
1

Chap 6: Spatial Networks

6.1 Example Network Databases

6.2 Conceptual, Logical and Physical Data Models

6.3 Query Language for Graphs

6.4 Graph Algorithms

6.5 Trends: Access Methods for Spatial Networks

2

Learning Objectives

Learning Objectives (LO)
LO1: Understand the concept of spatial network (SN)
• What is a spatial network?

• Why learn about spatial network?

LO2 : Learn about data models for SN

LO3: Learn about query languages and query processing

LO4: Learn about trends

Focus on concepts not procedures!

Mapping Sections to learning objectives
LO1 - 6.1

LO2 - 6.2

LO3 - 6.3, 6.4

LO4 - 6.5

Transistion

From proximity to connectivity

3

4

6.1 Example Spatial Networks

Road networks

1. Find shortest path from my

current location to a destination.

2. Find nearest hospital by

distance along road networks.

3. Find shortest route to deliver

goods to a list of retail stores.

4. Allocate customers to nearest

service center using distance

along roads

5

6.1 Example Spatial Networks

Railway networks
1. Find the number of stops on

the Yellow West (YW) route.

2. List all stops which can be

reached from Downtown

Berkeley.

3. List the route numbers that

connect Downtown Berkeley and

Daly City.

4. Find the last stop on the Blue

West (BW) route.

6

6.1 Example Spatial Networks

River networks

1. List the names of all direct

and indirect tributaries of the

Mississippi river

2. List the direct tributaries of the

Colorado.

3. Which rivers could be affected

if there is a spill in river P1?

7

Learning Objectives

Learning Objectives (LO)
LO1: Understand the concept of spatial network (SN)

LO2 : Learn about data models of SN
• Representative data types and operations for SN

• Representative data-structures

LO3: Learn about query languages and query processing

LO4: Learn about trends

Focus on concepts not procedures!

Mapping Sections to learning objectives
LO1 - 6.1

LO2 - 6.2

LO3 - 6.3, 6.4

LO4 - 6.5

8

6.2 Spatial Network Data Models

•Recall 3 level Database Design

•Conceptual Data Model

• Graphs

•Logical Data Model -

•Data types - Graph, Vertex, Edge, Path, …

•Operations - Connected(), Shortest_Path(), ...

•Physical Data Model

•Record and file representation - adjacency list

•File-structures and access methods - CCAM

9

6.2 Conceptual Data Models

• Conceptual Data Model for Spatial Networks

• A graph, G = (V,E)

• V = a finite set of vertices

• E = a set of edges E , between vertices in V

•Classifying graph models

•Do nodes represent spatial points? - spatial vs. abstract graphs

•Are vertex-pair in an edge order? - directed vs. undirected

• Examples

• Road network is a spatial graph, River network is an abstract graph

• River network is directed, Road network can be directed or undirected

10

6.2 Physical Data Models

• Categories of record/file representations

• Main memory based

• Disk based

•Main memory representations of graphs

• Adjacency matrix M[A, B] = 1 if and only if edge(vertex A, vertex B) exists

•Adjacency list : maps vertex A to a list of successors of A

•Example: See Figure 6.2(a), (b) and (c) on next slide

•Disk based

•normalized - tables, one for vertices, other for edges

•denormalized - one table for nodes with adjacency lists

•Example: See Figure 6.2(a), (d) and (e) on next slide

11

6.2.2 Physical Data Models - Figure 6.2
Fig 6.2

12

Learning Objectives

Learning Objectives (LO)
LO1: Understand the concept of spatial network (SN)

LO2 : Learn data models for SN

LO3: Learn about query languages and query processing
• Query building blocks

• Processing strategies

LO4: Learn about trends

Focus on concepts not procedures!

Mapping Sections to learning objectives
LO1 - 6.1

LO2 - 6.2

LO3 - 6.3, 6.4

LO4 - 6.5

13

6.3 Query Languages For Graphs
• Recall Relation algebra (RA) based languages

• Can not compute paths with arbitrary length

•SQL support for graph queries

• SQL2 - CONNECT clause in SELECT statement

• For directed acyclic graphs, e.g. hierarchies

• SQL 3 - WITH RECURSIVE statement

• Transitive closure on general graphs

• SQL 3 -user defined data types

• Can include shortest path operation!

14

6.3.2 SQL2 Connect Clause

• Syntax details

• FROM clause a table for directed

edges of an acyclic graph

• PRIOR identifies direction of

traversal for the edge

• START WITH specifies first vertex

for path computations

• Semantics

• List all nodes reachable from first

vertex using directed edge in

specified table

• Assumption - no cycle in the graph!

• Not suitable for train networks, road

networks

Table
FallsInto

15

SQL Connect Clause - Example
SELECT source

FROM FallsInto

CONNECT BY PRIOR source = dest

START WITH dest =1

• SQL experssion on right

• Execution trace of paths

•starts at vertex 1 (Mississippi)

•adds children of 1

•adds children of Missouri

• adds children of Platte

• adds children of Yellostone

• Result has edges

•from descendents

• to Mississippi

16

SQL Connect Clause - Exercise
SELECT source FROM FallsInto

CONNECT BY PRIOR source = dest

START WITH dest =3

SELECT source FROM FallsInto

CONNECT BY source = PRIOR dest

START WITH dest =3

• Study 2 SQL queries on right

• Note different use of PRIOR keyword

• Compute results of each query

• Which one returns ancestors of 3?

•Which returns descendents of 3?

•Which query lists river affected by

•oil spill in Missouri (id = 3)?

17

SQL Connect Clause - Exercise
SELECT source FROM FallsInto

CONNECT BY PRIOR source = dest

WHERE Level <= 2

START WITH dest =1

• Stop to a specified level

•Visit 2, 3, 4, 5, 6, 7

18

Concept of Transitive Closure

•.Consider a graph G = (V, E)

• Let G* = Transitive closure of G

• Then T = graph (V*, E*), where

• V* = V

• (A, B) in E* if and only if there is

a path from A to B in G.

•Example:

• G has 5 nodes and 5 edges

• G* has 5 nodes and 9 edges

• Note edge (1,4) in G* for

•path (1, 2, 3, 4) in G.

19

6.3.3 SQL3 Recursion

•Computing table X from table R (figure in previous slide)

WITH RECURSIVE X(source,dest)

AS (SELECT source,dest FROM R)

UNION

(SELECT R.source,X.dest FROM R,X WHERE R.dest=X.source);

• Meaning

• Initialize X by copying directed edges in relation R

• Infer new edge(a,c) if edges (a,b) and (b,c) are in X

• Declarative query does not specify algorithm needed to implement it

• The graph can contain cycles!

Recursion Example

20

With Recursive C(source, dest) as
(Select source, dest From FallsInto
Union
Select FallsInto.source, C.dest
From FallsInto, C
Where FallsInto.dest = C.source)
Select * From C
Where dest = 1;

•Visit 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Recursion Example

21

With Recursive C(source, dest) as
(Select source, dest From FallsInto
Union
Select FallsInto.source, C.dest
From FallsInto, C
Where FallsInto.dest = C.source)
Select * From C
Where source = 3;

•Visit 6, 3, 1

Recursion Example

22

With Recursive C(source, dest, depth) as
(Select source, dest, 1 From FallsInto
Union
Select FallsInto.source, C.dest, C.depth+1
From FallsInto, C
Where FallsInto.dest = C.source)
Select * From C
Where dest = 1 And depth <= 2;

•Visit 2, 3, 4, 5, 6, 7

Recursion Example

23

With Recursive C(source, dest, path) as
(Select source, dest, ARRAY[FallsInto.dest] From FallsInto
Union All
Select FallsInto.source, C.dest, path || FallsInto.dest
From FallsInto, C
Where FallsInto.dest = C.source)
Select path || source as “Path”
From C
Where dest = 1;

Cycles

24

1 2

4 3

With Recursive C(source, dest) as
(Select source, dest From g
Union
Select g.source, C.dest
From g, C
Where g.dest = C.source)
Select * From C
Where source = 1;

•Visit 2, 3, 4, 1

But be careful with Union All

