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4.4 Summary



2

Learning Objectives
Learning Objectives (LO)

LO1: Understand concept of a physical data model
• What is a physical data model?
• Why learn about physical data models?

LO2: Learn how to structure data files 
LO3: Learn how to use auxiliary data-structures 

Focus on concepts not procedures!
Mapping Sections to learning objectives

LO2 - 4.1
LO3 - 4.2
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Physical model in 3 level design?

Recall 3 levels of database design
Conceptual model: high level abstract description
Logical model: description of a concrete realization
Physical model: implementation using basic components

Analogy with vehicles 
Conceptual model: mechanisms to move, turn, stop, ...
Logical models: 

• Car: accelerator pedal, steering wheel, brake pedal, …
• Bicycle: pedal forward to move, turn handle, pull brakes on handle

Physical models : 
• Car: engine, transmission, master cylinder, break lines, brake pads, …
• Bicycle: chain from pedal to wheels, gears, wire from handle to brake pads

We now go, so to speak, “under the hood”
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What is a physical data model?

What is a physical data model of a database?
Concepts to implement logical data model 
Using current components, e.g. computer hardware, operating systems
In an efficient and fault-tolerant manner

Why learn physical data model concepts?
To be able to choose between DBMS brand names

• Some brand names do not have spatial indices!

To be able to use DBMS facilities for performance tuning
For example, if a query is running slow, 

• one may create an index to speed it up

For example, if loading of a large number of tuples takes for ever
• one may drop indices on the table before the inserts
• and recreate index after inserts are done!
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An interesting fact about physical data model

Physical data model design is a trade-off between
Efficiently support a small set of basic operations of a few data types 
Simplicity of overall system

Each DBMS physical model
Choose a few physical DM techniques
Choice depends chosen sets of operations and data types

Relational DBMS physical model 
Data types: numbers, strings, date, currency 

• one-dimensional, totally ordered

Operations: 
• search on one-dimensional totally order data types
• insert, delete, ...
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Common Spatial Queries and Operations
•Physical model provides simpler operations needed by spatial queries!

•Common Queries
•Range query

•Nearest neighbor

•Spatial-join query

• Others (Closest-pair query, Color range query, etc.)

Example schema:

• A big company with a lot of stores and warehouses

• Store(Id int, Name char(30), Location Point)

• Warehouse(Id int, Name char(30), Location Point)



Range query

Find all objects contained in a rectangle/circle

Ex. Find all warehouses at dist < 50 Km from location (0,0)

Select WarehouseId
From Warehouse
Where distance(Warehouse.Location, Point(0,0)) < 50;
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Nearest neighbor query

Find the object(s) closest to another object

Ex. Find the store closest to store 101

Select s2.Id

From Store s1, Store s2
Where s1.Id = 101 and distance(s1.Location, s2.Location) = min

(Select distance(s1.Location, s3.Location)

From Store s3);
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Spatial-join query

Find pairs of objects satisfying a property

Ex. Find all pairs of stores-warehouses with dist < 10 Km

Select Store.Id, Warehouse.Id
From Store, Warehouse

Where distance(Store.Location, Warehouse.Location)< 10
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Other types of queries

Closest-pair query: Find the closest pair (i.e., with min 
distance) between a store and a warehouse

(Coral et al., 2000)

Color range query: What type of objects (e.g., stores, 
warehouses) are inside a rectangle/circle

Find not the objects themselves, but their types
(Nanopoulos et al., 2001)

Computational geometry has many interesting queries
Not all of them have been transferred to SDB realm
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Learning Objectives
Learning Objectives (LO)

LO1: Understand concept of a physical data model
LO2: Learn how to structure data files

• What is a file structure? Why structure files?
• What are common structures for spatial data file?

LO3: Learn how to use auxiliary data-structures

Mapping Sections to learning objectives
LO2 - 4.1
LO3 - 4.2
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4.1.4 File Structures

• What is a file structure?
• A method of organizing records in a file
• For efficient implementation of common file operations on disks
•Example: ordered files

• Measure of efficiency
• I/O cost: Number of  disk sectors retrieved from secondary storage
• CPU cost: Number of CPU instruction used

•Two basic categories of file structures in SDB
• Point Access Methods (objects are strictly points)
• Spatial Access Methods (objects have spatial extend)



Spatial Access Methods (SAMs)

Indexes for spatial data that have extend (not only point 
data)
Use only Minimum Bounding Rectangles – MBRs (filtering)

R-tree (Guttman, 1984) is the prominent SAM
Implemented in Oracle, Postgres, Informix
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Approximate Spatial Operations
Approximating spatial operations

SDBMS processes MBRs for refinement step
Overlap predicate used to approximate topological operations 
Example: inside(A, B) replaced by 

• overlap(MBR(A), MBR(B)) in filter step
• See picture below - Let A be outer polygon and B be the inner one
• inside(A, B) is true only if overlap(MBR(A), MBR(B))
• However overlap is only a filter for inside predicate needing refinement later
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R-tree query processing:Filter-Refining

Fig 5.1

Query result

Filter step Refinement step

Query

Spatial index

Candidate set

Load object geometry

Test on exact
geometry

False hits Hits

• Processing a  spatial query Q
•Filter step : find a superset S of object in answer to Q

•Using approximate of spatial data type and operator
•Refinement step : find exact answer to Q reusing a GIS to process S

•Using exact spatial data type and operation
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R-Tree
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• A multi-way external memory tree
• Index nodes and data (leaf) nodes
• All leaf nodes appear on the same 
level
• Every node contains between m 
and M entries
• The root node has at least 2 entries 
(children)



Example

eg., w/ fanout 4: group nearby rectangles to parent 
MBRs; each group -> disk page
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Example
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Example
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R-trees:Insertion

Insert new MBR in a leaf
Find the leaf to insert by searching, starting from the root
How to find the next node to insert the new object?

Using ChooseLeaf: Find the entry that needs the least enlargement 
to include Y. Resolve ties using the area (smallest)
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R-trees:Insertion
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R-trees:Insertion
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R-trees:Insertion

Extend the parent MBR
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R-trees:Insertion

If node is full then Split : ex. Insert w
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R-trees:Split

Split node P1: partition the MBRs into two groups.

A
B

C W

KP1
• A1: ‘linear’ split

• A2: quadratic split

• A3: exponential split: 

2M-1 choices
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R-trees:Split

pick two rectangles as ‘seeds’;
assign each rectangle ‘R’ to the ‘closest’ ‘seed’

seed1

seed2
R
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R-trees:Split

pick two rectangles as ‘seeds’;
assign each rectangle ‘R’ to the ‘closest’ ‘seed’:
‘closest’: the smallest increase in area

seed1

seed2
R
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R-trees:Split

How to pick Seeds:
Linear:Find the highest and lowest side in each 
dimension, normalize the separations, choose the pair 
with the greatest normalized separation 
Quadratic: For each pair E1 and E2, calculate the 
rectangle J=MBR(E1, E2) and d= J-E1-E2. Choose the 
pair with the largest d
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R-trees:Insertion (the complete algorithm)

Use the ChooseLeaf to find the leaf node to insert an 
entry E
If leaf node is full, then Split, otherwise insert there

Propagate the split upwards, if necessary

Adjust parent nodes
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R-Trees:Deletion

Find the leaf node that contains the entry E
Remove E from this node
If underflow:

Eliminate the node by removing the node entries and 
the parent entry
Reinsert the orphaned (other entries) into the tree using 
Insert
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R-trees: Variations

R+-tree: DO not allow overlapping, so split the objects 
(similar to z-values)
R*-tree: change the insertion, deletion algorithms 
(minimize not only area but also perimeter, forced
re-insertion)
Hilbert R-tree: use the Hilbert values to insert objects into 
the tree

31
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R-trees:Range search

pseudocode:
check the root
for each branch, 

if its MBR intersects the query rectangle
apply range-search (or print out, if this 

is a leaf)
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Example (DFS searching)



R-trees: NN search
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R-trees: NN search

Q: How? (find near neighbor; refine...)
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R-trees: NN search (simple algorithm)

A1: depth-first search; then, range query
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R-trees: NN search (simple algorithm)

A1: depth-first search; then, range query
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R-trees: NN search (simple algorithm)

A1: depth-first search; then, range query
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R-trees: NN search (better algorithm)

Priority queue, with promising MBRs, and their best and 
worst-case distance
Main idea: Every face of any MBR contains at least one 
point of an actual spatial object!
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R-trees: NN search (better algorithm)
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consider only P2 and P4, for illustration
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R-trees: NN search (better algorithm)

D
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J
P2

P4q

worst of P2

best of P4
=> P4 is useless

for 1-nn
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R-trees: NN search (better algorithm)

D
E

P2
q

worst of P2

what is really the worst of, say, P2?
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R-trees: NN search (better algorithm)

P2
q

what is really the worst of, say, P2?
A: the smallest of the two red segments!
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MINDIST, MINMAXDIST
MINDIST(P, R) = min possible distance of P from R
MINMAXDIST = the min of the max possible distances from P to a 
vertex of R
Lower and an upper bound on the actual distance of R from P
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Pruning with MINDIST and MINMAXDIST

Upward pruning: MINDIST(P, R) > Dist(P, currNN) => discard visit to R

R
R’

MINDIST P

MINMAXDIST

Downward pruning: MINDIST(P, R) > MINMAXDIST(P, R') => discard M

R

NN

MINDIST

P

dist



Order of searching

Depth first order
Inspect children in MINDIST order
For each node in the tree keep a list of 
nodes to be visited
Prune some of these nodes in the list
Continue until the lists are empty
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Branch and bound NN-search algorithm
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p12

p8p8

NN example

R1 R2

R3 R4 R5

p6 p7p5p1 p2

Pointers to data tuples

p8p3 p4 p9 p10p11 p12p13

R6 R7
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Query point

Candidate NN point: ∅Candidate NN point: p8

R3 R4
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R1

R2 p12

p8

Result: p12                   



49

Optimal Strategy for NN search

Global order
Maintain distance to all entries in a common 
list
Order the list by MINDIST
Repeat
• Inspect the next MBR in the list
• Add the children to the list and reorder

Until all remaining MBRs can be pruned 
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Optimal NN: example

4 page accesses
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Generalize to k-NN 

Keep a sorted buffer of at most k current nearest neighbors
Pruning is done according to the distance of the furthest 
nearest neighbor in this buffer
Example:

R

The k-th object in the buffer

MINDIST P

Actual_dist



R-trees: performance analysis

How many disk (=node) accesses we’ll 
need for

range
nn
spatial joins

why does it matter?
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R-trees: performance analysis

A: because we can design split etc 
algorithms accordingly; also, do query-
optimization
motivating question: on, e.g., split, 
should we try to minimize the area 
(volume)? the perimeter? the overlap? 
or a weighted combination? why?
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R-trees: performance analysis

How many disk accesses for range queries?
query distribution wrt location?

“ “ wrt size?
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R-trees: performance analysis

How many disk accesses for range queries?
query distribution wrt location? uniform; (biased)

“ “ wrt size? uniform
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R-trees: performance analysis

easier case: we know the positions of parent MBRs, eg:
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R-trees: performance analysis

How many times will P1 be retrieved (unif. queries)?

P1

x1

x2
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R-trees: performance analysis

How many times will P1 be retrieved (unif. POINT 
queries)?

P1

x1

x2

0 1
0

1
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R-trees: performance analysis

How many times will P1 be retrieved (unif. POINT 
queries)? A: x1*x2

P1

x1

x2

0 1
0

1
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R-trees: performance analysis

How many times will P1 be retrieved (unif. queries of 
size q1xq2)? 

P1

x1

x2

0 1
0

1

q1

q2
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R-trees: performance analysis

How many times will P1 be retrieved (unif. queries of 
size q1xq2)? A: (x1+q1)*(x2+q2)

P1
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x2

0 1
0

1

q1

q2
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R-trees: performance analysis

Thus, given a tree with n nodes (i=1, ... n) we expect 
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R-trees: performance analysis

Thus, given a tree with n nodes (i=1, ... n) we expect 

‘volume’

‘surface area’
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R-trees: performance analysis

Conclusions:
• splits should try to minimize area and perimeter
• ie., we want few, small, square-like parent MBRs
• rule of thumb: shoot for queries with q1=q2 = 

0.1 (or =0.05 or so).
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