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Spatial Data Mining

Regression and Classification Techniques



Spatial Regression and Classisfication

Discrete class labels (left) vs. continues quantities (right) measured at 
locations (2D for geographic applications)

Build a model for predicting the measured quantity at any location

Additional (to spatial) attributes may exist
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Geostatistics

Analysis and inference of continuously-distributed variables
Analysis: Describing the spatial variability of the phenomenon under study 
Inference: Estimating the unknown values

Questions on measurements:

How are they distributed? How are they related to each other? How 

can I infer a distribution from one sample?
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Spatial continuity and stationarity

Why prediction is possible?

Continuity: Spatial close 
measurements are more similar than 
distant ones

What does it mean?

Model the underlying phenomenon 
with the model f(x,w), x the location 
vector and w the measurement

If not just noise, then continuity 
creates “smoothness” of w values 
that can be modeled by f(x,w)

Can all locations be modeled by a 
single f(x,w)?

Stationarity: Measurements 
generated by a single distribution at 
all locations
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Spatial Autocorrelation

Continuity produces autocorrelation: correlation of a 

variable with itself through space

First law of geography:  “everything is related to 
everything else, but near things are more related than 
distant things” – Waldo Tobler

3 possible cases:

If  nearby or neighboring areas are more alike, this is 
positive spatial autocorrelation

Negative autocorrelation describes patterns in which 
neighboring areas are unlike

Random patterns exhibit no spatial autocorrelation



Why to bother about spatial autocorrelation?

Most statistics/data mining methods are based on the 
assumption that the values of observations in each 
sample are independent of one another

Positive spatial autocorrelation may violate this, if the 
samples were taken from nearby areas

Spatial Autocorrelation is a kind of redundancy: the measurement 
at a location constrains, or makes more probable, the 
measurement in a neighboring location

Models will be biased, since measurements tend to be 
concentrated and there are actually fewer number of independent 
observations than are being assumed
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Measures of autocorrelation

Objectives:

Measure the strength of spatial autocorrelation 

Test the assumption of independence or randomness

Measures

Moran’s I

Variograms

other (Geary’s C, Ripley’s K)
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Moran’s I: A measure of spatial autocorrelation

Compares the value of the variable at any one location with the value 
at all other locations

Similar to correlation coefficient, it varies between –
1.0 and + 1.0

When autocorrelation is high, the coefficient is high

A high I value indicates positive autocorrelation
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Symbols and Contiguity matrix

N is the number of cases
Xi is the variable value at location i
Xj is the variable value at location j
\bar{X} is the mean of the variable
Wij is a weight applied to the comparison between location i and 
location j

Wij is a contiguity matrix
If location j is adjacent to zone i, the interaction receives a weight 
of 1

Another option is to make Wij a distance-based weight which is the 
inverse distance between locations I and j (1/dij)
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Example: Per Capita Income in Monroe County

Actual values: Moran’s I: 0.66 Random values: Moran’s I: 0.01
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Local Moran’s I

Following Anselin’s (1995) definition, a local Moran’s Ii may be defined 
as:

zis are the deviations from the mean of yis
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Global vs. Local Moran’s I: example

Spatial pattern detection in China’s provincial development

The variable used: per capita GDP

Dynamic patterns – global Moran’s I

Specific local spatial process – local Moran’s I and the Moran’s 
scatterplot
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Global vs. Local Moran’s I: example
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Local Moran’s I in 2000
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More details to the Chine GDP example

First, China’s coast-interior divide persisted

Interior provinces exhibit great geographical similarity in economic development 
and spatial contributions to the global Moran’s I

Second, the municipalities (Beijing, Tianjin, Shanghai) always contribute the 
most

Shanghai’s position is worth noting, it development changed the spatial pattern the 
most

Third, Guangdong’s contribution to the global index corresponds with its 
changing spatial behavior depicted in the Moran scatterplot

Fourth, while most of the interior provinces have similar patterns, coastal 
provinces vary greatly

Fifth, Shandong fell into the low-low quadrant, and contributed very little to 
the global index

Sixth, Guizhou and Yunnan, two provinces in southwest China, contributed 
relatively highly to the global index in 2000

The poorest ones tend to form a poor cluster



Variograms

Analyse the observed variation in data values by distance 
bands using a spatial autocorrelation-like measure, :

Semivariance measure is most often used:

Bands have width . N(h) is the number of pairs in the 
band with mid-point distance h

After building an experimental variogram, we need to fit a 
theoretical function in order to model the spatial variation

19

/2

2

/2

1
( ) ( )ˆ

2 ( )

ij

ij

d h

i j

d h

h z z
N h



 

 

 



Variograms
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C0 “Nugget”

C1=C0+C

(structural 
variance)

Range, A0

sill

Lag (distance band)

Smallest observed 
separation

Average semivariance 
for band 4

Fitted curve

model

../../../../../Program Files/GSWin5/Gswin5Demo.exe


Variograms
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Model Formula (Theoretical Fit) Notes

Nugget effect Simple constant. May be added to all

models. Models with a nugget will not be

exact

Linear No sill. Often used in combination with other

functions. May be used as a ramp, with a

constant sill value set at a range, a

Exponential

Exp()

k is a constant, often k=1 or k=3. Useful

when there is a larger nugget and slow rise

to the sill

Spherical

Sph()

Useful when the nugget effect is important

but small. Given as the default model in

some packages.
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Approaches to spatial prediction

Value of the variable is predicted from “nearby” samples

 Example: concentrations of soil constituents (e.g. salts, pollutants)

 Example: vegetation density

Each interpolator has its own assumptions:

Nearest neighbor and variations:

• Average within a radius

• Average of n nearest neighbors

• Distance-weighted average within a radius

• Distance-weighted average of n nearest neighbours

“Optimal” weighting -> Kriging
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Nearest Neighbor Methods

k-NN Classification: assign 
the class label of the 
majority of the k-NN

k-NN Regression: 
assign the mean value 
of the k-NN

23

A common weighting scheme 
is to give each neighbor a 
weight of 1/d, where d is the 
distance to the neighbor

1-NN:
Voronoi Diagram



Nearest Neighbor Methods

Pros:

Simple, no training (lazy)

Benchmark:

E1-NN <= 2 EB

Often as good as more 
sophisticated methods

Per-se considerations of 
autocorrelation

Cons:

Slow classification (lazy)

Prone to noise

High-variance

Need to determine k

Cross validation

Need to determine 
weights (for variations)
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Nearest Neighbor Methods

When no spatial autocorrelation (random data):

CV (LOO) error is maximized for 1-NN:
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Nearest Neighbor Methods

Random data Spatial autocorrelation

Minimum occurs
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No minimum occurs



Nearest Neighbor Methods

Bias-Variance decomposition:
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“Optimal Weighting”: Kriging

Characteristics of “optimality”:

Prediction is made as a linear combination of known data values 
(a weighted average)

• Points closer to the point to be predicted have larger weight

Prediction is unbiased and exact at known points

Error estimate is based only on the sample configuration, not the 
data values

Prediction error should be as small as possible

Why “optimal” and not optimal?

“optimal” with respect to the chosen model!
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Overview of Kriging
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1. Sample, preferably at different resolutions

2. Calculate the experimental variogram

3. Model the variogram with one or more authorized 
functions

4. Apply the kriging system, with the variogram model 
of spatial dependence, at each point to be predicted

Predictions are often at each point on a regular grid 
(e.g. a raster map)

5. Calculate the error of each prediction; this is based 
only on the sample point locations, not their data 
values.



Ordinary Kriging (OK)

In OK, we model the value of 
variable z at location si as the sum of 
a regional mean m and a 
spatially-correlated random 
component e(si):

Z (si) = m +e (si)

The regional mean m is estimated 
from the sample, but not as the 
simple average, because there is 
spatial dependence

It is implicit in the OK system
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Ordinary Kriging: Solution
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Kriging usage

Supported by many GIS

http://faculty.washington.edu/mlog/teaching/geos
tats/labs/ArcWizzard/wizzard_demo.shtml

But be aware of polemics between classic 
statistics vs. geostatistics

spatial dependence may be assumed or be 
verified?

Kriging in scandal: Spatial dependence 
between borehole grades or blasthole grades 
was assumed at Bre-X's Busang property

More details:
• http://en.wikipedia.org/wiki/Kriging#Controversy_in

_climate_change.2C_mineral_exploration.2C_and_
mining

• http://www.geostatscam.com/
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