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Spatial Regression and Classisfication
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% Discrete class labels (left) vs. continues quantities (right) measured at
locations (2D for geographic applications)
¢ Build a model for predicting the measured quantity at any location
¢ Additional (to spatial) attributes may exist
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Geostatistics

|
w

w

Analysis and inference of continuously-distributed variables

= Analysis: Describing the spatial variability of the phenomenon under study
Inference: Estimating the unknown values

Questions on measurements:

How are they distributed? How are they related to each other? How
can | infer a distribution from one sample?
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Water Availabilty Estimated Estimated
Index Surface Uncertainty



Spatial continuity and stationarity
% Why prediction is possible?
= Continuity: Spatial close

measurements are more similar than
distant ones

Mean Annual Near
Surface Ground Temperature
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% What does it mean? e
= Model the underlying phenomenon A e -]
with the model f(x,w), x the location " om0
vector and w the measurement
= If not just noise, then continuity e S

creates “smoothness” of w values
that can be modeled by f(x,w)

¢ Can all locations be modeled by a )
single f(x,w)? ’

= Stationarity: Measurements ‘
generated by a single distribution at »

all locations
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Spatial Autocorrelation

@ Continuity produces autocorrelation: correlation of a
variable with itself through space

= First law of geography: “everything is related to
everything else, but near things are more related than
distant things” — Waldo Tobler
% 3 possible cases:

= If nearby or neighboring areas are more alike, this is
positive spatial autocorrelation

i Negative autocorrelation describes patterns in which
neighboring areas are unlike

2 Random patterns exhibit no spatial autocorrelation
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Why to bother about spatial autocorrelation?

# Most statistics/data mining methods are based on the
assumption that the values of observations in each
sample are independent of one another

@ Positive spatial autocorrelation may violate this, if the
samples were taken from nearby areas

= Spatial Autocorrelation is a kind of redundancy: the measurement
at a location constrains, or makes more probable, the
measurement in a neighboring location

=z Models will be biased, since measurements tend to be
concentrated and there are actually fewer number of independent
observations than are being assumed
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Measures of autocorrelation

& Objectives:

== Measure the strength of spatial autocorrelation

= Test the assumption of independence or randomness
+ Measures

= Moran’s I

= Variograms

2 other (Geary's C, Ripley’s K)
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Moran’s I: A measure of spatial autocorrelation

& Compares the value of the variable at any one location with the value
at all other locations

I NY. 2.V, (X, - XX, - X)
Y W)Y (X, —X)

¢ Similar to correlation coefficient, it varies between —
1.0and + 1.0
== When autocorrelation is high, the coefficient is high
=2 A high 7value indicates positive autocorrelation
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Symbols and Contiquity matrix

& Nis the number of cases N W (X.—X)X,-X)
X, is the variable value at location / T = Zizf e —
X; is the variable value at location j (ZiZjWi,j)Z,. (X;—X)

\bar{X} is the mean of the variable
W;; is a weight applied to the comparison between location /and

location j

% W Is a contiguity matrix
= If location jis adjacent to zone j, the interaction receives a weight
of 1
= Another option is to make W;; a distance-based weight which is the
inverse distance between locations I and j (1/dij)
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Example: Per Capita Income in Monroe County

Actual values: Moran’s I: 0.66 Random values: Moran’s I: 0.01
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Local Moran’s |

& Following Anselin’s (1995) definition, a local Moran’s 7: may be defined
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Global vs. Local Moran’s I: example

N
w

Spatial pattern detection in China’s provincial development
The variable used: per capita GDP
Dynamic patterns — global Moran’s 7/

Specific local spatial process — local Moran’s 7and the Moran'’s
scatterplot
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~ China: per capita GDP in 1978
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" China: per capita GDP in 2000
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Global vs. Local Moran’s I: example

¢ There is a clustering
trend in China’s
provincial level
development
(represented by per
capita GDP

% But the global Moran’s
can't tell on which side
does the clustering
trend take place
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LLocal Moran’s | In 1978
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LLocal Moran’s | in 2000
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More detalls to the Chine GDP example
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First, China’s coast-interior divide persisted

= Interior provinces exhibit great geographical similarity in economic development
and spatial contributions to the global Moran’s 7

Second, the municipalities (Beijing, Tianjin, Shanghai) always contribute the
most

= Shanghai’s position is worth noting, it development changed the spatial pattern the
most

Third, Guangdong’s contribution to the global index corresponds with its
changing spatial behavior depicted in the Moran scatterplot

Fourth, while most of the interior provinces have similar patterns, coastal
provinces vary greatly

Fifth, Shandong fell into the low-low quadrant, and contributed very little to
the global index

Sixth, Guizhou and Yunnan, two provinces in southwest China, contributed
relatively highly to the global index in 2000

22 The poorest ones tend to form a poor cluster
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Variograms

% Analyse the observed variation in data values by distance
bands using a spatial autocorrelation-like measure, vy:

== Semivariance measure is most often used:

dij :h+A / 2

R 1 2
hy=_ - 7.
y(h) ING) d,-j—hEA/Z(Z’ Z;)

= Bands have width A. N(/A) is the number of pairs in the
band with mid-point distance A

& After building an experimental variogram, we need to fit a
theoretical function in order to model the spatial variation
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Variograms

Smallest observed

Fitted curve

\ Exponertial model (Co = 21400.0000; Co + C = 182900 0000;
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Sepa ration lzotropic Wariogram
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Variograms

Model Formula (Theoretical Fit) Notes
Nugget effect Simple constant. May be added to all
7(0) = Cy models. Models with a nugget will not be
exact
Linear h = C.(h No sill. Often used in combination with other
y(h) = 1( ) functions. May be used as a ramp, with a
constant sill value set at a range, a
Exponential ( _kh) k is a constant, often k=1 or k=3. Useful
Exp() y(hy=Ci\l-e when there is a larger nugget and slow rise
to the sill
Spherical 3h 1,5 Useful when the nugget effect is important
Sph() y(h) = C; 7_5’7 »h <1 put small. Given as the default model in
w(h) = Cy, h > 1 some packages.
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Approaches to spatial prediction

Value of the variable is predicted from “nearby” samples
Example: concentrations of soil constituents (e.g. salts, pollutants)
Example: vegetation density

% Each interpolator has its own assumptions:
=2 Nearest neighbor and variations:
e Average within a radius
e Average of 17 nearest neighbors
e Distance-weighted average within a radius
e Distance-weighted average of n nearest neighbours
= Optimal” weighting -> Kriging

22
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Nearest Neighbor Methods

% k-NN Classification: assign € k-NN Regression:

the class |?bﬁ| Olf the assign the mean value
majority of the k-NN of the k-NN
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A common weighting scheme
is to give each neighbor a
weight of 1/d, where d'is the
distance to the neighbor

1-NN:

Voronoi Diagram ’s
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Nearest Neighbor Methods

Pros:

Simple, no training (lazy)
Benchmark:

= Ei1-nn <= 2 EB

Often as good as more
sophisticated methods

Per-se considerations of
autocorrelation

Cons:
& Slow classification (lazy)

% Prone to noise
& High-variance
% Need to determine k
= Cross validation

1

4

Train

Train

Validation

Train

Train

¥ Need to determine

weights (for variations)
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Nearest Neighbor Methods

¥ When no spatial autocorrelation (random data):

Z="1(X)+e&(X)
Z ~g(X)

% CV (LOO) error is maximized for 1-NN:

2

N N
E=%Z(zj Z i) ~%Z( &) o Var(s)~ 2var(2)

j=1
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Nearest Neighbor Meth

ods

Random data
¢ NO minimum occurs
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Spatial autocorrelation
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Nearest Neighbor Methods

1 © ol
¢ Bias-Variance decomposition: Err(xo):a§+(f(xo)—izf(xn)] +Gk'9

n=1

original - k=3 \ Y } LY_)
=iy ’;;‘,. f - Bias? Variance

k=30
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“Optimal Weighting”: Kriging

% Characteristics of “optimality”:

= Prediction is made as a linear combination of known data values
(a weighted average)

e Points closer to the point to be predicted have larger weight
= Prediction is unbiased and exact at known points

= Error estimate is based only on the sample configuration, not the
data values

=z Prediction error should be as small as possible
% Why “optimal” and not optimal?
= optimal” with respect to the chosen model!

28
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Overview of Kriging

¢ 1. Sample, preferably at different resolutions

¢ 2. Calculate the experimental variogram

% 3. Model the variogram with one or more authorized
functions

¢ 4, Apply the kriging system, with the variogram model
of spatial dependence, at each point to be predicted

= Predictions are often at each point on a regular grid
(e.g. a raster map)
& 5. Calculate the error of each prediction; this is based
only on the sample point locations, nottheir data
values.

29
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Ordinary Kriging (OK)

¢ In OK, we model the value of
variable z at location s;as the sum of
a regional mean mand a
spatially-correlated random
component &(s):

¢ Z(s)=m+e(s)

% The regional mean mis estimated
from the sample, but not as the
simple average, because there is
spatial dependence

= It is implicit in the OK system

30
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Ordinary Kriging: Solution

. =1 -
oy Cly (@ 1 Cio
}“'2 C21 C22 ......... CZn ]. CZU
A S T Ca
a. 1 | P 1 0 1
——————————
« Covariance matrix elements

~ C,=C(0)~(h)=C,+C,~y(h)

*Substituting the values we find the weights

/

*Kriging estimator: Z;k‘o Z_%l)\i Z(x.|
24l

. P T
«Variance 62,=C,+C ATk
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Kriging usage

|
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Supported by many GIS

N
w

But be aware of polemics between classic
statistics vs. geostatistics

= spatial dependence may be assumed or be
verified? —

= Kriging in scandal: Spatial dependence Eg;x fallout puts ™
between borehole grades or blasthole grades .0
was assumed at Bre-X's Busang property

= More details:
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http://faculty.washington.edu/mlog/teaching/geostats/labs/ArcWizzard/wizzard_demo.shtml
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http://en.wikipedia.org/wiki/Kriging
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http://www.geostatscam.com/

