
Chap4: Spatial Storage and Indexing

4.1 Storage:Disk and Files

4.2 Spatial Indexing

4.3 Trends

4.4 Summary

2

Learning Objectives

Learning Objectives (LO)
LO1: Understand concept of a physical data model

• What is a physical data model?

• Why learn about physical data models?

LO2: Learn how to structure data files

LO3: Learn how to use auxiliary data-structures

Focus on concepts not procedures!

Mapping Sections to learning objectives
LO2 - 4.1

LO3 - 4.2

3

Physical model in 3 level design?

Recall 3 levels of database design

Conceptual model: high level abstract description

Logical model: description of a concrete realization

Physical model: implementation using basic components

Analogy with vehicles

Conceptual model: mechanisms to move, turn, stop, ...

Logical models:

• Car: accelerator pedal, steering wheel, brake pedal, …

• Bicycle: pedal forward to move, turn handle, pull brakes on handle

Physical models :

• Car: engine, transmission, master cylinder, break lines, brake pads, …

• Bicycle: chain from pedal to wheels, gears, wire from handle to brake pads

We now go, so to speak, “under the hood”

4

What is a physical data model?

What is a physical data model of a database?

Concepts to implement logical data model

Using current components, e.g. computer hardware, operating systems

In an efficient and fault-tolerant manner

Why learn physical data model concepts?

To be able to choose between DBMS brand names

• Some brand names do not have spatial indices!

To be able to use DBMS facilities for performance tuning

For example, if a query is running slow,

• one may create an index to speed it up

For example, if loading of a large number of tuples takes for ever

• one may drop indices on the table before the inserts

• and recreate index after inserts are done!

5

Concepts in a physical data model

Database concepts

Conceptual data model - entity, (multi-valued) attributes, relationship, …

Logical model - relations, atomic attributes, primary and foreign keys

Physical model - secondary storage hardware, file structures, indices, …

Examples of physical model concepts from relational DBMS

Secondary storage hardware: Disk drives

File structures - sorted

Auxiliary search structure -

• search trees (hierarchical collections of one-dimensional ranges)

6

An interesting fact about physical data model

Physical data model design is a trade-off between

Efficiently support a small set of basic operations of a few data types

Simplicity of overall system

Each DBMS physical model

Choose a few physical DM techniques

Choice depends chosen sets of operations and data types

Relational DBMS physical model

Data types: numbers, strings, date, currency

• one-dimensional, totally ordered

Operations:

• search on one-dimensional totally order data types

• insert, delete, ...

7

Common Spatial Queries and Operations

•Physical model provides simpler operations needed by spatial queries!

•Common Queries

•Range query

•Nearest neighbor

•Spatial-join query

• Others (Closest-pair query, Color range query, etc.)

Example schema:

• A big company with a lot of stores and warehouses

• Store(Id int, Name char(30), Location Point)

• Warehouse(Id int, Name char(30), Location Point)

Range query

Find all objects contained in a rectangle/circle

Ex. Find all warehouses at dist < 50 Km from location (0,0)

Select WarehouseId

From Warehouse

Where distance(Warehouse.Location, Point(0,0)) < 50;

8

Nearest neighbor query

Find the object(s) closest to another object

Ex. Find the store closest to store 101

Select s2.Id

From Store s1, Store s2

Where s1.Id = 101 and distance(s1.Location, s2.Location) = min

(Select distance(s1.Location, s3.Location)

From Store s3);

9

Spatial-join query

Find pairs of objects satisfying a property

Ex. Find all pairs of stores-warehouses with dist < 10 Km

Select Store.Id, Warehouse.Id

From Store, Warehouse

Where distance(Store.Location, Warehouse.Location)< 10

10

Other types of queries

Closest-pair query: Find the closest pair (i.e., with min
distance) between a store and a warehouse

(Coral et al., 2000)

Color range query: What type of objects (e.g., stores,
warehouses) are inside a rectangle/circle

Find not the objects themselves, but their types

(Nanopoulos et al., 2001)

Computational geometry has many interesting queries

Not all of them have been transferred to SDB realm

11

12

Learning Objectives

Learning Objectives (LO)
LO1: Understand concept of a physical data model

LO2: Learn how to structure data files
• What is a file structure? Why structure files?

• What are common structures for spatial data file?

LO3: Learn how to use auxiliary data-structures

Mapping Sections to learning objectives
LO2 - 4.1

LO3 - 4.2

13

4.1.4 File Structures

• What is a file structure?
• A method of organizing records in a file
• For efficient implementation of common file operations on disks
•Example: ordered files

• Measure of efficiency
• I/O cost: Number of disk sectors retrieved from secondary storage
• CPU cost: Number of CPU instruction used

•Two basic categories of file structures in SDB
• Point Access Methods (objects are strictly points)
• Spatial Access Methods (objects have spatial extend)

Point Access Methods (PAM)

PAM: index only point data
Multidimensional Hashing

Hierarchical (tree-based) structures

Space filling curve

14

The problem

Given a point set and a rectangular query, find the
points enclosed in the query

Query

15

Grid File

Hashing methods for multidimensional points (extension of
Extensible hashing)

Idea: Use a grid to partition the space each cell is

associated with one page

Two disk access principle (exact match)

16

Grid File Select dividers along each
dimension. Partition space
into cells

Dividers cut all the way.

Each cell corresponds to 1
disk page.

Many cells can point to the
same page.

Cell directory potentially
exponential in the number of
dimensions

17

Example

18

Linear scale X

Linear scale

Y

Grid Directory

Buckets/Disk

Blocks

Grid File Search

Exact Match Search: at most 2 I/Os assuming linear scales fit in
memory.

First use liner scales to determine the index into the cell directory

access the cell directory to retrieve the bucket address (may cause
1 I/O if cell directory does not fit in memory)

access the appropriate bucket (1 I/O)

Range Queries:

use linear scales to determine the index into the cell directory.

Access the cell directory to retrieve the bucket addresses of
buckets to visit.

Access the buckets.

19

Tree-based PAMs

Most of tb-PAMs are based on kd-tree

kd-tree is a main memory binary tree for indexing
k-dimensional points

Needs to be adapted for disk model

Levels rotate among the dimensions, partitioning the space
based on a value for that dimension

kd-tree is not necessarily balanced

20

Example

21

X=5

y=5
y=6

x=3

y=2

x=8 x=7

X=5 X=8

X=7X=3

Y=6

Y=2

At each level we use a different dimension

Kd-tree properties

Height of the tree O(log n)

Search time for exact match: O(log n)

Search time for range query: O(n1/2 + k)

22

Space Filling Curves: Z-ordering

Map points from 2-dimensions to 1-dimension.

Use a B+-tree to index the 1-dimensional points

Basic assumption: Finite precision in the representation of
each co-ordinate, K bits (2K values)

The address space is a square (image) and represented as a 2K x
2K array

Each element is called a pixel

23

Z-ordering

24

Impose a linear ordering on the pixels of the image
 1 dimensional problem

00 01 10 11

00

01

10

11

A

B

ZA = shuffle(xA, yA) = shuffle(“01”, “11”)

= 0111 = (7)10

ZB = shuffle(“01”, “01”) = 0011

Example of shuffling

Queries

Find the z-values that contained in the query and then the
ranges

25

00 01 10 11

00

01

10

11

QA range [4, 7]
QA

QB

QB ranges [2,3] and [8,9]

26

Learning Objectives

Learning Objectives (LO)
LO1: Understand concept of a physical data model

LO2: Learn how to structure data files

LO3: Learn how to use auxiliary data-structures
• Concept of index

• Spatial indices, e.g. R-tree families

• Focus on concepts not procedures!

Mapping Sections to learning objectives
LO2 - 4.1

LO3 - 4.2

27

What is an index?

Fig 4.10
• Concept of an index

•auxiliary file to search a data file

•Example: Fig. 4.10

•index records have

•key value

•address of relevant data sector

•see arrows in Fig. 4.10

•Index records are ordered

•find, findnext, insert are fast

•Note assumption of total order

•on values of indexed attributes

Spatial Access Methods (SAMs)

Indexes for spatial data that have extend (not only point
data)

Use only Minimum Bounding Rectangles – MBRs (filtering)

R-tree (Guttman, 1984) is the prominent SAM

Implemented in Oracle, Postgres, Informix

28

29

R-Tree

• A multi-way external memory tree
• Index nodes and data (leaf) nodes
• All leaf nodes appear on the same
level
• Every node contains between m
and M entries
• The root node has at least 2 entries
(children)

Example

eg., w/ fanout 4: group nearby rectangles to parent
MBRs; each group -> disk page

A

B

C

D
E

F
G

H

J

I

30

Example

F=4

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

F GD E

H I JA B C

31

Example

F=4

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

32

R-trees:Search

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

33

R-trees:Search

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

A query may follow multiple branches
34

R-trees:Insertion

Insert new MBR in a leaf

Find the leaf to insert by searching, starting from the root

How to find the next node to insert the new object?

Using ChooseLeaf: Find the entry that needs the least enlargement
to include Y. Resolve ties using the area (smallest)

35

R-trees:Insertion

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CX

X

Insert X

36

R-trees:Insertion

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C
Y

Insert Y

37

R-trees:Insertion

Extend the parent MBR

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C
Y

Y

38

R-trees:Insertion

If node is full then Split : ex. Insert w

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

W

K

K

39

R-trees:Split

Split node P1: partition the MBRs into two groups.

A

B

C
W

K
P1

• A1: „linear‟ split

• A2: quadratic split

• A3: exponential split:

2M-1 choices

40

R-trees:Split

 pick two rectangles as „seeds‟;

 assign each rectangle „R‟ to the „closest‟ „seed‟

seed1

seed2

R

41

R-trees:Split

pick two rectangles as „seeds‟;

assign each rectangle „R‟ to the „closest‟ „seed‟:

„closest‟: the smallest increase in area

seed1

seed2

R

42

R-trees:Split

How to pick Seeds:

Linear:Find the highest and lowest side in each
dimension, normalize the separations, choose the pair
with the greatest normalized separation

Quadratic: For each pair E1 and E2, calculate the
rectangle J=MBR(E1, E2) and d= J-E1-E2. Choose the
pair with the largest d

43

R-trees:Insertion (the complete algorithm)

Use the ChooseLeaf to find the leaf node to insert an
entry E

If leaf node is full, then Split, otherwise insert there

Propagate the split upwards, if necessary

Adjust parent nodes

44

R-Trees:Deletion

Find the leaf node that contains the entry E

Remove E from this node

If underflow:

Eliminate the node by removing the node entries and
the parent entry

Reinsert the orphaned (other entries) into the tree using
Insert

45

R-trees: Variations

R+-tree: DO not allow overlapping, so split the objects
(similar to z-values)

R*-tree: change the insertion, deletion algorithms
(minimize not only area but also perimeter, forced
re-insertion)

Hilbert R-tree: use the Hilbert values to insert objects into
the tree

46

47

Summary

Physical DM efficiently implements logical DM on computer hardware
Physical DM has file-structure, indexes

Classical methods were designed for data with total ordering
fall short in handling spatial data

because spatial data is multi-dimensional

Two approaches to support spatial data and queries
Reuse classical method

• Use Space-Filling curves to impose a total order on multi-dimensional data

Use new methods
• R-trees, Grid files

