

Spatial Data Mining

Regression and Classification Techniques

Spatial Regression and Classisfication

- Discrete class labels (left) vs. continues quantities (right) measured at locations (2D for geographic applications)
- Build a model for predicting the measured quantity at any location
- Additional (to spatial) attributes may exist

Geostatistics

Analysis and inference of continuously-distributed variables

- Analysis: Describing the spatial variability of the phenomenon under study Inference: Estimating the unknown values
- Questions on measurements:
- How are they distributed? How are they related to each other? How can I infer a distribution from one sample?

Water Availabilty Index

Estimated Surface

Estimated Uncertainty

Spatial continuity and stationarity

- Why prediction is possible?
 - Continuity: Spatial close measurements are more similar than distant ones

What does it mean?

- Model the underlying phenomenon with the model f(x,w), x the location vector and w the measurement
- If not just noise, then continuity creates "smoothness" of w values that can be modeled by f(x,w)
- Can all locations be modeled by a single f(x,w)?
 - Stationarity: Measurements generated by a single distribution at all locations

-80 -70 -60

-170 -160 -150 -140 -130 -120 -110 -100 -90

-180

-100

-150

-200

Spatial Autocorrelation

- Continuity produces autocorrelation: correlation of a variable with itself through space
 - First law of geography: "everything is related to everything else, but near things are more related than distant things" – Waldo Tobler

3 possible cases:

- If nearby or neighboring areas are more alike, this is positive spatial autocorrelation
- Negative autocorrelation describes patterns in which neighboring areas are unlike
- Random patterns exhibit no spatial autocorrelation

Why to bother about spatial autocorrelation?

- Most statistics/data mining methods are based on the assumption that the values of observations in each sample are independent of one another
- Positive spatial autocorrelation may violate this, if the samples were taken from nearby areas
 - Spatial Autocorrelation is a kind of redundancy: the measurement at a location constrains, or makes more probable, the measurement in a neighboring location
 - Models will be biased, since measurements tend to be concentrated and there are actually fewer number of independent observations than are being assumed

<u>Measures of autocorrelation</u>

- Objectives:
 - Measure the strength of spatial autocorrelation
 - Test the assumption of independence or randomness

Measures

- 🛚 Moran's I
- Variograms
- other (Geary's C, Ripley's K)

Moran's I: A measure of spatial autocorrelation

Compares the value of the variable at any one location with the value at all other locations

$$I = \frac{N \sum_{i} \sum_{j} W_{i,j} (X_i - \overline{X}) (X_j - \overline{X})}{(\sum_{i} \sum_{j} W_{i,j}) \sum_{i} (X_i - \overline{X})^2}$$

- Similar to correlation coefficient, it varies between 1.0 and + 1.0
 - When autocorrelation is high, the coefficient is high
 - A high *I* value indicates positive autocorrelation

Symbols and Contiguity matrix

- N is the number of cases
 X_i is the variable value at location *i*X_j is the variable value at location *j*Var{X} is the mean of the variable
 W_{ij} is a weight applied to the comparison between location *i* and location *j*
- W_{ii} is a contiguity matrix
 - If location j is adjacent to zone i, the interaction receives a weight of 1
 - Another option is to make W_{ij} a distance-based weight which is the inverse distance between locations I and j (1/d_{ij})

Example: Per Capita Income in Monroe County

Actual values: Moran's I: 0.66

Random values: Moran's I: 0.01

Local Moran's I

Following Anselin's (1995) definition, a local Moran's I_j may be defined as:

$$I_i = \frac{Z_i}{S^2} \sum_j W_{ij} Z_j, i \neq j$$

 z_s are the deviations from the mean of y_s

 89	71	52	
 85	75	63	
 51	61	64	

$$I_{75} = \frac{75 - 55.82}{675.32} [71 + 85 + 61 + 63 - 4 \times 55.82] = 1.61$$

Global vs. Local Moran's I: example

- Spatial pattern detection in China's provincial development
- The variable used: per capita GDP
- Dynamic patterns global Moran's I
- Specific local spatial process local Moran's I and the Moran's scatterplot

Global vs. Local Moran's I: example

- There is a clustering trend in China's provincial level development (represented by per capita GDP
- But the global Moran's I can't tell on which side does the clustering trend take place

Year

More details to the Chine GDP example

- First, China's coast-interior divide persisted
 - Interior provinces exhibit great geographical similarity in economic development and spatial contributions to the global Moran's *I*
- Second, the municipalities (Beijing, Tianjin, Shanghai) always contribute the most
 - Shanghai's position is worth noting, it development changed the spatial pattern the most
- Third, Guangdong's contribution to the global index corresponds with its changing spatial behavior depicted in the Moran scatterplot
- Fourth, while most of the interior provinces have similar patterns, coastal provinces vary greatly
- Fifth, Shandong fell into the low-low quadrant, and contributed very little to the global index
- Sixth, Guizhou and Yunnan, two provinces in southwest China, contributed relatively highly to the global index in 2000
 - The poorest ones tend to form a poor cluster

<u>Variograms</u>

- Analyse the observed variation in data values by distance bands using a spatial autocorrelation-like measure, γ:
 - Semivariance measure is most often used:

$$\hat{\gamma}(h) = \frac{1}{2N(h)} \sum_{d_{ij}=h-\Delta/2}^{d_{ij}=h+\Delta/2} (z_i - z_j)^2$$

- Bands have width Δ . N(*h*) is the number of pairs in the band with mid-point distance *h*
- After building an experimental variogram, we need to fit a theoretical function in order to model the spatial variation

Shashi Shekhar • Sanjay Chawla

R

42

Model	Formula (Theoretical Fit)	Notes
Nugget effect	$\gamma(0) = C_0$	Simple constant. May be added to all models. Models with a nugget will not be exact
Linear	$\gamma(h) = C_1(h)$	No sill. Often used in combination with other functions. May be used as a ramp, with a constant sill value set at a range, a
Exponential Exp()	$\gamma(h) = C_1 \left(1 - e^{-kh} \right)$	k is a constant, often $k=1$ or $k=3$. Useful when there is a larger nugget and slow rise to the sill
Spherical Sph()	$\gamma(h) = C_1 \left(\frac{3h}{2} - \frac{1}{2}h^3\right), h < 1$ $\gamma(h) = C_1, h \ge 1$	Useful when the nugget effect is important but small. Given as the default model in some packages.

S.

Approaches to spatial prediction

Value of the variable is predicted from **"nearby" samples**

- □ Example: concentrations of soil constituents (e.g. salts, pollutants)
- Example: vegetation density
- Each interpolator has its own assumptions:
 - Nearest neighbor and variations:
 - Average within a radius
 - Average of *n* nearest neighbors
 - Distance-weighted average within a radius
 - Distance-weighted average of *n* nearest neighbours
 - Optimal" weighting -> Kriging

k-NN Classification: assign the class label of the majority of the k-NN

k-NN Regression: assign the mean value of the k-NN

$$\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

A common weighting scheme is to give each neighbor a weight of 1/d, where *d* is the distance to the neighbor

Pros:

- Simple, no training (lazy)
- Benchmark:
 - E1-NN <= 2 EB</p>
- Often as good as more sophisticated methods
- Per-se considerations of autocorrelation

Cons:

- Slow classification (lazy)
- Prone to noise
- High-variance
- Need to determine k
 - Cross validation

1	2	3	4	5
Train	Train	Validation	Train	Train

Need to determine weights (for variations)

When no spatial autocorrelation (random data):

 $Z = f(X) + \varepsilon(X)$ $Z \approx \varepsilon(X)$

CV (LOO) error is maximized for 1-NN:

$$E = \frac{1}{N} \sum_{j=1}^{N} \left(Z_j - Z_{j,1NN} \right)^2 \approx \frac{1}{N} \sum_{j=1}^{N} \left(\varepsilon_j - \varepsilon_{j,1NN} \right)^2 \propto 2Var(\varepsilon) \approx 2Var(Z)$$

Random data

No minimum occurs

Spatial autocorrelation

Minimum occurs

• Bias-Variance decomposition: $Err(x_0) = \sigma_{\varepsilon}^2 + \left(f(x_0) - \frac{1}{k} \sum_{n=1}^k f(x_n)\right)^2 + \frac{\sigma_{\varepsilon}^2}{k}$

original

k=3

k=1(hi var)

k=30 (hi bias)

"Optimal Weighting": Kriging

- Characteristics of "optimality":
 - Prediction is made as a **linear** combination of known data values (a **weighted average**)
 - Points closer to the point to be predicted have larger weight

Prediction is unbiased and exact at known points

Error estimate is based only on the sample configuration, not the data values

Prediction error should be as small as possible

- Why "optimal" and not optimal?
 - " "optimal" with respect to the chosen model!

<u>Overview of Kriging</u>

- 1. Sample, preferably at different resolutions
- 2. Calculate the experimental variogram
- 3. Model the variogram with one or more authorized functions
- 4. Apply the kriging system, with the variogram model of spatial dependence, at each point to be predicted
 - Predictions are often at each point on a regular grid (e.g. a raster map)
- 5. Calculate the error of each prediction; this is based only on the sample point locations, not their data values.

Ordinary Kriging (OK)

In OK, we model the value of variable z at location s_i as the sum of a regional mean m and a spatially-correlated random component e(s_i):

$$Z(s_i) = m + e(s_i)$$

- The regional mean *m* is estimated from the sample, but not as the simple average, because there is spatial dependence
 - It is **implicit** in the OK system

Ordinary Kriging: Solution

<u>Kriging usage</u>

Supported by many GIS

- http://faculty.washington.edu/mlog/teaching/geos tats/labs/ArcWizzard/wizzard_demo.shtml
- But be aware of polemics between classic statistics vs. geostatistics
 - spatial dependence may be assumed or be verified?
 - Kriging in scandal: Spatial dependence between borehole grades or blasthole grades was assumed at Bre-X's Busang property
 - More details:
 - <u>http://en.wikipedia.org/wiki/Kriging#Controversy_in</u> <u>climate_change.2C_mineral_exploration.2C_and_mining</u>
 - <u>http://www.geostatscam.com/</u>

