

Introduction to Spatial Data Mining

- 7.1 Pattern Discovery
- 7.2 Motivation
 - 7.3 Classification Techniques
 - 7.4 Association Rule Discovery Techniques
 - 7.5 Clustering
 - 7.6 Outlier Detection

Introduction: a classic example for spatial analysis

Spatial Databases

Good representation because...

- Represents spatial relation of objects
- of the same type

Represents spatial relation of objects to other objects

Shows only relevant aspects and hides irrelevant It is not only important where a cluster is but also, what else is there (e.g. a water-pump)!

Other examples of Spatial Patterns

Historic Examples (section 7.1.5, pp. 186)

- Fluoride and healthy gums near Colorado river
- Theory of Gondwanaland continents fit like pieces of a jigsaw puzlle

Modern Examples

- Cancer clusters to investigate environment health hazards
- Crime hotspots for planning police patrol routes
- Bald eagles nest on tall trees near open water
- Nile virus spreading from north east USA to south and west
- Unusual warming of Pacific ocean (El Nino) affects weather in USA

TRIASSIC 200 million years ago

Goals of Spatial Data Mining

- Identifying spatial patterns
- Identifying spatial objects that are potential generators of patterns
- Identifying information relevant for explaining the spatial pattern (and hiding irrelevant information)
- Presenting the information in a way that is intuitive and supports further analysis

What is a Spatial Pattern ?

- •What is not a pattern?
 - Random, haphazard, chance, stray, accidental, unexpected
 - Without definite direction, trend, rule, method, design, aim, purpose
 - Accidental without design, outside regular course of things
 - Casual absence of pre-arrangement, relatively unimportant
 - Fortuitous What occurs without known cause
- •What is a Pattern?
 - A frequent arrangement, configuration, composition, regularity
 - A rule, law, method, design, description
 - A major direction, trend, prediction
 - A significant surface irregularity or unevenness

What is Spatial Data Mining?

Metaphors

- Mining nuggets of information embedded in large databases
 - Nuggets = interesting, useful, unexpected spatial patterns
 - Mining = looking for nuggets
- Needle in a haystack
- Defining Spatial Data Mining
 - Search for spatial patterns
 - **Non-trivial search** as "automated" as possible—reduce human effort
 - Interesting, useful and unexpected spatial pattern

What is Spatial Data Mining? - 2

- Non-trivial search for interesting and unexpected spatial pattern
- Non-trivial Search
 - Large (e.g. exponential) search space of plausible hypothesis
 - Ex. Asiatic cholera : causes: water, food, air, insects, ...; water delivery mechanisms numerous pumps, rivers, ponds, wells, pipes, ...

Interesting

- Useful in certain application domain
- Ex. Shutting off identified Water pump => saved human life
- Unexpected
 - Pattern is not common knowledge
 - May provide a new understanding of world
 - Ex. Water pump Cholera connection lead to the "germ" theory

What is NOT Spatial Data Mining?

- Simple Querying of Spatial Data
 - Find neighbors of Canada given names and boundaries of all countries
 - Find shortest path from Boston to Houston in a freeway map
 - Search space is not large (not exponential)
- Testing a hypothesis via a primary data analysis
 - Ex. Female chimpanzee territories are smaller than male territories
 - Search space is not large !
 - SDM: secondary data analysis to generate multiple plausible hypotheses
- Uninteresting or obvious patterns in spatial data
 - Heavy rainfall in Minneapolis is correlated with heavy rainfall in St. Paul, Given that the two cities are 10 miles apart.
 - Common knowledge: Nearby places have similar rainfall
- Mining of non-spatial data
 - Diaper sales and beer sales are correlated in evenings
 - GPS product buyers are of 3 kinds:
 - outdoors enthusiasts, farmers, technology enthusiasts

Why Learn about Spatial Data Mining?

- Two basic reasons for new work
 - Consideration of use in certain application domains
 - Provide fundamental new understanding

Application domains

- Scale up secondary spatial (statistical) analysis to very large datasets
 - Describe/explain locations of human settlements in last 5000 years
 - Find cancer clusters to locate hazardous environments
 - Prepare land-use maps from satellite imagery
 - Predict habitat suitable for endangered species
- Find new spatial patterns
 - Find groups of co-located geographic features

Why Learn about Spatial Data Mining? - 2

- New understanding of geographic processes for Critical questions
 - Ex. How is the health of planet Earth?
 - Ex. Characterize effects of human activity on environment and ecology
 - Ex. Predict effect of El Nino on weather, and economy
- Traditional approach: manually generate and test hypothesis
 - But, spatial data is growing too fast to analyze manually
 - Satellite imagery, GPS tracks, sensors on highways, ...
 - Number of possible geographic hypothesis too large to explore manually
 - Large number of geographic features and locations
 - Number of interacting subsets of features grow exponentially
 - Ex. Find tele connections between weather events across ocean and land areas
- SDM may reduce the set of plausible hypothesis
 - Identify hypothesis supported by the data
 - For further exploration using traditional statistical methods

Shashi Shekhar • Sanjay Cha

Interactive Exploratory Analysis

Data Mining: A KDD Process

- Selection: Obtain data from various sources.
- Preprocessing: Cleanse data.
- Transformation: Convert to common format. Transform to new format.
- Data Mining: Obtain desired results.
- Interpretation/Evaluation: Present results to user in meaningful manner

Data Mining: Confluence of Multiple Disciplines

Primary Data Mining Tasks

Descriptive Modeling

- Finding a compact description for large dataset
 - Clustering: group objects into groups based on their attributes
 - Association rules: correlate what events are likely to occur together
 - Sequential rules: correlate events ordered in time
- Trend detection: discovering the most significant changes

Predictive Modeling

 Classification: assign objects into groups by recognizing patterns Regression: forecasting what may happen in the future by mapping a data item to a predicting real-value variable

What is Cluster Analysis?

Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

<u>Clustering</u>

Spatial Databases

Cluster: a collection of data objects

- Similar to one another within the same cluster
- Dissimilar to the objects in other clusters

Clustering

Grouping a set of data objects into clusters based on the principle: maximizing the intra-class similarity and minimizing the interclass similarity

Example

- Land use: Identification of areas of similar land use in an earth observation database
- <u>City-planning</u>: Identifying groups of houses according to their house type, value, and geographical location

<u>Association rule</u>

Spatial Databases

Association (correlation and causality)

age(X, "20..29") ^ income(X, "20..29K") → buys(X, "PC") [support = 2%, confidence = 60%]

Association rule mining

- Finding frequent patterns, associations, correlations among sets of items or objects in transaction databases, relational databases, and other information repositories
- Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a database

Motivation: finding regularities in data
What products were often purchased together?

Example: Association rule

Transaction-id	Items bought
10	a1,a2, a3
20	a1, a3
30	a1, a4
40	a2, a5, a6

Let min_support = 50%, min_conf = 50%: $a1 \rightarrow a3$ (50%, 66.7%) $a3 \rightarrow a1$ (50%, 100%)

Itemset A1,A2= $\{a_1, ..., a_k\}$

- Find all the rules $A1 \rightarrow A2$ with min confidence and support
 - support, s, probability that a transaction contains A1\u2210A2
 - confidence, c, conditional probability that a transaction having A1 also contains A2.

Deviation Detection

- Outlier: a data object that does not comply with the general behavior of the data
 - It can be considered as noise or exception but is quite useful in fraud detection, rare events analysis
- Trend and evolution analysis
 - Trend and deviation: regression analysis
 - Periodicity analysis
 - Similarity-based analysis

Classification and Regression

- Classification:
 - constructs a model (classifier) based on the *training set* and uses it in classifying new data
 - Example: Climate Classification,...
- Regression:
 - models continuous-valued functions, i.e., predicts unknown or missing values
 - Example: stock trends prediction,...

Databases							
Classification (1): Model Construction							
Training Data							
NAME	RANK	YEARS	TENURED	Classifier			
Mike	Assistant Prof	3	no	(Model)			
Mary	Assistant Prof	7	yes				
Bill	Professor	2	yes				
Jim	Associate Prof	7	yes	IE rank - 'professor'			
Dave	Assistant Prof	6	no	$OP_{VODE} > 6$			
Anne	Associate Prof	3	no	THEN tenured = 'yes			

Spatial Databases

Regression

Regression is similar to classification

- First, construct a model
- Second, use model to predict unknown value
- Methods
 - Linear and multiple regression
 - Non-linear regression
- Regression is different from classification
 - Classification refers to predict categorical class label
 - Regression models continuous-valued functions

<u>Spatial Data Mining</u>

Spatial Patterns

- B Hotspots, Clustering, trends, ...
- Spatial outliers
- Location prediction
- Associations, co-locations

Primary Tasks

- Spatial Data Clustering Analysis
- Spatial Outlier Analysis
- Mining Spatial Association Rules
- Spatial Classification and Prediction
- Example: Unusual warming of Pacific ocean (El Nino) affects weather in USA...

<u>Spatial Data Mining</u>

- Spatial data mining follows along the same functions in data mining, with the end objective to find patterns in geography, meteorology, etc.
- The main difference: spatial autocorrelation
 - the neighbors of a spatial object may have an influence on it and therefore have to be considered as well

Spatial attributes

- Topological
 - adjacency or inclusion information
- Geometric
 - position (longitude/latitude), area, perimeter, boundary polygon

<u>Example</u>

What Kind of Houses Are Highly Valued?—Associative Classification

Example: Location Prediction

•Question addressed

- •Where will a phenomenon occur?
- •Which spatial events are predictable?
- •How can a spatial events be predicted from other spatial events?
 - •Equations, rules, other methods,

•Examples:

- •Where will an endangered bird nest ?
- •Which areas are prone to fire given maps of vegetation, draught, etc.?
- •What should be recommended to a traveler in a given location?

Example: Spatial Interactions

•Question addressed

•Which spatial events are related to each other?

•Which spatial phenomena depend on other phenomenon?

•Examples:

Table 1: Examples of Co-location Patterns

Domains	Example Features	Example Co-location Patterns
Ecology	Species	(Nile crocodile,Egyptian plover)
Earth science	climate and disturbance events	(wild fire, hot, dry, lightning)
Economics	industry types	(suppliers, producers, consultants)
Epidemiology	disease types and environmen-	(West Nile disease, stagnant water sources,
	tal events	dead birds, mosquitoes)
Location-	service type requests	(tow, police, ambulance)
based service		
Weather	fronts, precipitation	(cold front, warm front, snow fall)
Transportation	delivery service tracks	(US Postal Service, UPS, newspaper delivery)

•Exercise: List two interaction patterns.

Example: Hot spots

•Question addressed

•Significance: probability of being unusual is high