

Ch. 5: Query Processing and Optimization

5.1 Evaluation of Spatial Operations
5.2 Query Optimization
5.3 Analysis of Spatial Index Structures
5.4 Distributed Spatial Database Systems
5.5 Parallel Spatial Database Systems
5.6 Summary

Types of queries

- Point Query- Name a highlighted city on a digital map.
 Return one spatial object out of a table
- Range Query- List all countries crossed by of the river Amazon.
 - Returns several objects within a spatial region from a table
- Nearest Neighbor: Find the city closest to Mount Everest.
 - Return one spatial object from a collection
- Spatial Join: List all pairs of overlapping rivers and countries.
 - Return pairs from 2 tables satisfying a spatial predicate

R-tree query processing:Filter-Refining

- Processing a spatial query Q
 - •Filter step : find a superset S of object in answer to Q
 - •Using approximate of spatial data type and operator
 - •Refinement step : find exact answer to Q reusing a GIS to process S
 - •Using exact spatial data type and operation

- Approximating spatial data types
 - Minimum orthogonal bounding rectangle (MOBR or MBR)
 - approximates line string, polygon, ...
 - See Examples below (Bblack rectangle are MBRs for red objects)
 - BRs are used by spatial indexes, e.g. R-tree
 - Algorithms for spatial operations MBRs are simple
- Q? Which OGIS operation (Table 3.9, pp. 66) returns MBRs ?

Approximate Spatial Operations

- Approximating spatial operations
 - SDBMS processes MBRs for refinement step
 - Overlap predicate used to approximate topological operations
 - Example: inside(A, B) replaced by
 - overlap(MBR(A), MBR(B)) in filter step
 - See picture below Let A be outer polygon and B be the inner one
 - inside(A, B) is true only if overlap(MBR(A), MBR(B))
 - However overlap is only a filter for inside predicate needing refinement later

R-trees:Range search

pseudocode:

- check the root
- for each branch,
 - if its MBR intersects the query rectangle apply range-search (or print out, if this is a leaf)

Example (DFS searching)

R-trees: NN search

8

R-trees: NN search

Q: How? (find near neighbor; refine...)

R-trees: NN search (simple algorithm)

A1: depth-first search; then, range query

R-trees: NN search (simple algorithm)

A1: depth-first search; then, range query

R-trees: NN search (simple algorithm)

A1: depth-first search; then, range query

- Priority queue, with promising MBRs, and their best and worst-case distance
- Main idea: Every face of any MBR contains at least one point of an actual spatial object!

consider only P2 and P4, for illustration

what is really the worst of, say, P2?

- what is really the worst of, say, P2?
- A: the smallest of the two red segments!

MINDIST, MINMAXDIST

- MINDIST(P, R) = min possible distance of P from R
- MINMAXDIST = the min of the max possible distances from P to a vertex of R
- Lower and an upper bound on the actual <u>distance</u> of R from P

Pruning with MINDIST and MINMAXDIST

Downward pruning: MINDIST(P, R) > MINMAXDIST(P, R') => discard M

Upward pruning: MINDIST(P, R) > Dist(P, currNN) => discard visit to R

Order of searching

- Depth first order
 - Inspect children in MINDIST order
 - For each node in the tree keep a list of nodes to be visited
 - Prune some of these nodes in the list
 - Continue until the lists are empty

Branch and bound NN-search algorithm

```
Procedure NNSearch(Node, Point, Nearest)
    if Node.type == LEAF
1.
       for i=1 to Node.count
2.
           dist = objectDIST(Point, Node.branch[i].rect)
3.
           if dist < Nearest.dist
4.
               Nearest.dist = dist
5.
               Nearest.rect = Node.branch[i].rect
6.
7.
           endif
       endfor
8.
9.
    else
       genBranchList(branchList)
10.
11.
       sortBranchList(branchList)
       last = pruneBranchList(Node, Point, Nearest, branchList)
12.
13.
       for i = 1 to last
           newNode = Node.branch[branchList[i]]
14.
15.
           NNSearch(newNode, Point, Nearest)
           last = pruneBranchList(Node, Point, Nearest, branchList)
16.
17.
       endfor
18. endif
19. end
```


NN example

Optimal Strategy for NN search

Global order

- Maintain distance to all entries in a common list
- Order the list by MINDIST
- Repeat
 - Inspect the next MBR in the list
 - Add the children to the list and reorder
- Until all remaining MBRs can be pruned

Optimal NN: example

Generalize to k-NN

- Keep a sorted buffer of at most k current nearest neighbors
- Pruning is done according to the distance of the furthest nearest neighbor in this buffer
- Example:

The k-th object in the buffer

<u>RNN Queries</u>

- Nearest neighbor (NN) query find an object(s) that is closest to a query point.
- Reverse Nearest Neighbor (RNN) query find objects that have a query point as their nearest neighbor

Spatial Joins

Recall Spatial Join Example:

- List all pairs of overlapping rivers and countries.
- Return pairs from 2 tables satisfying a spatial predicate

Naïve algorithm

- Nested loop:
 - Test all possible pairs for spatial predicate
 - All rivers are paired with all countries

R-tree: Spatial Join

S

Repeat

- Find a pair of intersecting entries E in R and F in S
- If R and S are leaf pages then add (E,F) to result-set
- Else Join1(E,F)
- Until all pairs are examined
- CPU and I/O bottleneck

Reducing CPU bottleneck

S

Join2(R,S,IntersectedVol)

Repeat

- Find a pair of intersecting entries E in R and F in S that overlap with IntersectedVol
- If R and S are leaf pages then add (E,F) to result-set
- Else Join2(E,F,CommonEF)
- Until all pairs are examined
- 14+6 comparisons instead of 49
- In general, number of comparisons equals size(R) + size(S) + relevant(R)*relevant(S)
- Reduce the product term

Consider the extents along x-axis Start with the first entry r1 sweep a vertical line

32

Check if (r1,s1) intersect along y-dimension Add (r1,s1) to result set

Check if (r1,s2) intersect along y-dimension Add (r1,s2) to result set

Reached the end of r1 Start with next entry r2

Reposition sweep line and repeat ...

How many disk (=node) accesses we'll need for

🛚 range

🛯 nn

spatial joins

why does it matter?

- A: because we can design split etc algorithms accordingly; also, do queryoptimization
- motivating question: on, e.g., split, should we try to minimize the area (volume)? the perimeter? the overlap? or a weighted combination? why?

How many disk accesses for range queries? query distribution wrt location? wrt size?

How many disk accesses for range queries?
 query distribution wrt location? uniform; (biased)
 wrt size? uniform

easier case: we know the positions of parent MBRs, eg:

How many times will P1 be retrieved (unif. queries)?

How many times will P1 be retrieved (unif. POINT queries)?

How many times will P1 be retrieved (unif. POINT queries)? A: x1*x2

How many times will P1 be retrieved (unif. queries of size q1xq2)?

How many times will P1 be retrieved (unif. queries of size q1xq2)? A: (x1+q1)*(x2+q2)

Thus, given a tree with n nodes (i=1, ... n) we expect

$$DA(q_1, q_2) = \sum_{i}^{n} (x_{i,1} + q_1)(x_{i,2} + q_2)$$
$$= \sum_{i}^{n} x_{i,1} * x_{i,2} + q_1 \sum_{i}^{n} x_{i,2} + q_2 \sum_{i}^{n} x_{i,1}$$
$$+ q_1 * q_2 * n$$

Thus, given a tree with n nodes (i=1, ... n) we expect

$$DA(q_1, q_2) = \sum_{i}^{n} (x_{i,1} + q_1)(x_{i,2} + q_2)$$

$$= \sum_{i}^{n} x_{i,1} * x_{i,2} + \cdots \text{ `volume'}$$

$$q_1 \sum_{i}^{n} x_{i,2} + q_2 \sum_{i}^{n} x_{i,1} \cdots \text{ `surface area'}$$

$$+ q_1 * q_2 * n \cdots \text{ count}$$

'overlap' does not seem to matter

Conclusions:

- splits should try to minimize area and perimeter
- ie., we want few, small, square-like parent MBRs
- rule of thumb: shoot for queries with q1=q2 = 0.1 (or =0.05 or so).

Range queries - how many disk accesses, if we just now that we have

- *N* points in *n*-d space?

A: can not tell! need to know distribution

What are obvious and/or realistic distributions?

- A: uniform
- A: Gaussian / mixture of Gaussians
- A: self-similar / fractal. Fractal dimension ~ intrinsic dimension

Assuming Uniform distribution:

$$DA(q) = 1 + \sum_{j=1}^{1+h} \{ (\sqrt{D_j} + q \sqrt{\frac{N}{f^j}})^2 \}$$

where

And D is the density of the dataset, f the fanout [TS96], N the number of objects

$$D_{j} = \{1 + \frac{\sqrt{D_{j-1}} - 1}{\sqrt{f}}\}^{2}$$