Ch. 5: Query Processing and Optimization

5.1 Evaluation of Spatial Operations
5.2 Query Optimization
5.3 Analysis of Spatial Index Structures
5.4 Distributed Spatial Database Systems
5.5 Parallel Spatial Database Systems
5.6 Summary
Types of queries

- **Point Query** - Name a highlighted city on a digital map.
 - Return one spatial object out of a table

- **Range Query** - List all countries crossed by the river Amazon.
 - Returns several objects within a spatial region from a table

- **Nearest Neighbor** - Find the city closest to Mount Everest.
 - Return one spatial object from a collection

- **Spatial Join** - List all pairs of overlapping rivers and countries.
 - Return pairs from 2 tables satisfying a spatial predicate
R-tree query processing: Filter-Refining

- Processing a spatial query Q
 - Filter step: find a superset S of object in answer to Q
 - Using approximate of spatial data type and operator
 - Refinement step: find exact answer to Q reusing a GIS to process S
 - Using exact spatial data type and operation

Fig 5.1
Approximate Spatial Data types

- **Approximating spatial data types**
 - Minimum orthogonal bounding rectangle (MOBR or MBR)
 - approximates line string, polygon, ...
 - See Examples below (Black rectangle are MBRs for red objects)
 - MBRs are used by spatial indexes, e.g. R-tree
 - Algorithms for spatial operations MBRs are simple

Q? Which OGIS operation (Table 3.9, pp. 66) returns MBRs?
Approximate Spatial Operations

Approximating spatial operations

- SDBMS processes MBRs for refinement step
- Overlap predicate used to approximate topological operations
- Example: inside(A, B) replaced by
 - overlap(MBR(A), MBR(B)) in filter step
 - See picture below - Let A be outer polygon and B be the inner one
 - inside(A, B) is true only if overlap(MBR(A), MBR(B))
 - However overlap is only a filter for inside predicate needing refinement later
R-trees: Range search

pseudocode:

check the root

for each branch,

if its MBR intersects the query rectangle

apply range-search (or print out, if this is a leaf)
Example (DFS searching)
R-trees: NN search
R-trees: NN search

Q: How? (find near neighbor; refine...)
R-trees: NN search (simple algorithm)

- A1: depth-first search; then, range query
R-trees: NN search (simple algorithm)

- A1: depth-first search; then, range query
R-trees: NN search (simple algorithm)

- **A1**: depth-first search; then, range query
R-trees: NN search (better algorithm)

- Priority queue, with promising MBRs, and their best and worst-case distance
- Main idea: Every face of any MBR contains at least one point of an actual spatial object!
R-trees: NN search (better algorithm)

consider only P2 and P4, for illustration
R-trees: NN search (better algorithm)

best of P4

worst of P2

=> P4 is useless for 1-nn
R-trees: NN search (better algorithm)

what is really the worst of, say, P2?
R-trees: NN search (better algorithm)

- what is really the worst of, say, P2?
- A: the smallest of the two red segments!
MINDIST, MINMAXDIST

- MINDIST(P, R) = min possible distance of P from R
- MINMAXDIST = the min of the max possible distances from P to a vertex of R
- Lower and an upper bound on the actual distance of R from P
Pruning with MINDIST and MINMAXDIST

Downward pruning: \(\text{MINDIST}(P, R) > \text{MINMAXDIST}(P, R') \) => discard M

Upward pruning: \(\text{MINDIST}(P, R) > \text{Dist}(P, \text{currNN}) \) => discard visit to R
Order of searching

Depth first order

- Inspect children in MINDIST order
- For each node in the tree keep a list of nodes to be visited
- Prune some of these nodes in the list
- Continue until the lists are empty
Branch and bound NN-search algorithm

```plaintext
Procedure NNSearch(Node, Point, Nearest)
1. if Node.type == LEAF
2.    for i=1 to Node.count
3.        dist = objectDIST(Point, Node.branch[i].rect)
4.        if dist < Nearest.dist
5.            Nearest.dist = dist
6.            Nearest.rect = Node.branch[i].rect
7.        endif
8.    endfor
9.    else
10.   genBranchList(branchList)
11.   sortBranchList(branchList)
12.   last = pruneBranchList(Node, Point, Nearest, branchList)
13.   for i = 1 to last
14.        newNode = Node.branch[branchList[i]]
15.        NNSearch(newNode, Point, Nearest)
16.        last = pruneBranchList(Node, Point, Nearest, branchList)
17.    endfor
18.    endif
19. end
```
NN example

Result: p12

Pointers to data tuples
Optimal Strategy for NN search

Global order

- Maintain distance to all entries in a common list
- Order the list by MINDIST
- Repeat
 - Inspect the next MBR in the list
 - Add the children to the list and reorder
- Until all remaining MBRs can be pruned
Optimal NN: example

4 page accesses
Generalize to k-NN

- Keep a sorted buffer of at most k current nearest neighbors
- Pruning is done according to the distance of the furthest nearest neighbor in this buffer
- Example:

![Diagram](image)

- R: The region of interest
- $MINDIST$: Minimum distance from the query point P to the k-th object in the buffer
- $Actual_dist$: Actual distance from the query point P to the k-th object in the buffer
RNN Queries

- **Nearest neighbor (NN) query** – find an object(s) that is closest to a query point.
- **Reverse Nearest Neighbor (RNN) query** – find objects that have a query point as their nearest neighbor.
Spatial Joins

- Recall Spatial Join Example:
 - List all pairs of overlapping rivers and countries.
 - Return pairs from 2 tables satisfying a spatial predicate

- Naïve algorithm
 - Nested loop:
 - Test all possible pairs for spatial predicate
 - All rivers are paired with all countries
R-tree: Spatial Join
Join1(R,S)

Repeat

Find a pair of intersecting entries E in R and F in S

If R and S are leaf pages then add (E,F) to result-set

Else Jo1n1(E,F)

Until all pairs are examined

CPU and I/O bottleneck
Reducing CPU bottleneck
Join2(R,S,IntersectedVol)

- Repeat
 - Find a pair of intersecting entries E in R and F in S that overlap with IntersectedVol
 - If R and S are leaf pages then add (E,F) to result-set
 - Else Join2(E,F,CommonEF)
- Until all pairs are examined
- 14+6 comparisons instead of 49
- In general, number of comparisons equals
 - size(R) + size(S) + relevant(R)\ast relevant(S)
- Reduce the product term
Using Plane Sweep

Consider the extents along x-axis
Start with the first entry r1
sweep a vertical line
Using Plane Sweep

Check if (r1,s1) intersect along y-dimension
Add (r1,s1) to result set
Using Plane Sweep

Check if \((r_1,s_2)\) intersect along y-dimension
Add \((r_1,s_2)\) to result set
Using Plane Sweep

Reached the end of r1
Start with next entry r2
Using Plane Sweep

Reposition sweep line and repeat …
R-trees: performance analysis

- How many disk (=node) accesses we’ll need for
 - range
 - nn
 - spatial joins
- why does it matter?
R-trees: performance analysis

A: because we can design split etc algorithms accordingly; also, do query-optimization

Motivating question: on, e.g., split, should we try to minimize the area (volume)? the perimeter? the overlap? or a weighted combination? why?
R-trees: performance analysis

- How many disk accesses for range queries?
 - query distribution wrt location?
 - “ ” wrt size?
R-trees: performance analysis

- How many disk accesses for range queries?
 - query distribution wrt location? **uniform; (biased)**
 - “” wrt size? **uniform**
R-trees: performance analysis

- easier case: we know the positions of parent MBRs, eg:
R-trees: performance analysis

How many times will P1 be retrieved (unif. queries)?
R-trees: performance analysis

How many times will P1 be retrieved (unif. POINT queries)?
R-trees: performance analysis

How many times will P1 be retrieved (unif. POINT queries)? A: $x_1 \times x_2$
R-trees: performance analysis

How many times will P1 be retrieved (unif. queries of size q1xq2)?
R-trees: performance analysis

How many times will P1 be retrieved (unif. queries of size q1xq2)? A: \((x1+q1)*(x2+q2)\)
R-trees: performance analysis

Thus, given a tree with n nodes ($i=1, \ldots, n$) we expect

$$DA(q_1, q_2) = \sum_{i}^{n} (x_{i,1} + q_1)(x_{i,2} + q_2)$$

$$= \sum_{i}^{n} x_{i,1} * x_{i,2} + q_1 \sum_{i}^{n} x_{i,2} + q_2 \sum_{i}^{n} x_{i,1} + q_1 * q_2 * n$$
R-trees: performance analysis

Thus, given a tree with \(n \) nodes (\(i=1, \ldots, n \)) we expect

\[
DA(q_1, q_2) = \sum_{i=1}^{n} (x_{i,1} + q_1)(x_{i,2} + q_2)
\]

\[
= \sum_{i=1}^{n} x_{i,1} * x_{i,2} + \quad \text{‘volume’}
\]

\[
q_1 \sum_{i=1}^{n} x_{i,2} + q_2 \sum_{i=1}^{n} x_{i,1} \quad \text{‘surface area’}
\]

\[
+ q_1 * q_2 * n \quad \text{count}
\]

‘overlap’ does not seem to matter.
Conclusions:

- splits should try to minimize area and perimeter
- i.e., we want few, small, square-like parent MBRs
- rule of thumb: shoot for queries with $q_1 = q_2 = 0.1$ (or $=0.05$ or so).
R-trees: performance analysis

Range queries - how many disk accesses, if we just now that we have
- \(N \) points in \(n \)-d space?
A: can not tell! need to know distribution
R-trees: performance analysis

What are obvious and/or realistic distributions?
A: uniform
A: Gaussian / mixture of Gaussians
A: self-similar / fractal. Fractal dimension ~ intrinsic dimension
R-trees—performance analysis

Assuming Uniform distribution:

\[
DA(q) = 1 + \sum_{j=1}^{1+h} \left\{ \left(\sqrt{D_j} + q \sqrt{\frac{N}{f_j}} \right)^2 \right\}
\]

where

And D is the density of the dataset, f the fanout [TS96], N the number of objects

\[
D_j = \left(1 + \frac{\sqrt{D_{j-1}} - 1}{\sqrt{f}} \right)^2
\]