Chapter 1: Introduction to Spatial Databases

1.1 Overview
1.2 Application domains
1.3 Compare a SDBMS with a GIS
1.4 Categories of Users
1.5 An example of an SDBMS application
1.6 A Stroll though a spatial database
 1.6.1 Data Models, 1.6.2 Query Language, 1.6.3 Query Processing,
 1.6.4 File Organization and Indices, 1.6.5 Query Optimization,
 1.6.6 Data Mining
Learning Objectives

Learning Objectives (LO)

- **LO1**: Understand the value of SDBMS
 - Application domains
 - users
 - How is different from a DBMS?
- **LO2**: Understand the concept of spatial databases
- **LO3**: Learn about the Components of SDBMS

Mapping Sections to learning objectives

- **LO1** - 1.1, 1.2, 1.4
- **LO2** - 1.3, 1.5
- **LO3** - 1.6
What is Spatial Data?

Spatial data:
“data that have some form of spatial or geographic reference that enables them to be located in two- or three-dimensional space” (*Heywood et al., 1998*)

‘where’ (spatial component) and ‘what’ (attribute)
Value of SDBMS

Traditional (non-spatial) database management systems provide:
- Persistence across failures
- Allows concurrent access to data
- Scalability to search queries on very large datasets which do not fit inside main memories of computers
- Efficient for non-spatial queries, but not for spatial queries

Non-spatial queries:
- List the names of all bookstore with more than ten thousand titles.
- List the names of ten customers, in terms of sales, in the year 2001

Spatial Queries:
- List the names of all bookstores with ten miles of Minneapolis
- List all customers who live in Tennessee and its adjoining states
Value of SDBMS – Spatial Data Examples

- Examples of non-spatial data
 - Names, phone numbers, email addresses of people
- Examples of Spatial data
 - Census Data
 - NASA satellites imagery - terabytes of data per day
 - Weather and Climate Data
 - Rivers, Farms, ecological impact
 - Medical Imaging
- Exercise: Identify spatial and non-spatial data items in
 - A phone book
 - A cookbook with recipes
Value of SDBMS – Users, Application Domains

Many important application domains have spatial data and queries. Some Examples follow:

- **Army Field Commander**: Has there been any significant enemy troop movement since last night?
- **Insurance Risk Manager**: Which homes are most likely to be affected in the next great flood on the Mississippi?
- **Medical Doctor**: Based on this patient's MRI, have we treated somebody with a similar condition?
- **Molecular Biologist**: Is the topology of the amino acid biosynthesis gene in the genome found in any other sequence feature map in the database?
- **Astronomer**: Find all blue galaxies within 2 arcmin of quasars.

Exercise: List two ways you have used spatial data. Which software did you use to manipulate spatial data?
Learning Objectives

- LO1: Understand the value of SDBMS
- LO2: Understand the concept of spatial databases
 - What is a SDBMS?
 - How is it different from a GIS?
- LO3: Learn about the Components of SDBMS

Sections for LO2
- Section 1.5 provides an example SDBMS
SDBMS Example

Consider a spatial dataset with:
- County boundary (dashed white line)
- Census block - name, area, population, boundary (dark line)
- Water bodies (dark polygons)
- Satellite Imagery (gray scale pixels)

Storage in a SDBMS table:
```sql
create table census_blocks (
    name string,
    area float,
    population number,
    boundary polygon);
```

Fig 1.2
Modeling Spatial Data in Traditional DBMS

• A row in the table census_blocks (Figure 1.3)
• Question: Is Polyline datatype supported in DBMS?

Figure 1.3
Spatial Data Types and Traditional Databases

Traditional relational DBMS
- Support simple data types, e.g. number, strings, date
- Modeling Spatial data types is tedious

Example: Figure 1.4 shows modeling of polygon using numbers
- Three new tables: polygon, edge, points
 - Note: Polygon is a polyline where last point and first point are same
- A simple unit square represented as 16 rows across 3 tables
- Simple spatial operators, e.g. area(), require joining tables
- Tedious and computationally inefficient

Question. Name post-relational database management systems which facilitate modeling of spatial data types, e.g. polygon.
Mapping “census table” into a Relational Database

Census_blocks

<table>
<thead>
<tr>
<th>Name</th>
<th>Area</th>
<th>Population</th>
<th>boundary-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>340</td>
<td>1</td>
<td>1839</td>
<td>1050</td>
</tr>
</tbody>
</table>

Polygon

<table>
<thead>
<tr>
<th>boundary-ID</th>
<th>edge-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>A</td>
</tr>
<tr>
<td>1050</td>
<td>B</td>
</tr>
<tr>
<td>1050</td>
<td>C</td>
</tr>
<tr>
<td>1050</td>
<td>D</td>
</tr>
</tbody>
</table>

Edge

<table>
<thead>
<tr>
<th>edge-name</th>
<th>endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
</tbody>
</table>

Point

<table>
<thead>
<tr>
<th>endpoint</th>
<th>x-coor</th>
<th>y-coor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Spatial Data Types and Post-relational Databases

- Post-relational DBMS
 - Support user defined abstract data types
 - Spatial data types (e.g. polygon) can be added
- Choice of post-relational DBMS
 - Object oriented (OO) DBMS
 - Object relational (OR) DBMS
- A spatial database is a collection of spatial data types, operators, indices, processing strategies, etc. and can work with many post-relational DBMS as well as programming languages like Java, Visual Basic etc.
Evolution of DBMS technology

Fig 1.5
What is a SDBMS?

A SDBMS is a software module that

- can work with an underlying DBMS
- supports spatial data models, spatial abstract data types (ADTs) and a query language from which these ADTs are callable
- supports spatial indexing, efficient algorithms for processing spatial operations, and domain specific rules for query optimization

Example: Oracle Spatial data cartridge, ESRI SDE

- can work with Oracle
- Has spatial data types (e.g. polygon), operations (e.g. overlap) callable from SQL3 query language
- Has spatial indices, e.g. R-trees
Learning Objectives

- **LO1**: Understand the value of SDBMS
- **LO2**: Understand the concept of spatial databases
- **LO3**: Learn about the Components of SDBMS
 - Architecture choices
 - SDBMS components:
 - data model, query languages,
 - query processing and optimization
 - File organization and indices
 - Data Mining

Chapter Sections

- 1.5 second half
- 1.6 – entire section
Components of a SDBMS

- Recall: a SDBMS is a software module that
 - can work with an underlying DBMS
 - supports spatial data models, spatial ADTs and a query language from which these ADTs are callable
 - supports spatial indexing, algorithms for processing spatial operations, and domain specific rules for query optimization

- Components include
 - spatial data model, query language, query processing, file organization and indices, query optimization, etc.
 - Figure 1.6 shows these components
 - We discuss each component briefly in chapter 1.6 and in more detail in later chapters.
Three Layer Architecture

Fig 1.6
1.6.1 Spatial Taxonomy, Data Models

- **Spatial Taxonomy:**
 - multitude of descriptions available to organize space.
 - Topology models homeomorphic relationships, e.g. overlap
 - Euclidean space models distance and direction in a plane
 - Graphs models connectivity, Shortest-Path

- **Adjacent polygons**
- **One polygon contained inside another polygon**
- **Connected stream network**
1.6.1 Spatial Taxonomy, Data Models

- **Spatial data models**
 - rules to identify identifiable objects and properties of space
 - Object model help manage identifiable things, e.g. mountains, cities, land-parcels etc.
 - Field model help manage continuous and amorphous phenomenon, e.g. wetlands, satellite imagery, snowfall etc.
1.6.2 Spatial Query Language

• Spatial query language
 • Spatial data types, e.g. point, linestring, polygon, ...
 • Spatial operations, e.g. overlap, distance, nearest neighbor, ...
 • Callable from a query language (e.g. SQL3) of underlying DBMS
 SELECT S.name
 FROM Senator S
 WHERE S.district.Area() > 300

• Standards
 • SQL3 (a.k.a. SQL 1999) is a standard for query languages
 • OGIS is a standard for spatial data types and operators
 • Both standards enjoy wide support in industry
Multi-scan Query Example

- **Spatial join example**

  ```sql
  SELECT S.name 
  FROM Senator S, Business B 
  WHERE S.soc-sec = B.soc-sec AND AND Within(B.location, S.district)
  ```

- **Non-Spatial Join example**

  ```sql
  SELECT S.name 
  FROM Senator S, Business B 
  WHERE S.soc-sec = B.soc-sec AND S.gender = ‘Female’
  ```

Fig 1.7
1.6.3 Query Processing

- Efficient algorithms to answer spatial queries
- Common Strategy - filter and refine
 - Filter Step: Query Region overlaps with MBRs of B, C and D
 - Refine Step: Query Region overlaps with B and C

![Diagram showing query processing steps](image)
Query Processing of Join Queries

- Example - Determining pairs of intersecting rectangles
 - (a): Two sets R and S of rectangles, (b): A rectangle with 2 opposite corners marked, (c): Rectangles sorted by smallest X coordinate value
 - Plane sweep filter identifies 5 pairs out of 12 for refinement step
 - Details of plane sweep algorithm on page 15

Fig 1.9
1.6.4 File Organization and Indices

• A difference between GIS and SDBMS assumptions
 • GIS algorithms: dataset is loaded in main memory (Fig. 1.10(a))
 • SDBMS: dataset is on secondary storage e.g disk (Fig. 1.10(b))
 • SDBMS uses space filling curves and spatial indices
 • to efficiently search disk resident large spatial datasets

Fig 1.10
Organizing spatial data with space filling curves

• Issue:
 • Sorting is not naturally defined on spatial data
 • Many efficient search methods are based on sorting datasets

• Space filling curves
 • Impose an ordering on the locations in a multi-dimensional space
 • Examples: row-order (Fig. 1.11(a), z-order (Fig 1.11(b))
 • Allow use of traditional efficient search methods on spatial data

![Fig 1.11](image)
Spatial Indexing: Search Data-Structures

• Choice for spatial indexing:
 • B-tree index is used for efficient search of traditional data
 • B-tree can be used with space filling curve on spatial data
 • R-tree provides better search performance yet!

B+ tree

```
  3 5
  d_1 d_2 d_3
  1 2 3

  4 5
  d_4 d_5

  6 7
  d_6 d_7
```

R- tree

```
A
  +---+
  |   |
  |   |
  +---+
     |
     |
     |
     |
     +---+---+---+
     |   |   |   |
     |   |   |   |
     +---+---+---+
       |
       |
       |
       |
       |
       +---+---+---+
       |   |   |   |
       |   |   |   |
       +---+---+---+
         |
         |
         |
         |
         |
         +---+---+---+
            |   |   |   |
            |   |   |   |
            +---+---+---+
```

1.6.5 Query Optimization

• Query Optimization
 • A spatial operation can be processed using different strategies
 • Computation cost of each strategy depends on many parameters
 • Query optimization is the process of
 • ordering operations in a query and
 • selecting efficient strategy for each operation

• Example Query:
 SELECT S.name FROM Senator S, Business B
 WHERE S.soc-sec = B.soc-sec AND S.gender = ‘Female’

• Optimization decision examples
 • Process (S.gender = ‘Female’) before (S.soc-sec = B.soc-sec)

• Extensions to spatial queries are not trivial
 • “Find all senators who serve a district of area greater than 300 square miles and who own a business within the district”
1.6.6 Data Mining

- Analysis of spatial data correlation, clustering, classification
- Data mining is a systematic and semi-automated search for interesting non-trivial patterns in large spatial databases
- Example applications include
 - Infer land-use classification from satellite imagery
 - Identify cancer clusters and geographic factors with high correlation
 - Identify crime hotspots to assign police patrols and social workers

Example: What Kind of Houses Are Highly Valued?—Correlations
Learning Objectives

- Learning Objectives (LO)
 - LO1: Understand the value of SDBMS
 - LO2: Understand the concept of spatial databases
 - What is a SDBMS?
 - How is it different from a GIS?
 - LO3: Learn about the Components of SDBMS

- Sections for LO2
 - Section 1.1 and 1.3 compare SDBMS with DBMS and GIS
How is a SDBMS different from a GIS?

GIS is a software to visualize and analyze spatial data using spatial analysis functions such as:

- **Search** Thematic search, search by region, (re-)classification
- **Location analysis** Buffer, corridor, overlay
- **Terrain analysis** Slope/aspect, catchment, drainage network
- **Flow analysis** Connectivity, shortest path
- **Distribution** Change detection, proximity, nearest neighbor
- **Spatial analysis/Statistics** Pattern, centrality, autocorrelation, indices of similarity, topology: hole description
- **Measurements** Distance, perimeter, shape, adjacency, direction

GIS uses SDBMS to store, search, query, share large spatial data sets.
How is a SDBMS different from a GIS?

SDBMS focusses on

- Efficient storage, querying, sharing of large spatial datasets
- Provides simpler set based query operations
- Example operations: search by region, overlay, nearest neighbor, distance, adjacency, perimeter etc.
- Uses spatial indices and query optimization to speedup queries over large spatial datasets.

SDBMS may be used by applications other than GIS

- Astronomy, Genomics, Multimedia information systems, ...

Will one use a GIS or a SDBM to answer the following:

- How many neighboring countries does USA have?
- Which country has highest number of neighbors?
Evolution of acronym “GIS”

- Geographic Information Systems (1980s)
- Geographic Information Science (1990s)
- Geographic Information Services (2000s)

Fig 1.1
Three meanings of the acronym GIS

- Geographic Information Services
 - Web-sites and service centers for casual users, e.g. travelers
 - Example: Service (e.g. AAA, mapquest) for route planning
- Geographic Information Systems
 - Software for professional users, e.g. cartographers
 - Example: ESRI Arc/View software
- Geographic Information Science
 - Concepts, frameworks, theories to formalize use and development of geographic information systems and services
 - Example: design spatial data types and operations for querying

Exercise: Which meaning of the term GIS is closest to the focus of the book titled “Spatial Databases: A Tour”?
1.7 Summary

- SDBMS is valuable to many important applications
- SDBMS is a software module
 - works with an underlying DBMS
 - provides spatial ADTs callable from a query language
 - provides methods for efficient processing of spatial queries
- Components of SDBMS include
 - spatial data model, spatial data types and operators,
 - spatial query language, processing and optimization
 - spatial data mining
- SDBMS is used to store, query and share spatial data for GIS as well as other applications
Questions?

A World of Change

Mapping tells us where we are... Spatial Reasoning tells where we might go and what to do there