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Types of queries

Point Query- Name a highlighted city on a digital map.

Return one spatial object out of a table

Range Query- List all countries crossed by of the river 
Amazon.

Returns several objects within a spatial region from a table

Nearest Neighbor: Find the city closest to Mount Everest.

Return one spatial object from a collection

Spatial Join: List all pairs of overlapping rivers and 
countries.

Return pairs from 2 tables satisfying a spatial predicate 
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R-tree query processing:Filter-Refining

Fig 5.1

• Processing a  spatial query Q
•Filter step : find a superset S of object in answer to Q

•Using approximate of spatial data type and operator
•Refinement step : find exact answer to Q reusing a GIS to process S

•Using exact spatial data type and operation
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Approximate Spatial Data types

Approximating spatial data types

Minimum orthogonal bounding rectangle (MOBR or MBR)

• approximates line string, polygon, …

• See Examples below (Bblack rectangle are MBRs for red objects)

MBRs are used by spatial indexes, e.g. R-tree

Algorithms for spatial operations MBRs are simple

Q? Which OGIS operation (Table 3.9, pp. 66) returns MBRs ?
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Approximate Spatial Operations

Approximating spatial operations

SDBMS processes MBRs for refinement step

Overlap predicate used to approximate topological operations 

Example: inside(A, B) replaced by 

• overlap(MBR(A), MBR(B)) in filter step

• See picture below - Let A be outer polygon and B be the inner one

• inside(A, B) is true only if overlap(MBR(A), MBR(B))

• However overlap is only a filter for inside predicate needing refinement later
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R-trees:Range search

pseudocode:

check the root

for each branch, 

if its MBR intersects the query rectangle

apply range-search (or print out, if this 

is a leaf)
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Example (DFS searching)



R-trees: NN search
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R-trees: NN search

Q: How? (find near neighbor; refine...)

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

9



R-trees: NN search (simple algorithm)

A1: depth-first search; then, range query
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R-trees: NN search (better algorithm)

Priority queue, with promising MBRs, and their best and 
worst-case distance

Main idea: Every face of any MBR contains at least one 
point of an actual spatial object!
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R-trees: NN search (better algorithm)
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R-trees: NN search (better algorithm)
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R-trees: NN search (better algorithm)
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worst of P2

what is really the worst of, say, P2?
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R-trees: NN search (better algorithm)

P2
q

what is really the worst of, say, P2?

A: the smallest of the two red segments!
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MINDIST, MINMAXDIST

MINDIST(P, R) = min possible distance of P from R

MINMAXDIST = the min of the max possible distances from P to a 
vertex of R

Lower and an upper bound on the actual distance of R from P
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Pruning with MINDIST and MINMAXDIST

Upward pruning: MINDIST(P, R) > Dist(P, currNN) => discard visit to R

R
R’

MINDIST P

MINMAXDIST

Downward pruning: MINDIST(P, R) > MINMAXDIST(P, R') => discard M

R

NN

MINDIST

P

dist



Order of searching

Depth first order

Inspect children in MINDIST order

For each node in the tree keep a list of 
nodes to be visited

Prune some of these nodes in the list

Continue until the lists are empty
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Branch and bound NN-search algorithm
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p12

p8p8

NN example

R1 R2

R3 R4 R5

p6 p7p5p1 p2

Pointers to data tuples

p8p3 p4 p9 p10p11 p12p13

R6 R7

p1
p7

p6

p2

p3

p4

p5

p9

p10

p11

p13

Query point

Candidate NN point: Candidate NN point: p8

R3 R4

R5

R6

R7

R1

R2 p12

p8

Result: p12                   
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Optimal Strategy for NN search

Global order

Maintain distance to all entries in a common 
list

Order the list by MINDIST

Repeat

• Inspect the next MBR in the list

• Add the children to the list and reorder

Until all remaining MBRs can be pruned 
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Optimal NN: example

4 page accesses
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Generalize to k-NN 

Keep a sorted buffer of at most k current nearest neighbors

Pruning is done according to the distance of the furthest 
nearest neighbor in this buffer

Example:

R

The k-th object in the buffer

MINDIST P

Actual_dist
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RNN Queries

Nearest neighbor (NN) query – find an object(s) that is 
closest to a query point.

Reverse Nearest Neighbor (RNN) query – find objects 
that have a query point as their nearest neighbor 

1

2

3

4
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Spatial Joins

Recall Spatial Join Example:

List all pairs of overlapping rivers and 
countries.

Return pairs from 2 tables satisfying a spatial 
predicate 

Naïve algorithm

Nested loop: 

• Test all possible pairs for spatial predicate

• All rivers are paired with all countries 



R-tree: Spatial Join
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Join1(R,S) 

Repeat
Find a pair of intersecting entries E in R and F 
in S

If R and S are leaf pages then add (E,F) to 
result-set

Else  Join1(E,F)

Until all pairs are examined

CPU and I/O bottleneck
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Reducing CPU bottleneck
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Join2(R,S,IntersectedVol) 

Repeat

Find a pair of intersecting entries E in R and F in S 
that overlap with IntersectedVol

If R and S are leaf pages then add (E,F) to result-set

Else  Join2(E,F,CommonEF)

Until all pairs are examined

14+6 comparisons instead of 49

In general, number of comparisons equals

size(R) + size(S) + relevant(R)*relevant(S)

Reduce the product term
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Using Plane Sweep
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Consider the extents along x-axis

Start with the first entry r1

sweep a vertical line 



Using Plane Sweep
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Check if (r1,s1) intersect along y-dimension

Add (r1,s1) to result set



Using Plane Sweep
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Check if (r1,s2) intersect along y-dimension

Add (r1,s2) to result set



Using Plane Sweep
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Reached the end of r1

Start with next entry r2



Using Plane Sweep
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Reposition sweep line and repeat …



R-trees: performance analysis

How many disk (=node) accesses we’ll 
need for

range

nn

spatial joins

why does it matter?
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R-trees: performance analysis

A: because we can design split etc 
algorithms accordingly; also, do query-
optimization

motivating question: on, e.g., split, 
should we try to minimize the area 
(volume)? the perimeter? the overlap? 
or a weighted combination? why?
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R-trees: performance analysis

How many disk accesses for range queries?
query distribution wrt location?

“          “              wrt size?
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R-trees: performance analysis

How many disk accesses for range queries?
query distribution wrt location? uniform; (biased)

“          “              wrt size? uniform
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R-trees: performance analysis

easier case: we know the positions of parent MBRs, eg:
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R-trees: performance analysis

How many times will P1 be retrieved (unif. queries)?

P1

x1

x2
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R-trees: performance analysis

How many times will P1 be retrieved (unif. POINT 
queries)?

P1

x1

x2

0 1

0

1
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R-trees: performance analysis

How many times will P1 be retrieved (unif. POINT 
queries)? A: x1*x2

P1

x1

x2

0 1

0

1
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R-trees: performance analysis

How many times will P1 be retrieved (unif. queries of 
size q1xq2)? 

P1

x1

x2

0 1

0

1

q1

q2
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R-trees: performance analysis

How many times will P1 be retrieved (unif. queries of 
size q1xq2)? A: (x1+q1)*(x2+q2)

P1

x1

x2

0 1

0

1

q1

q2
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R-trees: performance analysis

Thus, given a tree with n nodes (i=1, ... n) we expect 
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R-trees: performance analysis

Thus, given a tree with n nodes (i=1, ... n) we expect 

‘volume’

‘surface area’

count
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R-trees: performance analysis

Conclusions:

• splits should try to minimize area and perimeter

• ie., we want few, small, square-like parent MBRs

• rule of thumb: shoot for queries with q1=q2 = 
0.1 (or =0.05 or so).
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R-trees: performance analysis

Range queries - how many disk accesses, if we just now 
that we have

- N points in n-d space?

A: can not tell! need to know distribution
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R-trees: performance analysis

What are obvious and/or realistic distributions?

A: uniform

A: Gaussian / mixture of Gaussians

A: self-similar / fractal. Fractal dimension ~ intrinsic 
dimension
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R-trees–performance analysis

Assuming Uniform distribution:

where 

And D is the density of the dataset, f the fanout [TS96], N 
the number of objects
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