points for all trajectories is de-
fined by the numberseg . If seg > 1, the trajectory is divided into
equal segments, every second segment being assigned to another
randomly chosen cluster. More details and the source code can
be found athttp://transdb.cs.aau.dk/ under “publica-
tions”. The default parameters are listed in Table 1.

The real data was collected from the buses traveling on line 1
in Aalborg, Denmark. A sub-route (having the most data) with 23
stops and 228 traversals was chosen, and atiming pointis either an
arrival to or a departure from a bus stop. The mean travel or wait-
ing time per segment[pi, pi+1] is 43.5 s, and the average standard
deviation of∆ti is 27.6 s.

6.2 Evaluation of the Similarity Measures
A set of experiments was performed, where the value of one pa-

rameter is varied in each experiment, and the average prediction
errorerr per point is measured. The error with two differentPV

is evaluated: predicting the arrival time only for the nearest point
in the future (“next”,PV = 〈1, 0, ..., 0〉), and predicting the full
future trajectory (“all”,PV = 〈1, ..., 1〉). The distancesL1 (“L ”)
andLCSS thr (“LCSS ”) were tested in most experiments. Fur-
thermore, we experiment with incremental weightsW = 〈1, ..., n〉
(“WL ”), correlation-based weights (“CWL”), and different thresh-
olds thr . The prediction is revised every time a new point is re-
ceived. The parameterp is set to1 as the initial tuning showed

Table 1: Default parameters
.

Route lengthn 50
Query lengthl 5
Number of trajectoriesm 500
Point and trajectory distortionpout, pcut 5%, 50 %
Number of clusterscnum 10
Time interval per segment[min,max] [60, 600] s
Cluster radiusr 20 s
Thresholdthr in LCSS thr 10 s
Prediction thresholdthrd 0
Weight incrementinc = wi+1 − wi 0
Number of segments offtr in different clustersseg 1
Prediction errorerr L1

that increasingp reduces the prediction accuracy. The combination
of the WLp andLCSS thr measures does not appear to improve
the prediction accuracy. This method requires a carefully designed
switching mechanism, which is beyond the scope of this paper.

6.2.1 Real Data
The query lengthl was varied from 1 to 25 points in steps of

2, and the performance of various measuresd was evaluated (Fig-
ures 3(a), 3(b)). The prediction error is quite similar for all dis-
tance measures, and it decreases when the query length grows. The
correlation-based weights yield the best prediction, when used to-
gether with long queries. Such weights are the most flexible and al-
low to select thefnn based on those points that are expected be the
most informative. The average optimal distance tofonn (the min-
imal err) was measured to be around 10 s—only with very long
queries does the actual error approach this number. In the sub-
sequent experiments we use synthetic data, which allows to test
various parameters and search in a more extensive dataset.

6.2.2 Varying Threshold
The thresholdthr in LCSS thr distance was varied from 10 to

100 s in steps of 10 s (Figure 3(c)). The optimal threshold for the
data generated with default parameters is around 10 s, though it in-
creases when the within-cluster deviationr increases. The thresh-
old is directly related to the variance of “white noise”, i.e., the un-
predictable deviation from the travel pattern.

6.2.3 Varying Query Length
The length of the query was varied from 1 to 25 points in steps of

2 (Figure 3(d)). For bothLp andLCSS thr distances, the short-term
prediction is the most accurate when the query length is around 5
points, while for longer term prediction, longer queries (10 points)
are preferred. Both distance measures give similar prediction er-
ror for short-term prediction, and theLp distance is slightly better
for long term prediction. The reason for the decrease of accuracy
when too long queries are used is that the trajectories may change
their patterns unexpectedly—long queries do not adjust to rapidly
changing conditions, while shorter queries are more flexible.

6.2.4 Testing Weight Assignment Methods
We have evaluated theWLp measure using correlation-based

weights (“CWL”), incremental weights (“WL”), and no weights
(“L ”), when seg = 5: each trajectory changes its cluster every 10
points, though some of the clusters periodically repeat. The query
lengthl was varied from 1 to 25 points in steps of 2 (Figure 4(a)).
Similarly to the real data, the correlation-based weights give the

18

19

20

21

22

23

24

25

0 5 10 15 20 25

Real data,l: 1–25, next

L
WL

CWL
LCSS

(a) err againstl, next point

15
16
17
18
19
20
21
22
23
24
25
26

0 5 10 15 20 25

Real data,l: 1–25, all

L
WL

CWL
LCSS

(b) err againstl, all

20

30

40

50

60

70

80

0 20 40 60 80 100

LCSS , thr : 2–100

n. r=20
a. r=20
n. r=50
a. r=50

(c) err againstl, r = 20 or r = 50

20

25

30

35

40

45

50

55

60

65

0 5 10 15 20 25

l: 1–25

nextL
all L

nextLCSS
all LCSS

(d) err againstl

Figure 3: Prediction error

best results, when long queries are allowed. TheWLp measure can
achieve similar accuracy, andLp is the least accurate. This is be-
cause only some segments of trajectories are correlated, while the
others should be left out. Very short queries are not sufficient, as
they do not have time to “learn” the repeating pattern. However,
when no correlations are discovered, the correlation-based weights
diverge to equal weights for all points. The observations lead to the
general conclusion that the weights and the query length should be
chosen according to the properties of the data.

6.2.5 Varying the Number of Clusters
The number of clusterscnum was varied from 0 to 20 in steps

of 2 (Figure 4(b)). For all measures, the prediction error grows
together with the number of clusters—the overlap of the clusters
increases, and the points are spread out in a larger space. The in-
crease is especially rapid for the prediction of the full trajectory: the
choice of thefnn from an incorrect cluster has a significant effect
on the prediction error.

6.2.6 Varying the Percentage of Outliers
The percentage of outlierspout was varied from 0 % to 20 % in

steps of 2 % (Figure 4(c)). The prediction error increases rapidly in
all cases, as more points in the trajectories become unpredictable,
and these points also prevent the indentification of similar trajecto-
ries that would give adequate predictions. We have noticed that in-
creasing the query length does not improve the prediction either—
presumably, more outliers in long queries lead to the selection of
incorrect patterns (trajectories from further away clusters).

30

40

50

60

70

80

90

100

110

0 5 10 15 20 25

Test weights,l: 1–25

nextL
all L

nextWL
all WL

nextCWL
all CWL

(a) err againstl, seg = 5

20
22
24
26
28
30
32
34
36
38
40

0 5 10 15 20

cnum: 0–20

nextL
all L

nextLCSS
all LCSS

(b) err againstcnum

15
20
25
30
35
40
45
50
55
60
65

0 5 10 15 20

pout: 0–20 %

nextL
all L

nextLCSS
all LCSS

(c) err againstpout

10

20

30

40

50

60

70

80

0 50 100 150 200

pcut: 0–200 %

nextL
all L

nextLCSS
all LCSS

(d) err againstpcut

Figure 4: Prediction error

6.2.7 Varying the Percentage of Trajectory Cuts
The number of random cutspcut in the trajectories was varied

(at a random point a trajectory “jumps” from its current cluster
to a new one) from 0 % to 200 % ofm in steps of 20 % (Fig-
ure 4(d)). The prediction error increases with the number of cuts
for both types of distance measures, especially when predicting fur-
ther away into the future. This is as expected because the segment
of the trajectory after the cluster has changed is unpredictable. The
observations lead to the conclusion that only short-term prediction
is useful whenpcut is high.

6.3 Evaluation of CPU Performance
The experiments were performed on a PC with an Intel Pentium

3 996 MHz processor, 512 kb of RAM, and the Windows XP OS.
The code was written in C#, running on the .NET Framework 2.0.
The performance measure is the ratio of the total CPU time for SS
against TA and ITA, CPU(SS)/CPU(TA) and CPU(SS)/CPU(ITA).
The CPU performance was evaluated for the different distance mea-
sures, using both real and artificial data, and varying the default
parametersl, cnum, m, pout, andpcut, as in the experiments that
evaluate the prediction accuracy. Whenl = 1, the list search uses
log2 m time instead ofm as does SS. This result is omitted from
the graphs.

The real data requires similar CPU time as the data generated
with no clusters (Figures 5(a) and 6(a)): the improvement of ITA
with Lp, when compared to SS, is nearly a factor of 2 in most
cases, and the queries that look only into the most recent past are

significantly more efficient. The incrementally updated bounds in
ITA allow to stabilize the CPU time, even when the query length
increases, while the efficiency of TA drops more noticeably. Using
weights decreases performance slightly: they do not allow the dis-
tance function to be calculated incrementally in the same iteration.
TheLCSS thr measure is the most efficient with real data, since the
threshold limits the search.

ITA with synthetic data, when queries are long, gives the im-
provement ratio of 4 to 6 (Figure 5(b)), while TA only works well
with very short queries. Though the CPU time increases linearly
together with the increasing number of clusters (Figure 6(a)), the
increase is much slower when compared to SS. TA gains much less
in performance with clustered data, as it has no prediction mem-
ory. With a high number of outliers (Figure 5(c)), the performance
of TA approaches the performance of SS, and ITA stays efficient.
When the future becomes less predictable (Figure 5(d)), the incre-
mental search becomes less efficient, though the advantage of ITA
versus TA remains significant. Only with large amounts of data and
clusters is TA preferable over ITA (Figure 6(b)) due to a large num-
ber of candidate NNTs for each query (the number of clusters did
not increase together with the total amount of trajectories). When
queries are long, ITA always preserves the advantage.

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

Real data,l: 3–25

L ITA
WL ITA

LCSS ITA
L TA

LCSS TA

(a) CPU ratio againstl

0

2

4

6

8

10

12

0 5 10 15 20 25

l: 3–25

L ITA
WL ITA

LCSS ITA
L TA

LCSS TA

(b) CPU ratio againstl

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40

pout: 0–40 %

ITA
TA

(c) CPU ratio againstpout

3

3.5

4

4.5

5

5.5

6

0 50 100 150 200

pcut: 0–200 %

ITA
TA

(d) CPU ratio againstpcut

Figure 5: CPU performance

7. CONCLUSION
This study reported upon in this paper aims to explore the suit-

ability of similarity measures for history-based travel-time predic-
tions for vehicles traveling on known routes. The underlying hy-

1

2

3

4

5

6

0 5 10 15 20

cnum: 0–20

ITA
TA

(a) CPU ratio againstcnum

1

2

3

4

5

6

7

8

1K 2K 3K 4K 5K

m: 0.5K–5K

ITA l = 5
TA l = 5

ITA l = 25
TA l = 25

(b) CPU ratio againstm

Figure 6: CPU performance

pothesis was that similar trajectories from the past can be used to
predict the future travel behavior of a vehicle. Although propos-
als exist for similarity measures for trajectories of moving objects,
the settings corresponding to collective transport applications have
not yet been explored. We propose variations of the weightedLp-
norm,WLp , and Longest Common Subsequence,LCSS thr, which
are applicable for the comparison of trajectories that are restricted
to pre-defined routes. Furthermore, we propose a main-memory
index for the efficient access to historical trajectories.

Empirical studies were performed with both real and synthetic
data. The trajectories in the real data do not form apparent clusters,
and they appear to be quite unpredictable. As a result, both the
prediction accuracy and performance are worse when compared
to the synthetic data, where the trajectories can be grouped into
clusters. Use of carefully chosen weights offers advantage over
the Lp-norm, especially when only some segments of the trajec-
tories are correlated. TheLCSS thr distance is in many cases the
most efficient to compute; it is also slightly less accurate than the
other measures considered. The proposed incremental algorithm,
ITA, proves to be robust and it processes the query several times
faster when compared to the sequential scan. When the data is
“predictable” (partially similar trajectories exist), and this is what
we expect when using similarity search, the incremental algorithm
(i.e., ITA) is significantly more efficient than the static threshold
algorithm (i.e., TA).

As a continuation of this work, we are developing an adaptive al-
gorithm that evaluates the accuracy of a library of available predic-
tion algorithms in real time and then uses the prediction algorithm
that yields the most accurate predictions for the near past. The
objective is to always use the most accurate prediction algorithm
given the (ever changing) environment.

8. REFERENCES
[1] P. Bakalov, E. Keogh, and V. Tsotras. TS2-tree—an efficient

similarity based organization for trajectory data.Proc. of the Annual
ACM International Symposium on Advances in Geographic
Information Systems, pp. 1–4, 2007.

[2] Y. Bin, Y. Zhongzhen, and Y. Baozhen. Bus arrival time prediction
using support vector machines.Journal of Int. Transp. Systems:
Technology, Planning, and Operations, 10(4): 151–158, 2006.

[3] B. Bollobas, G. Das, D. Gunopulos, and H. Mannila. Time-series
similarity problems and well-separated geometric sets. InProc. of
the Annual Symposium on Computational Geometry, pp. 454–456,
1997.

[4] F. Cathey and D. Dailey. A prescription for transit arrival/departure
prediction using automatic vehicle location data.Transp. Res. Part
C, 11(3-4): 241–264, 2003.

[5] L. Chen and R. Ng. On the marriage of Lp-norms and edit distance.
In Proc. of the International Conference on Very Large Data Bases,
pp. 792–803, 2004.

[6] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search
for moving object trajectories. InProc. of the ACM SIGMOD
International Conference on Management of Data, pp. 491–502,
2005.

[7] S. I.-J. Chien, Y. Ding, and C. Wei. Dynamic bus arrival time
prediction with artificial neural networks.Trans. Engrg.,
128: 429–438, 2002.

[8] E.-H. Chung and A. Shalaby. Expected time of arrival model for
school bus transit using real-time global positioning system-based
automatic vehicle location data.Journal of Int. Transp. Systems,
11: 157–167, 2007.

[9] D. Dailey, S. Maclean, F. Cathey, and Z. Wall. Transit vehicle arrival
prediction: An algorithm and a large scale implementation.Transp.
Res. Rec., Transportation Network Modeling, pp. 46–51, 2001.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware.Journal of Comp. and Syst. Sciences,
66(4): 614–656, 2003.

[11] J. R. Hee and L. R. Rilett. Bus arrival time prediction using artificial
neural network model. InProc. of the International IEEE
Conference on Int. Transp. Systems, pp. 988–993, 2004.

[12] J. Hwang, H. Kang, and K. Li. Spatio-temporal similarity analysis
between trajectories on road networks. InProc. of the International
Workshop on Conceptual Modeling for Geographic Information
Systems, pp. 280–289, 2005.

[13] J. Hwang, H. Kang, and K. Li. Searching for similar trajectories on
road networks using spatio-temporal similarity. InProc. of the
East-European Conference on Advances in Databases and
Information Systems, pp. 282–295, 2006.

[14] R. H. Jeong.The Prediction of Bus Arrival Time Using Automatic
Vehicle Location Systems Data. Doctoral dissertation, Texas A&M
University, 2004.

[15] R. Kalaputapu and M. J. Demetsky. Modeling schedule deviations of
buses using automatic vehicle location data and artificial neural
networks.Transp. Res. Rec., 1497: 44–52, 1995.

[16] M.G. Kendall. Rank Correlation Methods.Charles Griffin & Co.
Ltd., 166 p, 1962.

[17] W.-H. Lin and J. Zeng. An experimental study on real time bus
arrival time prediction with GPS data.Journal of Transportation
Research Board, pages 101–109, 1999.

[18] T. Park, S. Lee, and Y.-J. Moon. Real time estimation of bus arrival
time under mobile environment. InProc. of International
Conference on Computational Science and its Applications,
pp. 1088–1096, 2004.

[19] N. Pelekis, I. Kopanakis, G. Marketos, I. Ntoutsi, G. Andrienko, and
Y. Theodoridis. Similarity Search in Trajectory Databases. InProc.
of the International Symposium on Temporal Representation and
Reasoning, pp. 129–140, 2007.

[20] B. Predic, D. Stojanovic, S. Djordjevic-Kajan, A. Milosavljevic, and
D. Rancic. Prediction of bus motion and continuous query
processing for traveler information services. InProc of the East
European Conference on Advances in Databases and Information
Systems, pp. 234–249, 2007.

[21] H. Sakoe and S. Chiba. Dynamic programming algorithm
optimization for spoken word recognition.IEEE Trans. Acoustics,
Speech and Signal Processing, 26(1):43Ű-49, 1978.

[22] A. Shalaby and A. Farhan. Prediction model of bus arrival and
departure times using AVL and APC data.Journal of Pub. Transp.,
7: 41–61, 2004.

[23] D. Tiesyte and C. S. Jensen. Recovery of vehicle trajectories from
tracking data for analysis purposes. InProc. of the European
Congress and Exhibition on Intelligent Transport Systems and
Services, pp. 1–12, 2007.

[24] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar
multidimensional trajectories. InProc. of the International
Conference on Data Engineering, pp. 673–684, 2002.

