Chapter 3:Spatial Query Languages
3.1 Standard Database Query Languages

3.2 Relational Algebra

3.3 Basic SOL Primer

3.4 Extending SOQL for Spatial Data

3.5 Example Queries that emphasize spatial aspects

3.6 Trends: Object-Relational SOL

Spatial Databases

L earning Objectives

& Learning Objectives (LO)
= LO1: Understand concept of a query language
2 LO2 : Learn to use standard query language (SQL)

@ LO3: Learn to use spatial ADTs with SQL
e Learn about OGIS standard spatial data types and operations
e Learn to use OGIS spatial ADTs with SQL

z LO4: Learn about the trends in query languages

& Mapping Sections to learning objectives
=z LO2 - 3.2, 3.3
=z LO3 - 3.4, 3.5
z LO4 - 3.6

3.4 Extending SOL for Spatial Data

% Motivation
22 SQL has simple atomic data-types, like integer, dates and string
@ Not convenient for spatial data and queries
e Spatial data (e.g. polygons) is complex
e Spatial operation: topological, euclidean, directional, metric
% SQL 3 allows user defined data types and operations
= Spatial data types and operations can be added to SQL3

% Open Geodata Interchange Standard (OGIS)
= Half a dozen spatial data types
=2 Several spatial operations
= Supported by major vendors, e.g. ESRI, Intergraph, Oracle, IBM,...

Spatial Databases

OGIS Spatial Data Model

|
w

w

Consists of base-class Geometry and four sub-classes:

s Point, Curve, Surface and GeometryCollection

i,
wr

Operations fall into three categories:

=z Apply to all geometry types

o SpatialReference, Envelope, Export,IsSimple, Boundary
= Predicates for Topological relationships

e Equal, Disjoint, Intersect, Touch, Cross, Within, Contains
=z Spatial Data Analysis

o Distance,Buffer,Union, Intersection, ConvexHull, SymDiff
=z Table in next slide details spatial operations

Spatial Databases

Basic Functions

SpatialReference()

Returns the underlying coordinate system of the geometry

Envelope() Returng the minimum orthogonal bounding rectangle of the
geometry
Export() Returns the geometry in a different representation
TsEmpty () Returns true if the geometry is a null set.
IsSimple() Returns true if the geometry is simple (no self-intersection)
Boundary () Returns the boundary of the geometry
Topological / Equal Returns true if the interior and boundary of the two
Set peometries are spatially equal
Operators Disjeoint Returng true if the boundaries and interior do not intersect.
Intersect Returns true if the geometries are not digjoint
Touch Returns true if the boundaries of two surfaces intersect
but the interiors do not.
Cross Returns true if the interior a surface intersects with a curve
Within Returns true if the interior of the given geometry does not intersect
with the exterior of another geometry.
Contains Tests if the given geometry contains another given geometry
Overlap Returns true if the interiors of two geometries have non-empty
intersection
Spatial Distance Returns the shortest distance hetween two geometries
A nalysis Buffer Returns a geometry that consists of all points whose distance from
the given geometry is less than or equal to the specified distance
ConvexHull Returns the smallest convex geometric set enclosing the geometry

Intersection

Retwumns the peometric intersection of two Feometries

Union

R(‘[’l]T'T'IH |_'.|"Ii" _!';t"(ﬂ'l'l("ﬂ"it" 1T U‘F LW E'::t"l'\lT'l'll'\"['T'l.l'\"H

Difference

Returns the portion of a geometry which does not intersect with

.iiT'IU[']"IQ"T' _!':I'I WiT '!'::t"l'\ﬂ'l'll'\"[' Ty

SymmbDiff

Returns the portions of two geometries which do
not intersect with each other

o

|yl I‘%LI || sl BT

-
Netae | i " 'I Yo ||
Llst of Spatial Query Examples

e Simple SQL SELECT_FROM_WHERE examples
eSpatial analysis operations
eUnary operator: Area (Q5, pp.68)
eBinary operator: Distance (Q3)
eBoolean Topological spatial operations - WHERE clause
eTouch (Q1, pp. 67)
eCross (Q2, pp. 68)
eUsing spatial analysis and topological operations
eBuffer, overlap (Q4)
eComplex SQL examples
e Aggreagate SQL queries
e Nested queries

Example schema

CREATE

CREATE

TABLE
Name
Cont,
Pop
GDP
Shape

(a)

TABLE
Name
Country
Pop
Shape

(c)

Country(
varchar(30),
varchar(30),
Integer,
Number,
Polygon);

City (
varchar(30),
varchar(30),
integer,
Point);

CREATE TABLE
Name
Origin
Length
Shape

(b)

River(
varchar(30),
varchar(30),
Number,
LineString);

Query: Find the names of all countries which are neighbors of USA in the Country
table.

SELECT C1.Name AS "Neighbors of USA"

FROM Country C1, Country C2

WHERE Touch(C1.Shape, C2.Shape) = 1 AND
C2 .Name = ‘USA’

Query 2

Query: For all the rivers listed in the River table, find the countries through which
they pass.

SELECT R.Name C.Name
FROM River R, Country C
WHERE Cross(R.Shape, C.Shape) = 1

Spatial Databases

Query 3

Query: For each river, find its closest city.

SELECT C1l.Name, R1l.Name
FROM City Cl, River RI1
WHERE Distance (Cl.Shape, Rl.Shape) <
ALL (SELECT Distance (C2.Shape,
FROM City C2
WHERE Cl.Name <> C2.Name

)

Comments: How is Distance computed between line
and point?
Operator overloading or multiple redefinitions?

R1.Shape)

10

Query: The St. Lawrence river can supply water to cities which are within 300 km.
L.ist the cities which can use water from the St. Lawrence.

SELECT Ci.Name

FROM City Ci, River R

WHERE Overlap(Ci.Shape, Buffer(R.Shape,300)) = 1 AND
R.Name = ‘St. Lawrence’

11

Query: List the name, population, and area of each country listed in the Country
table.

Use: Area(0O.Shape)

SELECT C.Name, C.Pop, Area(C.Shape) AS "Area"
FROM Country C

12

Query: List the length of the rivers in each of the countries they pass through.

SELECT R.Name, C.Name , Length(Intersection(R.Shape, C.Shape))

AS "Length"
FROM River R, Country C
WHERE Cross(R.Shape, C.Shape) = 1

13

Spatial Databases

Query 7/

Query: List the GDP and the distance of a country’s capital city to the equator for

all countries. i
City at x,y
)

Use: Point(x,y) to construct
new points and
C.x or C.y to get
coordinates of points equator y=0

SELECT Co.GDP, Distance(Point(0,Ci.y),Ci.5hape) AS "Distance"
FROM Country Co, City C1

TﬂTHERE Cl:l . Name = ':l) Eﬂ‘l.llltl"‘j AND Co. Name Co. GDP - Dist-10-Eq (in K.
. . ¢ Havana 6.9 2562
Ci.Capital = Y’ Washington, D.C. 003 4324
Brasilia 1004 1756
Chrawa i S005
Mexico Ciry Gaod 3 2lal
Buems Adres 3452 3B54

14

Spatial Databases

Query 8

Query: List all countries, ordered by number of neighboring countries.

SELECT Co.Name, Count(Col.Name)
FROM Country Co, Country Col

WHERE Touch(Co.Shape, Col.Shape)
GROUFP BY Co.Name

ORDER BY Count(Col.Name)

What about countries with no neighbors (Island)?

15

Query: List the countries with only one neighboring country. A country is a neighbor of
another country if their land masses share a boundary.

SELECT Co.Name

FROM Country Co, Country Col
WHERE Touch(Co.Shape, Col.Shape))
GROUP BY Co.Name

HAVING Count(Col.Name) = 1

16

S

Query 10

Query: Which country has the maximum number of neighbors?

CREATE VIEW Neighbor AS

SELECT Co.Name, Count(Col.Name) AS num_neighbors
FROM Country Co, Country Col

WHERE Touch(Co.Shape, Col.Shape)

GROUP BY Co.Name

SELECT Co .Name, num neighbors

FROM Neighbor

WHERE num_neighbor = (SELECT Max(num_neighbors)

FROM Neighbor)

17

|_earning ODbjectives
& Learning Objectives (LO)
= LO1: Understand concept of a query language
2 LO2 : Learn to use standard query language (SQL)

2 LO3: Learn to use spatial ADTs with SQL

2 LO4: Learn about the trends in query languages
o Facilities for user defined data types in SQL3

& Mapping Sections to learning objectives
z LO2 - 3.2, 3.3
= LO3 - 3.4, 3.5
m LO4 - 3.6

18

Defining Spatial Data Types in SOL3

e SQL3 User defined data type - Overview
o CREATE TYPE statements
e Defines a new data types
e Attributes and methods are defined
e Separate statements for interface and implementation
eExamples of interface in Table 3.12 (pp. 74)

o Additional effort is needed at physical data model level

19

Spatial Databases

St St

Examples (Point)

CREATE TYPE Point AS OBJECT (
x NUMBER,
y NUMBER,

MEMBER FUNCTION Distance(P2 IN Point) RETURN NUMBER,
PRAGMA RESTRICT_REFERENCES(Distance, WNDS);

CREATE TABLE City (
Name varchar (30),
Pop int,
Capital char(1),
Shape Point)

INSERT INTO CITY(‘Brasilia’, ‘Brazil’, 1.5, ‘Y’
Point (-55.4,-23.2));

-

20

Spatial Databases

Examples (LineString)

CREATE TYPE LineType AS VARRAY(500) OF Point;

CREATE TYPE LineString AS OBJECT (
Num_of Points INT,
Geometry LineType,
MEMBER FUNCTION Length(SELF IN) RETURN NUMBER,
PRAGMA RESTRICT_REFERENCES (Length, WNDS);

CREATE TABLE River(
Name varchar (30) ,
Origin varchar(30),
Length number,
Shape LineString) ;

INSERT INTO RIVER(‘Mississippi’, ‘USA’, 6000,

LineString(3, LineType(Point(1,1) ,Point(1,2),Point(2,3)))
21

Spatial Databases 4 - » - I} - ‘

Y
— rillf. AN
Examples (Polygon)

Sheshi

CREATE TYPE PolyType AS VARRAY(500) OF Point

CREATE TYPE Polygon AS OBJECT (
Num_of _Points INT,
Geometry PolyType ,
MEMBER FUNCTION Area(SELF IN) RETURN NUMBER,
PRAGMA RESTRICT_REFERENCES (Length, WNDS);

CREATE TABLE Country (
Name varchar (30),
Cont varchar (30) ,
Pop int,
GDP number,
Life-Exp number,
Shape LineString);

INSERT INTO Country(‘Mexico’, ‘NAM’, 107.5, 694.3, 1004.0,

Polygon(23, Polytype(Point(1,1),

., Point(1,1)))

22

