

Chapter 2: Spatial Concepts and Data Models

2.1 Introduction 2.2 Models of Spatial Information 2.3 Three-Step Database Design 2.4 Extending ER with Spatial Concepts 2.5 Summary

Learning Objectives

Learning Objectives (LO)

- LO1: Understand concept of data models
- LO2 : Understand the models of spatial information
- LO3: Understand the 3-step design of databases
 - Conceptual ER model
 - Logical Relational model
 - Physical
 - Translation from Conceptual to Logical
- LO4: Learn about the trends in spatial data models
- Mapping chapter sections to learning objectives
 - LO2 2.1
 - LO3 2.2
 - 🛚 LO4 2.3, 2.4

2.2 Three-Step Database Design

- Database applications are modeled using a three-step design process
 - Conceptual data types, relationships and constraints (ER model)
 - Logical-mapping to a Relational model and associated query language(Relational Algebra)
 - Physical-file structures, indexing

Example Application Domain

Spatial application domain

- A state-park consists of forests.
- A forest is a collection of *forest-stands* of different species
- Forests are accessed by roads
- Each forest has a manager
- Forests have facilities
- Rivers runs through forests and supplies water to the facilities
- Forests are monitored by *fire-stations*

2.2.1 Conceptual DM: The ER Model

3 basic concepts

- Entities have an independent conceptual or physical existence.
 - Examples: Forest, Road, Manager, ...
- Entities are characterized by Attributes
 - Example: Forest has attributes of name, elevation, etc.
- An Entity interacts with another Entity through relationships.
 - Road allow access to Forest interiors.
 - This relationship may be name "Accesses"

Relationship Types

Relationships can be categorized by

- cardinality constraints
- other properties, e.g. number of participating entities
 - Binary relationship: two entities participate
- Types of Cardinality constraints for binary relationships
 - One-One: An instance of an entity relates to a unique instance of other entity.
 - Many-One: Many instances of an entity relate to an instance of an other.
 - Many-Many: Many instances of one entity relate to multiple instances of another.

ER Diagrams Graphical Notation

•ER Diagrams are graphic representation of ER models

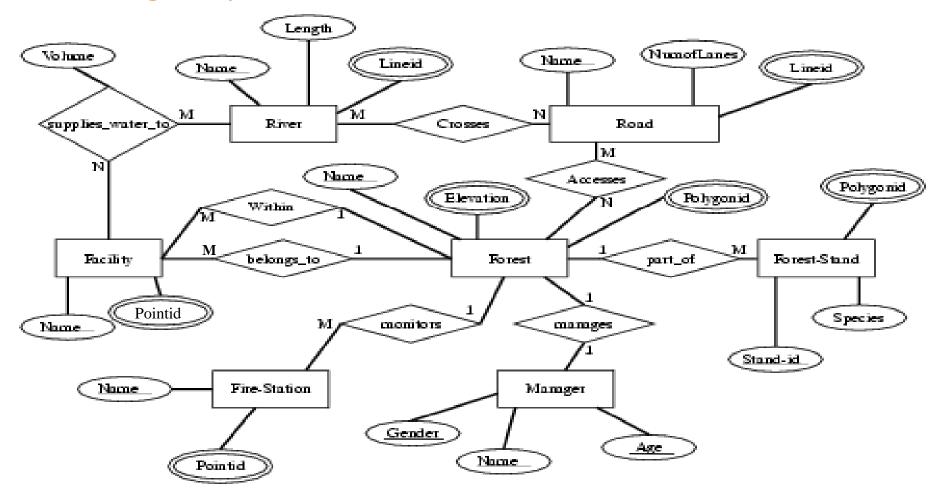
•Several different graphic notation are used

•We use a simple notation summarized below

•Example ER Diagram for Forest exampl in next slide

•Q? Compare and contrast "Atributes" and "Multi-valued attributes".

Concept	Symbol
Entities	
Attributes	
Multi-valued Attributes	
Relationships	\diamond
Cardinality of Relationship	1:1, M:1, M:N


Example

Create the ER diagram for the State-Park example

- Entities and characteristic attributes
- Relationships and constraints
- Both spatial and non spatial

ER Diagram for "State-Park"

2.2.2 Logical Data Model: The Relational Model

Relational model is based on set theory

Main concepts

Spatial Database

- Domain: a set of values for a simple attribute
- Relation: cross-product of a set of domains
 - Represents a table, i.e. homogeneous collection of rows (tuples)
 - The set of columns (i.e. attributes) are same for each row
- Comparison to concepts in conceptual data model
 - Relations are similar to but not identical to entities
 - Domains are similar to attributes
 - **Translation rules** establishing exact correspondence

2.2.3 Mapping ER to Relational

•Highlights of translation rules (section 2.2.3)

- •Entity becomes Relation
- •Attributes become columns in the relation
- •Relationships (1:1, 1:N) become foreign keys
- •M:N Relationships become a relation
 - •containing foreign keys or relations from participating entities
- •Multi-valued attributes become a new relation
 - •includes foreign key to link to relation for the entity

Example

Create the relational model of the example ER

- Relations
- 🛚 Keys
- Spatial types

Relational Schema Example

Forest-Stand

Stand-id	Species	Forest-name	
(Integer)	(varchar)	(varchar)	

River

Name	Length
(varchar)	(Real)

Road

Name	NumofLanes
(varchar)	(Integer)

Facility

Name	Forest-name	Forest-name-2	
(varchar)	(varchar)	(varchar)	

Forest

Fire-Station

Name	ForName
(varchar)	(varchar)

Supplies_Water_To

FacN ame	<u>RivName</u>	Volume
(varchar)	(varchar)	(Real)

Manager

Name	Age	Gender	ForName
(varchar)	(Integer)	(varchar)	(varchar)

Fstand-Geom

Stand-id	Polygonid
(Integer)	(Integer)

River-Geom

Name	Lineid
(Integer)	(Integer)

Road-Geom

Rname	Lineid
(varchar)	(Integer)

Facility-Geom

Name	Pointid
(varchar)	(Integer)

Forest-Geom

Name	Polygonid
(varchar)	(Integer)

Fstation-Geom

Name	Pointid
(varchar)	(Integer)

Road-Access-Forest

RoadName	ForName
(varchar)	(varchar)

Crosses

RivNameRoadName(varchar)(varchar)

Similar for Accesses

Relational Schema for "Point", "Line", "Polygon" and "Elevation"

•Relational model restricts attribute domains

- •simple atomic values, e.g. a number
- •Disallows complex values (e.g. polygons) for columns
- •Complex values need to be decomposed into simpler domains

Polygon			Line				
Poly gonid	Seq-no	Pointid	<u>Lineid</u>	Seq	<u>-no</u>	Pointid	Elevation
(Integer)	(Integer)	(Integer)	(Integer)	(Inte	ger)	(Integer)	applies to points
Point			Elevation				
Pointid	Latitude	Longitude	For est-na	une	Poi	ntid (F.K.)	Elevation
(Integer)	(Real)	(Real)	(varcha	r)	(Integer)	(Real)

Learning Objectives

Learning Objectives (LO)

- LO1: Understand concept of data models
- LO2 : Understand the models of spatial information
- LO3: Understand the 3-step design of databases
- **LO4:** Learn about the trends in spatial data models
 - Pictograms in conceptual models
 - UML class diagrams

Mapping Sections to learning objectives

ф	LO2	-	2.1
ф	LO3	-	2.2
ф	LO4	-	2.3, 2.4

2.3 Extending ER with Spatial Concepts

•Motivation

- •ER Model is based on discrete sets with no **implicit** relationships
- •Spatial data comes from a continuous set with implicit relationships
- •Any pair of spatial entities has relationships like distance, direction, ...
- •Explicitly drawing all spatial relationship
 - •clutters ER diagram
 - •generates additional tables in relational schema
 - •Misses implicit constraints in spatial relationships (e.g. partition)

Pictograms

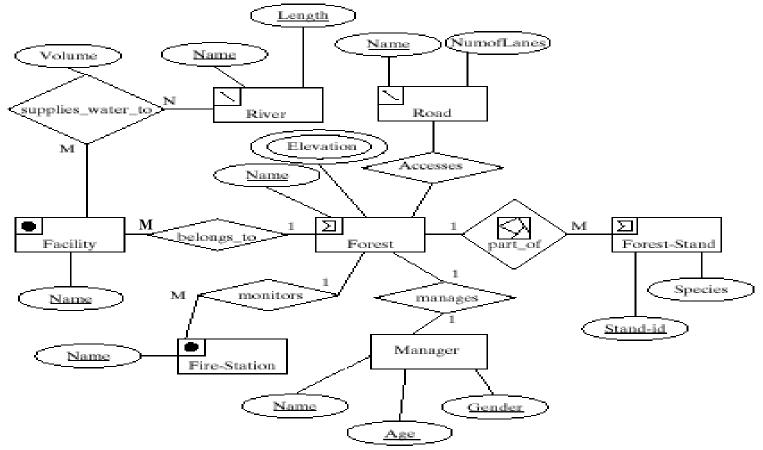

- Label spatial entities along with their spatial data types
- Allows inference of spatial relationships and constraints
- Reduces clutter in ER diagram and relational schema

Pictograms for Basic Shapes

Pictograms Multishapes (using cardinality)

Part_of(Network) Part_of(Partition)

Pictograms for Relationships



Pictograms for Alternate Shapes

ER Diagram with Pictograms: An Example

For simplicity no multishape pictograms

2.5 Summary

- Spatial Information modeling can be classed into Field based and Object based
- Field based for modeling smoothly varying entities, like rainfall
- Object based for modeling discrete entities, like country

<u>Summary</u>

A data model is a high level description of the data

- it can help in early analysis of storage cost, data quality
- There are two popular models of spatial information
 Field based and Object based

Database are designed in 3-steps

- Conceptual, Logical and Physical
- Pictograms can simplify Conceptual data models