

Chapter 2: Spatial Concepts and Data Models

- 2.1 Introduction
- 2.2 Models of Spatial Information
- 2.3 Three-Step Database Design
- 2.4 Extending ER with Spatial Concepts
- 2.5 Summary

Learning Objectives

- Learning Objectives (LO)
 - LO1: Understand concept of data models
 - What is a data model?
 - Why use data models?
 - LO2: Understand the models of spatial information
 - LO3: Understand the 3-step design of databases
 - LO4: Learn about the trends in spatial data models
- Mapping Sections to learning objectives
 - LO2 2.1
 - **■** LO3 2.2
 - **■** LO4 2.3, 2.4

What is a Data Model?

- •What is a model? (Dictionary meaning)
 - A set of plans (blueprint drawing) for a building
 - •A miniature representation of a system to analyze properties of interest

•What is Data Model?

- Specify structure or schema of a data set
- Document description of data
- •Facilitates early analysis of some properties, e.g. querying ability, redundancy, consistency, storage space requirements, etc.

• Examples:

- •GIS organize spatial set as a set of layers
- •Databases organize dataset as a collection of tables

Example

•State-Park SDB

- •consists of **Forests**
 - •is a collection of **Forest-stands** (each has a tree species)
- accessed by roads
- •has a manager
- •contains fire-stations
- •contains facilities
 - •either offices or camping groups
- •includes rivers
 - provide water to facilities

Learning Objectives

- Learning Objectives (LO)
 - LO1: Understand concept of data models
 - LO2: Understand the models of spatial information
 - Field based model
 - Object based model
 - LO3: Understand the 3-step design of databases
 - LO4: Learn about the trends in spatial data models
- Mapping Sections to learning objectives
 - LO2 2.1
 - LO3 2.2
 - **■** LO4 2.3, 2.4

2.1 Models of Spatial Information

- Two common models
 - Field based
 - Object based
- Example: Forest stands
 - Fig. 2.1
 - (a) forest stand map
 - (b) Object view has 3 polygons
 - (c) Field view has a function

Object Viewpoint of Forest Stands

Area-ID	Dominant Tree Species	Area/Boundary
FS1	Pine	[(0,2),(4,2),(4,4),(0,4)]
FS2	Fir	[(0,0),(2,0),(2,2),(0,2)]
FS3	Oak	[(2,0),(4,0),(4,2),(2,2)]

(b)

Field Viewpoint of Forest Stands

$$f(x,y) = \frac{\text{"Pine," } 2 \le x \le 4; 2 < y \le 4}{\text{"Fir," } 0 \le x \le 2; 0 \le y \le 2}$$

(c)

2.1.1 Field based (Raster) Model

- Suitable for
 - amorphous phenomena
 - Fire, flood
 - continues quantities
 - temperature, depth, elevation
- Used mostly for
 - satellite images
 - sensor applications

"1 m resolution

Resolution vs. complexity (size and process)

2.1.2 Object Model

Object model concepts

- Objects: distinct identifiable things relevant to an application
- Objects have attributes and operations
- Attribute: a simple (e.g. numeric, string) property of an object
- Operations: function maps object attributes to other objects

Example from a roadmap

- Objects: roads, landmarks, ...
- Attributes of road objects:
 - spatial: location, e.g. polygon boundary of land-parcel
 - non-spatial: name (e.g. Route 66), type (e.g. interstate, residential street), number of lanes, speed limit, ...
- Operations on road objects: determine center line, determine length, determine intersection with other roads, ...

Raster vs Vector

Raster or Vector

Raster

- Simple data structure
- Ease of analytical operation
- Format for scanned or sensed data - easy, cheap data entry

But.....

- Less compact
- Querry-based analysis difficult
- Coarser graphics
- More difficult to transform & project

Xector

- Compact data structure
- Efficient topology
- Sharper graphics
- Object-orientation better for some modeling

But....

- More complex data structure
- Overlay operations computationally intensive
- Not good for data with high degree of spatial variability
- Slow data entry

Conversions and errors

Figure 3.19 Errors caused by exchanging data between raster and vector formats. The original (gray) river after raster-to-vector conversion appears to connect the loop back.

Classifying Spatial objects

- Spatial objets are spatial attributes of general objects
- Spatial objects are of many types
 - •Simple
 - •0- dimensional (points), 1 dimensional (curves), 2 dimensional (surfaces)
 - •Example given at the bottom of this slide
 - •Collections
 - •Polygon collection (e.g. boundary of Japan or Hawaii), ...

Spatial Object Types	Example Object	Dimension
Point	City	0
Curve	River	1
Surface	Country	2

12

Spatial Object Types in OGIS Data Model

http://www.opengeospatial.org/standards

Classifying Operations on spatial objects in Object Model

- •Classifying operations (Tables 2.1, 2.2, pp. 29-31)
 - Set based: 2-dimensional spatial objects (e.g. polygons) are sets of points
 - a set operation (e.g. intersection) of 2 polygons produce another polygon
 - Topological operations: Boundary of USA touches boundary of Canada
 - •Directional: New York city is to east of Chicago
 - •Metric: Chicago is about 700 miles from New York city.

Set theory based	Union, Intersection, Containment,	
Toplogical	Touches, Disjoint, Overlap, etc.	
Directional	East, North-West, etc.	
Metric	Distance	

Topological Relationships

- Topological Relationships
 - invariant under elastic deformation (without tear, merge).
 - Two countries which touch each other in a planar paper map will continue to do so in spherical globe maps.
- Topology is the study of topological relationships
- Example queries with topological operations
 - What is the topological relationship between two objects A and B?
 - Find all objects which have a given topological relationship to object A?

Topological Concepts

- Interior, boundary, exterior
 - Let A be an object in a "Universe" U.

Green is A interior (A°)

Red is boundary of A (∂A)

Blue –(Green + Red) is A exterior (A^{-})

Question: Define Interior, boundary, exterior on curves and points.

Nine-Intersection Model of Topological Relationships

- •Many topological Relationship between A and B can be
 - •specified using 9 intersection model
 - •Examples on next slide
- •Nine intersections
 - •intersections between interior, boundary, exterior of A, B
 - •A and B are spatial objects in a two dimensional plane.
 - •Can be arranged as a 3 by 3 matrix
 - •Matrix element take a value of 0 (false) or 1 (true).
- •Q? Determine the number of many distinct 3 by 3 boolean matrices
- •A: $2^9 = 512$

$$\Gamma_9(A,B) = \begin{pmatrix} A^\circ \cap B^\circ & A^\circ \cap \partial B & A^\circ \cap B^- \\ \partial A \cap B^\circ & \partial A \cap \partial B & \partial A \cap B^- \\ A^- \cap B^\circ & A^- \cap \partial B & A^- \cap B^- \end{pmatrix}$$

Specifying topological operation in 9-Intersection Model

For 2-dim regions only 8 are realizable

Question: Can this model specify topological operation between a polygon and a curve?

Other cases

Using Object Model of Spatial Data

- Object model of spatial data
 - OGIS standard set of spatial data types and operations
 - Similar to the object model in computer software
 - Easily used with many computer software systems
 - Programming languages like Java, C++, Visual basic
 - Example use in a Java program
 - Spatial Java Interface
 (http://www.stanford.edu/dept/itss/docs/oracle/10g/appdev.101/b108/26/sdo_intro.htm#BAJHICEH)
 - Spatial data library SDE ESRI

Example

- Write a simple Java program for the following query:
 - "Find all tourist offices within 10 miles from the Maple campground"
- Assume that Facilities have 3 attributes: name, type, location
- File format:
 - Name @@ Type @@ x-coord @@ y-coord
 - Maple @@ Campground @@ 2.0 @@ 3.0
- Define/use a class for 2-dim points


```
Each line in the file represents a facility; use @@ as its delimiter, e.g.
Maple @@ campground @@ 2.0 @@ 3.0
   Office QQ Tourist-Office QQ 6.0 QQ 8.9
public class Facility {
  protected String name:
  protected String type;
  protected Point location;
  public Facility (String name, String type, Point location) {
    this.name = name:
    this.type = type;
    this.location = location;
  public String getName() {
    return name;
  public boolean withinDistance(Facility f, double d) {
    if (this.location.distance(f.location) < d)
      return true;
    else
      return false;
```



```
public class FacilitySet {
  const maxSize = 50;
  protected Facility[maxSize] facilityTable;
  read from file filename and initialize the facility table */
  public FacilitySet(String filename) {
    BufferedReader in = new BufferedReader (new FileReader(filename));
    String inline;
    StringTokenizer strLine;
    int i=0 ;
    String token;
    mile ((inline = in.readLine())!= null) {
      strLine = new StringTokenizer(inline, "@@");
      /* read x coordinate */
      String type token = strLine.nextToken();
      FacilityTable[i++].location.y = Double.valueOf(token).doubleValue();
```



```
public class FacilityDemo {
   public static void main(String[] args) {
     Facility f = new Facility("Maple", "Campground", Point(2.0,4.0));
     Facility[] fTable = new FacilitySet("facilityFile");
     String[] resultTable = new string[fTable.length];
     int j=0;
     for (int i=0; i < fTable.length; i++) {
       if (f.withinDistance(fTable[i], 2.0)
         and fTable[i].type = "Tourist-Office")
          resultTable[j++] = fTable[i].name;
```


Summary questions

- A lake is usually modeled as an object (vector). Give an example that it my be useful to model it as a field (raster)
- Are the boundaries of the lake always well defined?
- Select the most natural data type (vector model) for the following entities:
 - countries, rivers, lakes, highways, cities
 - How do the selected types change with changes in scale?