Spatial Association Rules

nanopoulos@ismll.de,
 buza@ismll.de

Outline

1. Motivation (examples for frequent patterns and association rules)

2. Association rule mining
3. Mining spatial association rules

Examples of frequent patterns

1. Products typically bought together in a supermarket
2. Co-occurring words in texts
3. Recurrent parts (motifs) in time series
4. Tags used together in social tagging systems
5. Diseases appearing together
6. Animals/plants living in symbiosis
7. ...

Textual Patterns

Lars is from Germany. Alex is from Greece. They both like reading books. Tomas comes from Slovakia, he also likes reading books. Do you know someone else, who enjoys reading books?

Do you like Malgorzata from Poland? She must know Tomas, because Poland is adjacent to Slovakia and Tomas is from Slovakia.

Application: Information extraction

Person	ComesFrom
Lars	Germany
Alex	Greece
Tomas	Slovakia

Motifs in time series

Motif: approximately repeated local pattern in time series Application: e.g. medical diagnosis

Symbiotic species

Example: Association rules

$\{$ Diaper $\} \rightarrow\{$ Beer $\}$
$\{$ Milk, Cheese $\} \rightarrow\{$ Bread, Sausage $\}$

Outline

1. Motivation (examples for frequent patterns and association rules)
2. Association rule mining
3. Mining spatial association rules

Association Rule Mining

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Iters
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

$$
\begin{aligned}
& \{\text { Diaper }\} \rightarrow\{\text { Beer }\}, \\
& \{\text { Milk, Bread }\} \rightarrow\{\text { EEgs, Coke }\}, \\
& \{\text { Beer, Bread }\} \rightarrow\{\text { Milk }\}
\end{aligned}
$$

Implication means co-occurrence, not causality!

Many possible rules!

Given d unique items:
Total number of sets of items $=2^{\text {d }}$
Total number of possible association rules:

Definition: Frequent Itemset

- Itemset
- A collection of one or more items
- Example: \{Milk, Bread, Diaper\}
- k-itemset
- An itemset that contains k items
- Support count (σ)
- Frequency of occurrence of an itemset
- E.g. $\sigma(\{$ Milk, Bread,Diaper\}) $=2$
- Support
- Fraction of transactions that contain an itemset
- E.g. s(\{Milk, Bread, Diaper\}) $=2 / 5$
- Frequent Itemset
- An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form $\mathrm{X} \rightarrow \mathrm{Y}$, where X and Y are itemsets
- Example:
\{Milk, Diaper\} \rightarrow \{Beer\}

TID Items

1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s)
- Fraction of transactions that contain both X and Y

Example:

\{Milk, Diaper $\} \Rightarrow$ Beer

- Confidence (c)
- Measures how often items in Y appear in transactions that contain X

$$
\begin{aligned}
& s=\frac{\sigma(\text { Milk, Diaper, Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4 \\
& c=\frac{\sigma(\text { Milk, Diaper, Beer })}{\sigma(\text { Milk,Diaper })}=\frac{2}{3}=0.67
\end{aligned}
$$

Association Rule Mining Task

Given a set of transactions T, the goal of association rule mining is to find all rules having
support \geq minsup threshold confidence \geq minconf threshold

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Observations:

- All the above rules are binary partitions of the same itemset: \{Milk, Diaper, Beer\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is the most computationally expensive

Generating Frequent Itemsets: Naive algorithm

$\mathrm{d} \leftarrow|I|$
$N \leftarrow|D|$
for each subset x of I do
$\sigma(x) \leftarrow 0$
for each transaction T in D do
if x is a subset of T then

$$
\sigma(x) \leftarrow \sigma(x)+1
$$

if minsup $<=\sigma(x) / N$ then
add s to frequent subsets

The powerset of an itemset

Analysis of naive algorithm

$\mathrm{O}\left(2^{\mathrm{d}}\right)$ subsets of $/$
Scan n transactions for each subset
$\mathrm{O}\left(2^{d} \mathrm{n}\right)$ tests of s being subset of T
Growth is exponential in the number of items!
Can we do better?

Frequent Itemset Generation Strategies

Reduce the number of candidates (M)
Complete search: $\mathrm{M}=2^{\mathrm{d}}$
Use pruning techniques to reduce M
Reduce the number of comparisons (NM)
Use efficient data structures to store the candidates or transactions

No need to match every candidate against every transaction

Reducing Number of Candidates

Apriori principle:

If an itemset is frequent, then all of its subsets must also be frequent

Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)
$$

Support of an itemset never exceeds the support of its subsets
This is known as the anti-monotone property of support

Illustrating Apriori Principle

Found to be Infrequent

Illustrating Apriori Principle

Item	Count
Items	
Bread	$\mathbf{4}$
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Minimum Support = 3

Itemset	Count	Pairs (2-itemsets)
\{Bread,Milk \}	3	
\{Bread,Beer\}	2	(No need to generate
\{Bread,Diaper\}	3	candidates involving Coke
\{Milk,Beer\}	2	or Eggs)
\{Milk,Diaper\} \{Beer,Diaper\}	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	or Eggs)

Triplets (3-itemsets)
If every subset is considered,

$$
{ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}=41
$$

Itemset	Count
\{Bread,Milk,Diaper\}	$\mathbf{3}$

With support-based pruning,

$$
6+6+1=13
$$

The Apriori Algorithm

Join Step: C_{k} is generated by joining $\mathrm{L}_{\mathrm{k} \cdot}$ with itself
Prune Step: Any (k -1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
Pseudo-code:
C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=1 ; L_{k}!=\varnothing ; k_{++}$) do begin
$C_{k+1}=$ candidates generated from L_{k};
for each transaction t in database do increment the count of all candidates in C_{k+1}
that are contained in t
$L_{k+1}=$ candidates in C_{k+1} with min_support
end
return $\cup_{k} L_{k}$;

Example of Generating Candidates

$L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
Self-joining: $L_{3}{ }^{*} L_{3}$
abcd from $a b c$ and $a b d$
acde from acd and ace
Pruning:
acde is removed because ade is not in L_{3}
$C_{4}=\{a b c d\}$

The Apriori Algorithm - Example

Database D	
TID	Items
100	134
200	235
300	1235
400	25

Another example

TID	List of item_IDs
T100	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5$
T 200	$\mathrm{I} 2, \mathrm{I} 4$
T 300	$\mathrm{I} 2, \mathrm{I} 3$
T 400	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 4$
T 500	$\mathrm{I} 1, \mathrm{I} 3$
T 600	$\mathrm{I} 2, \mathrm{I} 3$
T 700	$\mathrm{I} 1, \mathrm{I} 3$
T 800	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I3}, \mathrm{I} 5$
T 900	$\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$

minsup (count) >= 2

$\mathrm{k}=1,2$

$\mathrm{k}=3$

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

Frequent 2-Itemsets	Sup-count
1,2	4
1,3	4
1,5	2
2,3	4
2,4	2
2,5	2

Frequent 3-Itemsets	Sup-count
$1,2,3$	2
$1,2,5$	2

Factors Affecting Complexity

Choice of minimum support threshold
lowering support threshold results in more frequent itemsets
this may increase number of candidates and max length of frequent itemsets
Dimensionality (number of items) of the data set
more space is needed to store support count of each item
if number of frequent items also increases, both computation and I/O costs may also increase
Size of database
since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
Average transaction width
transaction width increases with denser data sets
This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Generating rules (2 ${ }^{\text {nd }}$ sub-problem)

Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \rightarrow L-f$ satisfies the minimum confidence requirement
If $\{A, B, C, D\}$ is a frequent itemset, candidate rules:

$$
\begin{array}{llll}
\mathrm{ABC} \rightarrow \mathrm{D}, & \mathrm{ABD} \rightarrow \mathrm{C}, & \mathrm{ACD} \rightarrow \mathrm{~B}, & \mathrm{BCD} \rightarrow \mathrm{~A}, \\
\mathrm{~A} \rightarrow \mathrm{BCD}, & \mathrm{~B} \rightarrow \mathrm{ACD}, & \mathrm{C} \rightarrow \mathrm{ABD}, & \mathrm{D} \rightarrow \mathrm{ABC} \\
\mathrm{AB} \rightarrow \mathrm{CD}, & \mathrm{AC} \rightarrow \mathrm{BD}, & \mathrm{AD} \rightarrow \mathrm{BC}, & \mathrm{BC} \rightarrow \mathrm{AD}, \\
\mathrm{BD} \rightarrow \mathrm{AC}, & \mathrm{CD} \rightarrow \mathrm{AB}, & &
\end{array}
$$

If $|\mathrm{L}|=\mathrm{k}$, then there are $2^{k}-2$ candidate association rules (ignoring $L \rightarrow \varnothing$ and $\varnothing \rightarrow L$)

Rule Generation with anti-monotone property

How to efficiently generate rules from frequent itemsets?
In general, confidence does not have an anti-monotone property

$$
\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D}) \text { can be larger or smaller than } \mathrm{c}(\mathrm{AB} \rightarrow \mathrm{D})
$$

But confidence of rules generated from the same itemset has an anti-monotone property e.g., $L=\{A, B, C, D\}$:

$$
\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D}) \geq \mathrm{c}(\mathrm{AB} \rightarrow \mathrm{CD}) \geq \mathrm{c}(\mathrm{~A} \rightarrow \mathrm{BCD})
$$

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation: example of anti-monotonicity

Lattice of rules

Example with confidence

3 association rules:

- $\{p\}=>\{q\}$ with confidence C1
- $\{p\}=>\{q, r\}$ with confidence C2
- $\{p, r\}=>\{q\}$ with confidence C3.

If C1, C2, C3 are unequal, give possible relation (inequalities) between them. Which one is bigger?

Outline

1. Motivation (examples for frequent patterns and association rules)
2. Association rule mining
3. Mining spatial association rules

Co-locations, Spatial association rules

Approaches for finding co-location rules

Spatial statistics
 Data Mining

Clustering-based Association rule-based

Transaction-based
Distance-based

Transaction-based approaches

Project spatial data to a transactional database and apply frequent itemset mining

- disjoint windowing (according to a grid)
- reference feature centric model
- transactions for all instances
- ...

Problems: over-counting, under-counting, rules for only one feature only

Transaction-based approaches

Project spatial data to a transactional database

 and apply frequent itemset mining

- disjoint windowing (according to a grid)
- reference feature centric model
- transactions for all instances
- ...

Problems: over-counting, under-counting, rules for only one feature only

Distance-based approach

Given:

1) set T spatial feature
types: $T=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$.
2) their instances $I=\left\{i_{1}, i_{2}, \ldots i_{N}\right\}$ each instance is a vector: (id, type, location)
3) reflexive and symmetric neighbor relation R over instances in I

Task: find co-located spatial features (subsets and rules)

Distance-based approach

Co-location c is a subset of feature types, e.g. $\{B, C\}$.
Row instance of co-location $\{B, C\}$:
\{B.5, C.2\}
Table instance of co-location $\{\mathrm{B}, \mathrm{C}\}$: table_instance $(\{B, C\})=\{\{B .5, C .2\}$,
$\{B .2, C .5\},\{B .4, C .3\},\{B .4, C .4\}\}$

Projection with duplicate elimination:
$\pi_{B}($ table_instance $(\{B, C\}))=$
\{B.2, B.5, B. 4$\}$

Distance-based approach

Participation ratio: $\operatorname{pr}(c, F)=$
$\mid \pi_{\mathrm{F}}($ table_instance $(c))|/|$ table_instance $(F) \mid$

Participation index: $c=\{A, B, \ldots\}$
$\operatorname{pi}(c)=\min \{p r(c, A), \operatorname{pr}(c, B) \ldots\}$

Conditional probability:
$\mathrm{cp}\left(c_{1} \rightarrow c_{2}\right)=$
$\mid \pi_{c_{1}}$ (table_instance $\left.\left(c_{1} \cup c_{2}\right)\right) \mid /$
|table_instance $\left(c_{1}\right) \mid$

Distance-based approach

Co-Location Mining Algorithm

1. Apriori-based, but there are differences
2. Participation index is used as support, conditional probability as confidence
3. All co-location of size 1 are frequent (participation index is 1 for all co-location of size 1)
4. Iteration steps
5. Generation of candidate co-locations
6. Generation of table-instances of candidate co-locations
7. Pruning of infrequent co-locations
8. Generation of co-location rules

Generation of table-instances candidate co-locations

Join table-instances of previously found frequent co-locations Join constraints: 1. All features are equal, but last one
2. Neighbor relation R

Literature

http://www.spatial.cs.umn.edu/paper_list.html
Y. Huang, S. Shekhar: Discovering Co-location Pattern from Spatial Datasets: A General Approach, IEEE TKDE, 2004
S. Shekhar, Y. Huang: Discovering Spatial Co-location Patterns: A Summary of Results, 7th Int'l. Symp. on Spatial and Temporal Databases, 2001

