

Spatial Association Rules

nanopoulos@ismll.de, buza@ismll.de

Outline

- 1. <u>Motivation (examples for frequent patterns</u> and association rules)
- 2. Association rule mining
- 3. Mining spatial association rules

- 1. Products typically bought together in a supermarket
- 2. Co-occurring words in texts
- 3. Recurrent parts (motifs) in time series
- 4. Tags used together in social tagging systems
- 5. Diseases appearing together
- 6. Animals/plants living in symbiosis
- 7. ...

...

Lars <u>is from</u> Germany. Alex <u>is from</u> Greece. They both like <u>reading books</u>. Tomas comes from Slovakia, he also likes <u>reading books</u>. Do you know someone else, who enjoys <u>reading books</u>?

Do you like Malgorzata from Poland? She must know Tomas, because Poland is adjacent to Slovakia and Tomas <u>is from</u> Slovakia.

Application: Information extraction

Person	ComesFrom
Lars	Germany
Alex	Greece
Tomas	Slovakia

Motifs in time series

Motif: approximately repeated local pattern in time series Application: e.g. medical diagnosis

Symbiotic species

{ Diaper } \rightarrow { Beer } { Milk, Cheese } \rightarrow { Bread, Sausage }

Outline

- 1. Motivation (examples for frequent patterns and association rules)
- 2. Association rule mining
- 3. Mining spatial association rules

Association Rule Mining

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 ${Diaper} \rightarrow {Beer},$ ${Milk, Bread} \rightarrow {Eggs, Coke},$ ${Beer, Bread} \rightarrow {Milk}$

Implication means co-occurrence, not causality!

Many possible rules!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
 - An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}
- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|\mathsf{T}|} = \frac{2}{5} = 0.4$$
$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

Given a set of transactions T, the goal of association rule mining is to find all rules having

support ≥ *minsup* threshold confidence ≥ *minconf* threshold

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

Two-step approach:

- 1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
- 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is the most computationally expensive

Generating Frequent Itemsets: Naive

 $d \leftarrow |I|$ $N \leftarrow |D|$ for each subset x of I do $\sigma(x) \leftarrow 0$ for each transaction T in D do if x is a subset of T then $\sigma(x) \leftarrow \sigma(x) + 1$ if minsup $\leq \sigma(x)/N$ then add s to frequent subsets

The powerset of an itemset

- O(2^d) subsets of *I*
- Scan n transactions for each subset
- O(2^dn) tests of s being subset of T
- Growth is exponential in the number of items!
- Can we do better?

Frequent Itemset Generation Strategies

Reduce the number of candidates (M)

- Complete search: M=2^d
- Use pruning techniques to reduce M

Reduce the number of comparisons (NM)

- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction

Reducing Number of Candidates

Apriori principle:

If an itemset is frequent, then all of its subsets must also be frequent

Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

Support of an itemset never exceeds the support of its subsets

This is known as the anti-monotone property of support

Illustrating Apriori Principle null С Е А В D AB AC AD AE BC ΒD ΒE CD CE DE Found to be Infrequent ABC BCD BDE CDE ABD ABE ACD ACE ADE BCE ACDE BCDE ABCD ABCE ABDE Pruned ABCDE supersets

Illustrating Apriori Principle

Item Bread	Count 4	Items (1	l-itemsets)			
Coke Milk Beer Diaper Eggs	4 2 4 3 4 1		Itemset {Bread,Milk} {Bread,Beer} {Bread,Diaper} {Milk,Beer} {Milk,Diaper} {Beer,Diaper}	Count 3 2 3 2 3 2 3 3 3	Pairs (2-item (No need to candidates i or Eggs)	
Minimum	Support	= 3			Triple	ts (3-itemsets)
6 With supp	ubset is cor C ₁ + ⁶ C ₂ + ort-based µ 5 + 6 + 1 =	${}^{6}C_{3} = 41$ oruning,		Itemset {Bread,M	ilk,Diaper}	Count 3

The Apriori Algorithm

Join Step: C_k is generated by joining L_{k-1} with itself

Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset

Pseudo-code:

 C_k : Candidate itemset of size k L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k + +) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \\ \text{that are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support end} \\ \end{bmatrix}$

return $\cup_k L_k$;

Example of Generating Candidates

 $L_3 = \{abc, abd, acd, ace, bcd\}$

Self-joining: $L_3 * L_3$

abcd from abc and abd

acde from acd and ace

Pruning:

acde is removed because ade is not in L_3

 $C_4 = \{abcd\}$

The Apriori Algorithm — Example

Another example

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	I1, I2, I3, I5
T900	11, 12, 13

minsup (count) >= 2

k=1, 2

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

1-Itemsets	Sup-count
1	6
2	7
3	6
4	2
5	2

Frequent 2-Itemsets	Sup-count	
1, 2	4	
1, 3	4	4
1, 5	2	
2, 3	4	
2, 4	2	
2, 5	2	

k=3

TID	List of item_IDs
T100	I1, I2, I5
T200	12, 14
T300	12, 13
T400	I1, I2, I4
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

	Frequent 2-Itemsets	Sup-count	
	1, 2 1, 3	4	
-	1,5	2	
	2, 3 2, 4	4 2	
	2, 5	2	

Frequent	Sup-count
3-Itemsets	_
1, 2, 3	2
1, 2, 5	2

Factors Affecting Complexity

Choice of minimum support threshold

lowering support threshold results in more frequent itemsets this may increase number of candidates and max length of frequent itemsets

Dimensionality (number of items) of the data set

more space is needed to store support count of each item

if number of frequent items also increases, both computation and I/O costs may also increase

Size of database

since Apriori makes multiple passes, run time of algorithm may increase with number of transactions

Average transaction width

transaction width increases with denser data sets

This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \rightarrow L - f$ satisfies the minimum confidence requirement

If {A,B,C,D} is a frequent itemset, candidate rules:

$ABC \rightarrow D$,	$ABD \rightarrow C$,	$ACD \rightarrow B$,	$BCD \to A,$
$A \rightarrow BCD$,	$B \rightarrow ACD$,	$C \rightarrow ABD$,	$D \rightarrow ABC$
$AB \rightarrow CD$,	$AC \rightarrow BD$,	$AD \rightarrow BC$,	$BC \to AD,$
$BD \rightarrow AC,$	$CD \rightarrow AB$,		

If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)

How to efficiently generate rules from frequent itemsets? In general, confidence does not have an anti-monotone property $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

But confidence of rules generated from the same itemset has an anti-monotone property

e.g., $L = \{A,B,C,D\}$:

 $c(ABC \rightarrow D) \geq c(AB \rightarrow CD) \geq c(A \rightarrow BCD)$

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation: example of anti-monotonicity

- 3 association rules:
- {p} => {q} with confidence C1
- {p} => {q, r} with confidence C2
- {p, r} => {q} with confidence C3.

If C1, C2, C3 are unequal, give possible relation (inequalities) between them. Which one is bigger?

Outline

- 1. Motivation (examples for frequent patterns and association rules)
- 2. Association rule mining
- 3. Mining spatial association rules

Co-locations, Spatial association rules

Approaches for finding co-location rules

Project spatial data to a transactional database and apply frequent itemset mining

- disjoint windowing (according to a grid)
 - reference feature centric model
 - transactions for all instances

Problems: over-counting, under-counting, rules for only one feature only

Project spatial data to a transactional database and apply frequent itemset mining

- .: disjoint windowing (according to a grid)
 - reference feature centric model
 - transactions for all instances

Problems: over-counting, under-counting, rules for only one feature only

Given:

- 1) set *T* spatial feature
 - types: *T* = {A,B,C,...}
- 2) their instances $I = \{i_1, i_2, ..., i_N\}$ each instance is a vector: (id, type, location)
- 3) reflexive and symmetric neighbor relation *R* over instances in *I*

Task: find co-located spatial features (subsets and rules)

В

Α

Co-location *c* is a **subset** of feature types, e.g. {B,C}. **Row instance** of co-location {B,C}: {B.5, C.2}

Table instance of co-location $\{B,C\}$:table_instance($\{B,C\}$) = $\{\{B.5, C.2\},$ $\{B.2,C.5\}, \{B.4, C.3\}, \{B.4, C.4\}\}$

Projection with duplicate elimination:

```
\pi_{B}(table_instance(\{B,C\})) = \{B.2, B.5, B.4\}
```


Co-Location Mining Algorithm

- 1. Apriori-based, but there are differences
- 2. Participation index is used as support, conditional probability as confidence
- All co-location of size 1 are frequent (participation index is 1 for all co-location of size 1)
- 4. Iteration steps
 - 1. Generation of candidate co-locations
 - 2. Generation of table-instances of candidate co-locations
 - 3. Pruning of infrequent co-locations
 - 4. Generation of co-location rules

Generation of table-instances candidate co-locations

2. Neighbor relation R

http://www.spatial.cs.umn.edu/paper_list.html

- Y. Huang, S. Shekhar: *Discovering Co-location Pattern from Spatial Datasets: A General Approach*, IEEE TKDE, 2004
- S. Shekhar, Y. Huang: *Discovering Spatial Co-location Patterns: A Summary of Results*, 7th Int'l. Symp. on Spatial and Temporal Databases, 2001