

Chap4: Spatial Storage and Indexing

4.1 Storage:Disk and Files
4.2 Spatial Indexing
4.3 Trends
4.4 Summary

Learning Objectives

Learning Objectives (LO)

- LO1: Understand concept of a physical data model
 - What is a physical data model?
 - Why learn about physical data models?
- LO2: Learn how to structure data files
- LO3: Learn how to use auxiliary data-structures
- Focus on concepts not procedures!
- Mapping Sections to learning objectives
 - LO2 4.1
 - LO3 4.2

- Recall 3 levels of database design
 - Conceptual model: high level abstract description
 - Logical model: description of a concrete realization
 - Physical model: implementation using basic components
- Analogy with vehicles

Spatial Databases

- Conceptual model: mechanisms to move, turn, stop, …
- Logical models:
 - Car: accelerator pedal, steering wheel, brake pedal, ...
 - Bicycle: pedal forward to move, turn handle, pull brakes on handle
- Physical models :
 - Car: engine, transmission, master cylinder, break lines, brake pads, ...
 - Bicycle: chain from pedal to wheels, gears, wire from handle to brake pads
- We now go, so to speak, "under the hood"

What is a physical data model?

Spatial Databases

- What is a physical data model of a database?
 - Concepts to implement logical data model
 - Using current components, e.g. computer hardware, operating systems
 - In an efficient and fault-tolerant manner
- Why learn physical data model concepts?
 - To be able to choose between DBMS brand names
 - Some brand names do not have spatial indices!
 - To be able to use DBMS facilities for performance tuning
 - For example, if a query is running slow,
 - one may create an index to speed it up
 - For example, if loading of a large number of tuples takes for ever
 - · one may drop indices on the table before the inserts
 - and recreate index after inserts are done!

An interesting fact about physical data model

Physical data model design is a trade-off between

- Efficiently support a small set of basic operations of a few data types
- Simplicity of overall system
- Each DBMS physical model
 - Choose a few physical DM techniques
 - Choice depends chosen sets of operations and data types
- Relational DBMS physical model
 - Data types: numbers, strings, date, currency
 - one-dimensional, totally ordered
 - Operations:

Spatial Databases

- · search on one-dimensional totally order data types
- insert, delete, ...

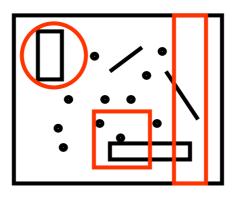
Common Spatial Queries and Operations

- •Physical model provides simpler operations needed by spatial queries!
- •Common Queries
 - •Range query
 - •Nearest neighbor
 - •Spatial-join query
 - Others (Closest-pair query, Color range query, etc.)

Example schema:

- A big company with a lot of stores and warehouses
- Store(Id int, Name char(30), Location Point)
- Warehouse(Id int, Name char(30), Location Point)

• Find all **objects** contained in a rectangle/circle



Ex. Find all warehouses at dist < 50 Km from location (0,0)</p>

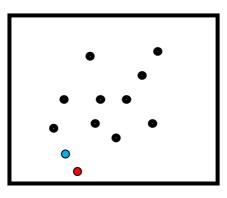
Select WarehouseId

From Warehouse

Where distance(Warehouse.Location, Point(0,0)) < 50;

Nearest neighbor query

Find the object(s) closest to another object

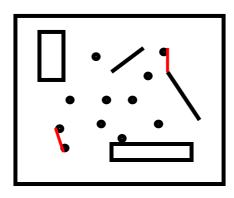


• Ex. Find the store closest to store 101

Select s2.Id
From Store s1, Store s2
Where s1.Id = 101 and distance(s1.Location, s2.Location) = min
 (Select distance(s1.Location, s3.Location)
 From Store s3);

<u>Spatial-join query</u>

Find pairs of **objects** satisfying a property



• Ex. Find all pairs of stores-warehouses with dist < 10 Km

Select Store.Id, Warehouse.Id

From Store, Warehouse

Where distance(Store.Location, Warehouse.Location) < 10

Other types of queries

- Closest-pair query: Find the closest pair (i.e., with min distance) between a store and a warehouse
 (Coral et al., 2000)
- Color range query: What type of objects (e.g., stores, warehouses) are inside a rectangle/circle
 - Find not the objects themselves, but their types
 - (Nanopoulos et al., 2001)
- Computational geometry has many interesting queries
 Not all of them have been transferred to SDB realm

Learning Objectives

- Learning Objectives (LO)
 - LO1: Understand concept of a physical data model
 - LO2: Learn how to structure data files
 - What is a file structure? Why structure files?
 - What are common structures for spatial data file?
 - LO3: Learn how to use auxiliary data-structures

Mapping Sections to learning objectives

- LO2 4.1
- LO3 4.2

4.1.4 File Structures

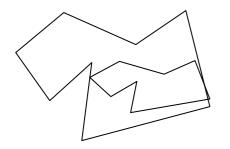
- What is a file structure?
 - A method of organizing records in a file
 - For efficient implementation of common file operations on disks
 Example: ordered files
- Measure of efficiency
 - I/O cost: Number of disk sectors retrieved from secondary storage
 - CPU cost: Number of CPU instruction used
- •Two basic categories of file structures in SDB
 - Point Access Methods (objects are strictly points)
 - Spatial Access Methods (objects have spatial extend)

Spatial Access Methods (SAMs)

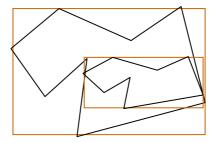
- Indexes for spatial data that have extend (not only point data)
- Use only Minimum Bounding Rectangles MBRs (filtering)

R-tree (Guttman, 1984) is the prominent SAM
 Implemented in Oracle, Postgres, Informix

- Approximating spatial operations
 - SDBMS processes MBRs for refinement step
 - Overlap predicate used to approximate topological operations
 - Example: inside(A, B) replaced by
 - overlap(MBR(A), MBR(B)) in filter step
 - See picture below Let A be outer polygon and B be the inner one
 - inside(A, B) is true only if overlap(MBR(A), MBR(B))
 - However overlap is only a filter for inside predicate needing refinement later



Spatial Database



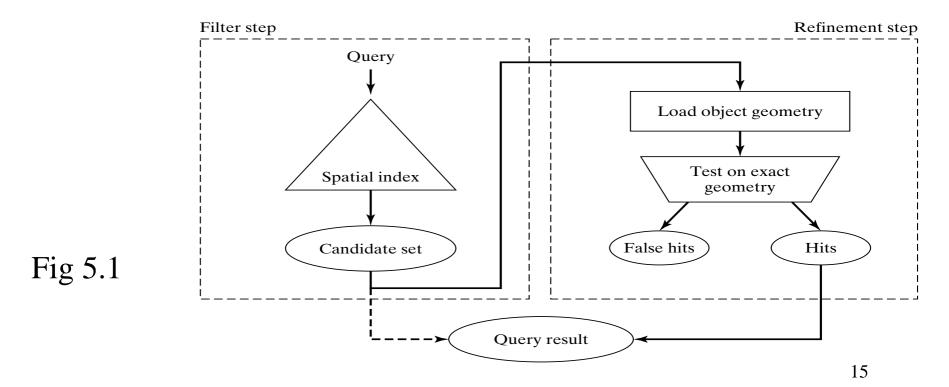
R-tree query processing: Filter-Refining

• Processing a spatial query Q

•Filter step : find a superset S of object in answer to Q

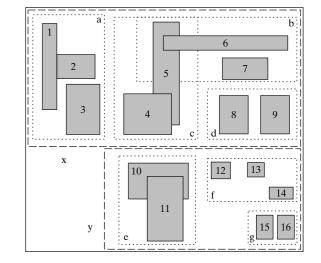
•Using approximate of spatial data type and operator

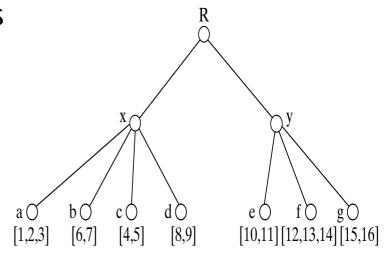
- •Refinement step : find exact answer to Q reusing a GIS to process S
 - •Using exact spatial data type and operation



<u>**R-Tree**</u>

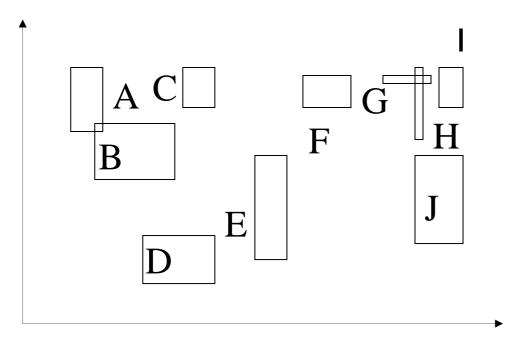
- A multi-way external memory tree
- Index nodes and data (leaf) nodes
- All leaf nodes appear on the same level
- Every node contains between m and M entries
- The root node has at least 2 entries (children)

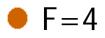


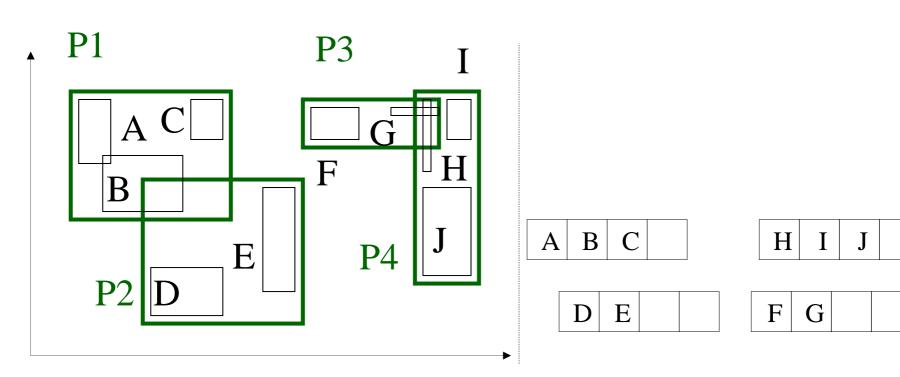


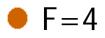
Example

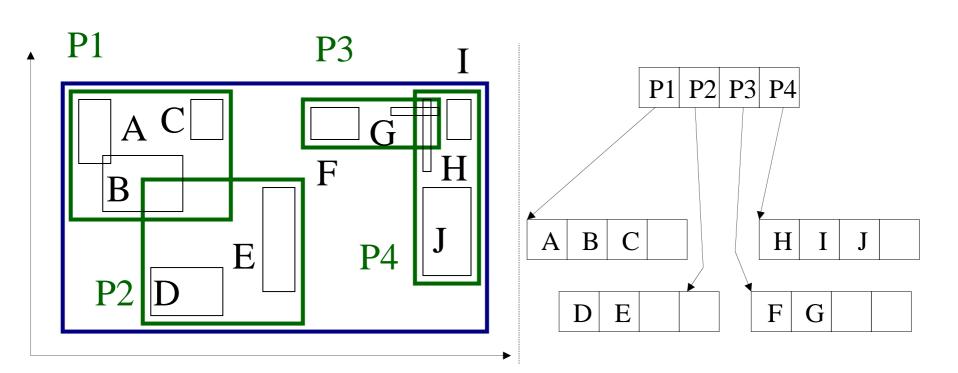
 eg., w/ fanout 4: group nearby rectangles to parent MBRs; each group -> disk page





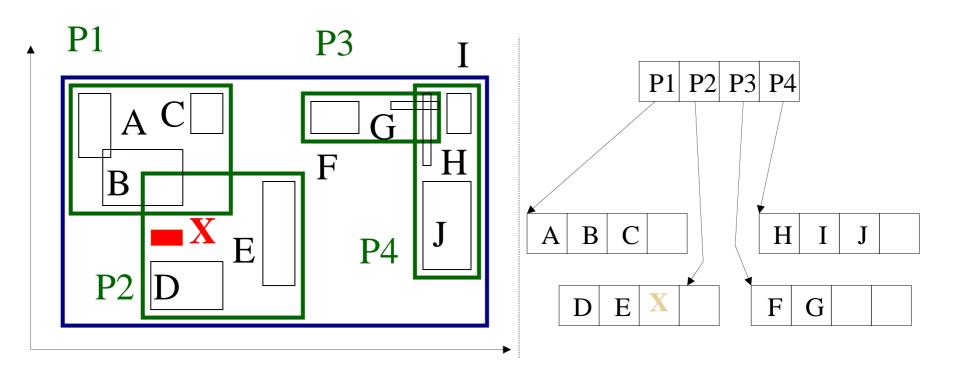


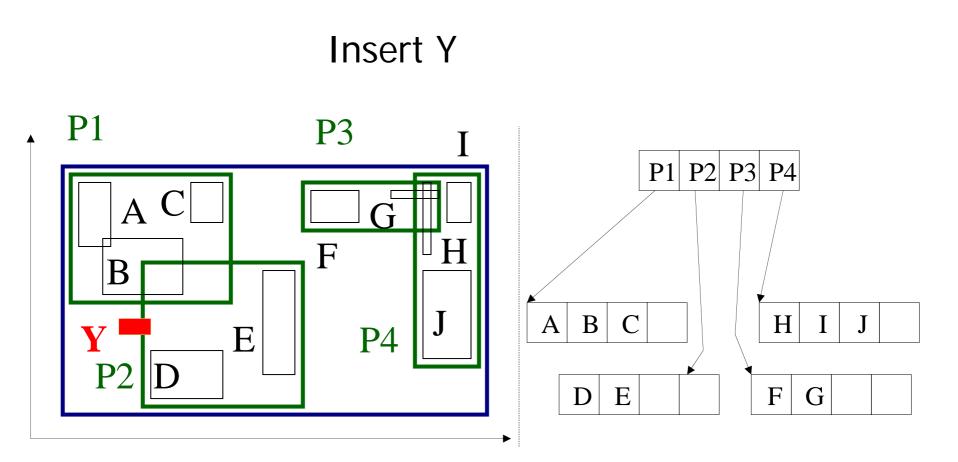




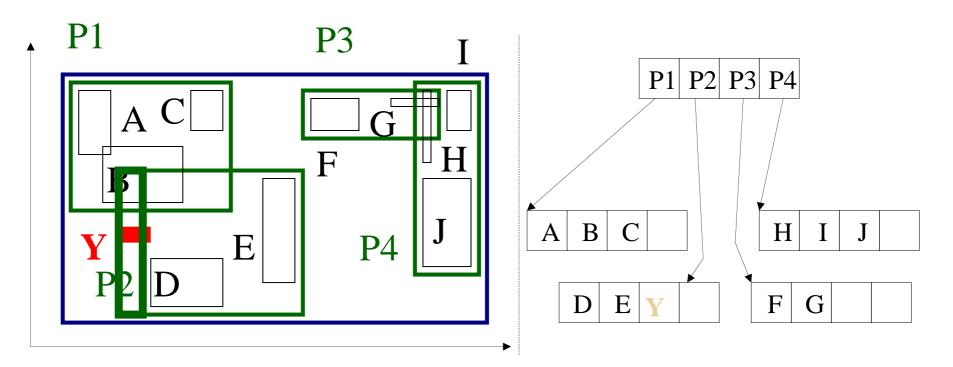
- Insert new MBR in a leaf
- Find the leaf to insert by searching, starting from the root
- How to find the next node to insert the new object?
 - Using ChooseLeaf: Find the entry that needs the least enlargement to include Y. Resolve ties using the area (smallest)

Insert X

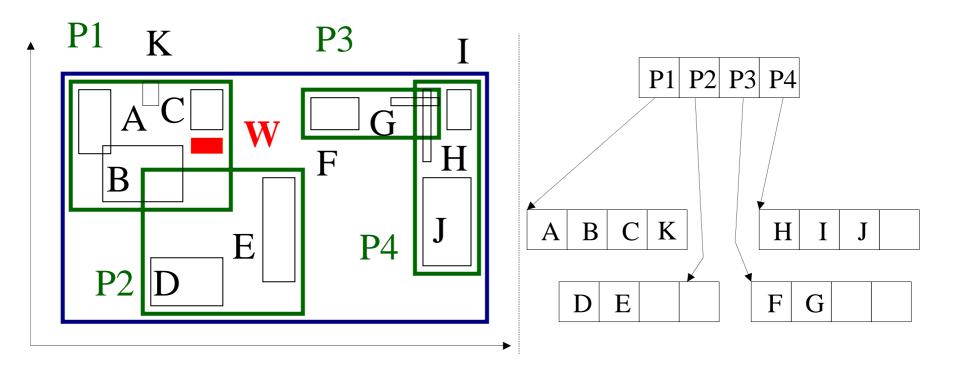




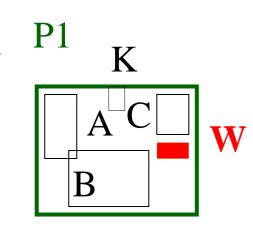
Extend the parent MBR



• If node is full then <u>Split</u> : ex. Insert w



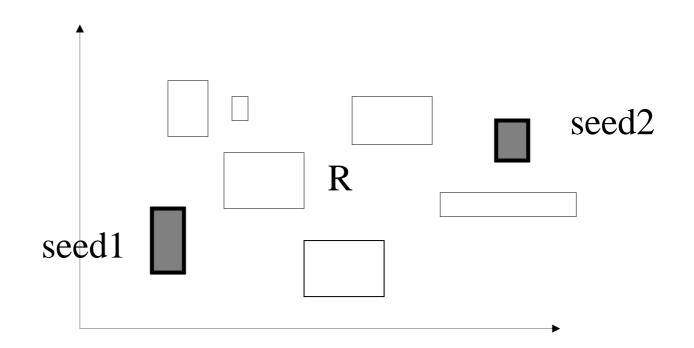
Split node P1: partition the MBRs into two groups.



- A1: 'linear' split
- A2: quadratic split
- A3: exponential split:

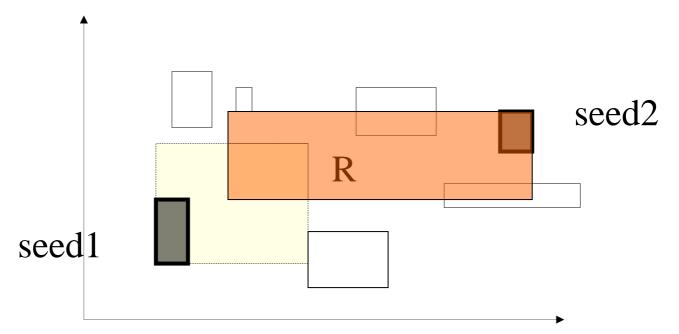
2^{M-1} choices

- pick two rectangles as 'seeds';
- assign each rectangle 'R' to the 'closest' 'seed'



R-trees:Split

- pick two rectangles as 'seeds';
- assign each rectangle 'R' to the 'closest' 'seed':
- 'closest': the smallest increase in area



R-trees:Split

How to pick Seeds:

- Linear: Find the highest and lowest side in each dimension, normalize the separations, choose the pair with the greatest normalized separation
- Quadratic: For each pair E1 and E2, calculate the rectangle J=MBR(E1, E2) and d= J-E1-E2. Choose the pair with the largest d

R-trees:Insertion (the complete algorithm)

- Use the ChooseLeaf to find the leaf node to insert an entry E
- If leaf node is full, then **Split**, otherwise insert there
 - Propagate the split upwards, if necessary
- Adjust parent nodes

R-Trees:Deletion

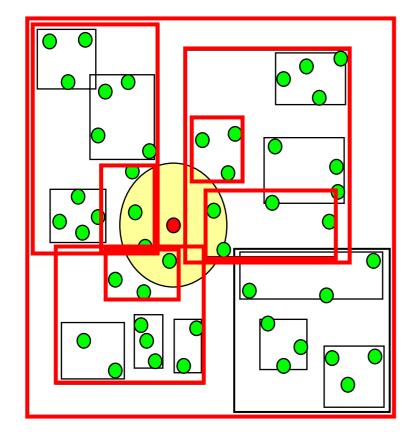
- Find the leaf node that contains the entry E
- Remove E from this node
- If underflow:
 - Eliminate the node by removing the node entries and the parent entry
 - Reinsert the orphaned (other entries) into the tree using Insert

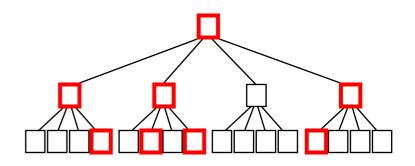
R-trees: Variations

- R+-tree: DO not allow overlapping, so split the objects (similar to z-values)
- R*-tree: change the insertion, deletion algorithms (minimize not only area but also perimeter, forced re-insertion)
- Hilbert R-tree: use the Hilbert values to insert objects into the tree

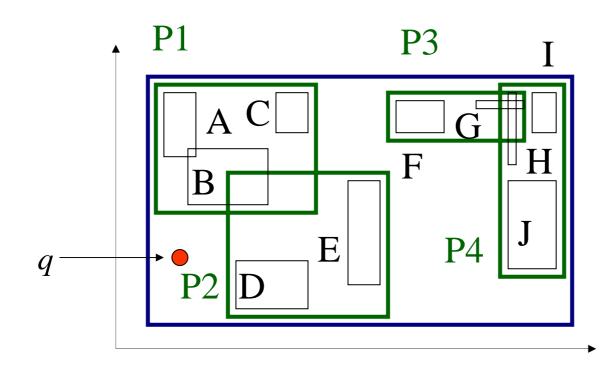
- **R-trees:Range search**
- pseudocode:
 - check the root
 - for each branch,
 - if its MBR intersects the query rectangle apply range-search (or print out, if this is a leaf)

Example (DFS searching)



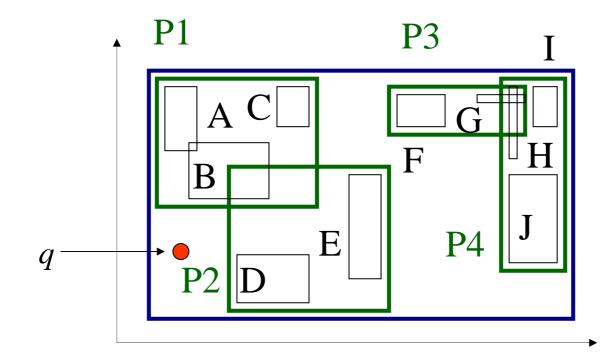


R-trees: NN search



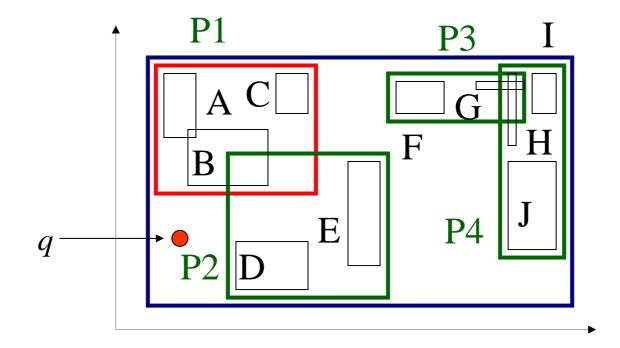
R-trees: NN search

• Q: How? (find near neighbor; refine...)



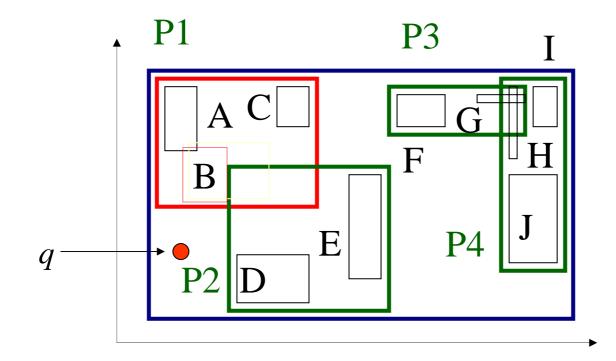
R-trees: NN search (simple algorithm)

• A1: depth-first search; then, range query



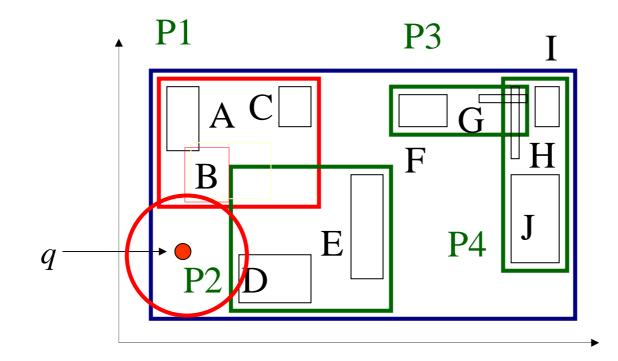
R-trees: NN search (simple algorithm)

• A1: depth-first search; then, range query



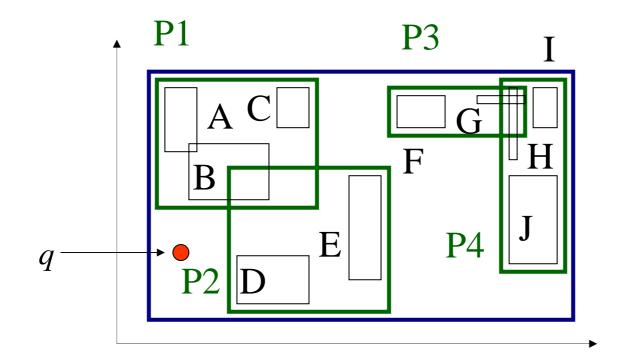
R-trees: NN search (simple algorithm)

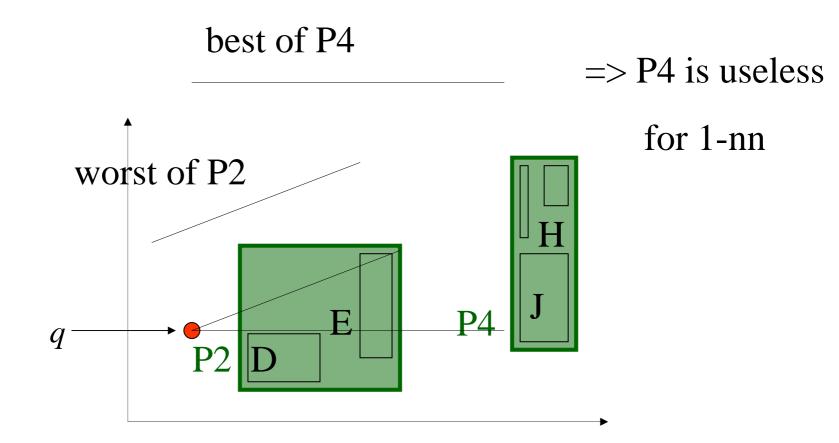
• A1: depth-first search; then, range query



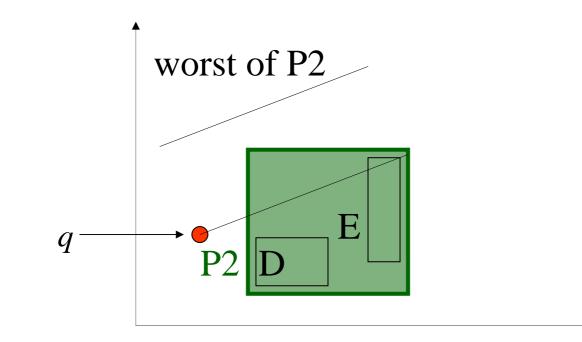
- Priority queue, with promising MBRs, and their best and worst-case distance
- Main idea: Every face of any MBR contains at least one point of an actual spatial object!

consider only P2 and P4, for illustration

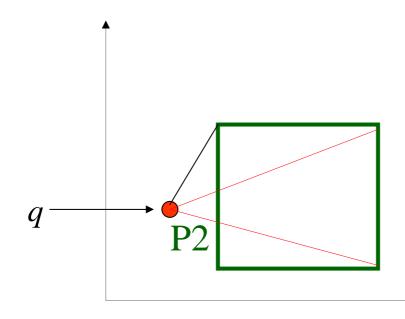




what is really the worst of, say, P2?

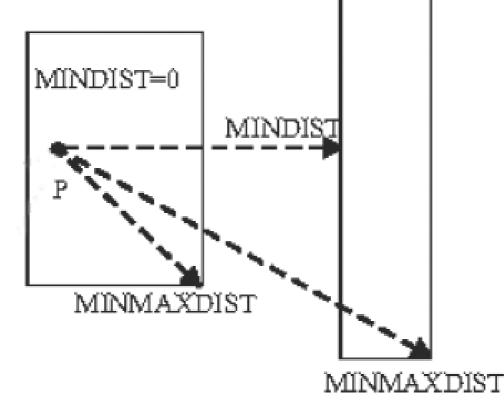


- what is really the worst of, say, P2?
- A: the smallest of the two red segments!



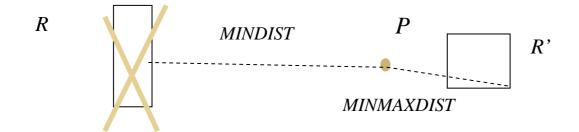
MINDIST, MINMAXDIST

- MINDIST(P, R) = min possible distance of P from R
- MINMAXDIST = the min of the max possible distances from P to a vertex of R
- Lower and an upper bound on the actual distance of R from P

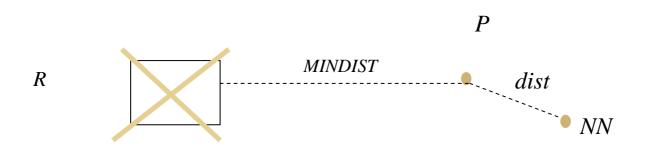


Pruning with MINDIST and MINMAXDIST

Downward pruning: MINDIST(P, R) > MINMAXDIST(P, R') => discard M



Upward pruning: MINDIST(P, R) > Dist(P, currNN) => discard visit to R



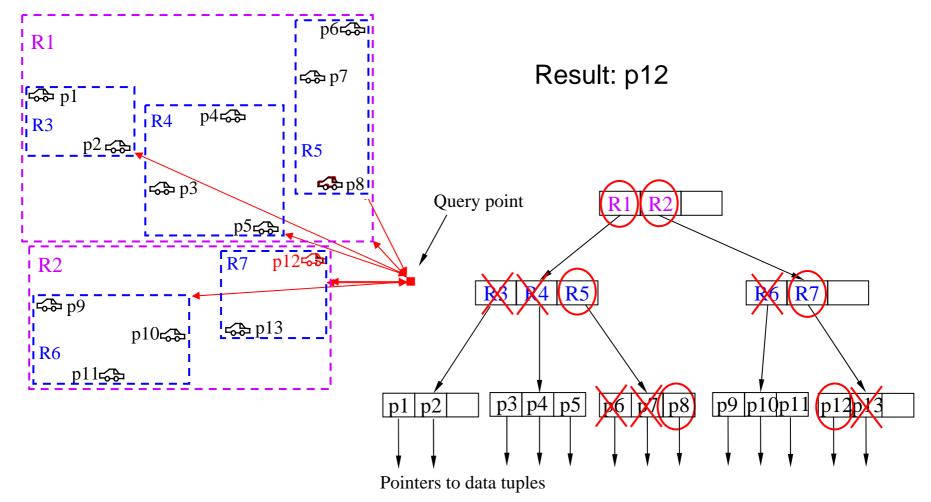
Order of searching

- Depth first order
 - Inspect children in MINDIST order
 - For each node in the tree keep a list of nodes to be visited
 - Prune some of these nodes in the list
 - Continue until the lists are empty

Branch and bound NN-search algorithm

```
Procedure NNSearch(Node, Point, Nearest)
    if Node.type == LEAF
1.
       for i=1 to Node.count
2.
3.
           dist = objectDIST(Point, Node.branch[i].rect)
           if dist < Nearest.dist
4.
               Nearest.dist = dist
5.
               Nearest.rect = Node.branch[i].rect
6.
7.
           endif
       endfor
8.
    else
9.
10.
       genBranchList(branchList)
11.
       sortBranchList(branchList)
       last = pruneBranchList(Node, Point, Nearest, branchList)
12.
13.
      for i = 1 to last
           newNode = Node.branch[branchList[i]]
14.
           NNSearch(newNode, Point, Nearest)
15.
           last = pruneBranchList(Node, Point, Nearest, branchList)
16.
17.
       endfor
18. endif
19. end
```

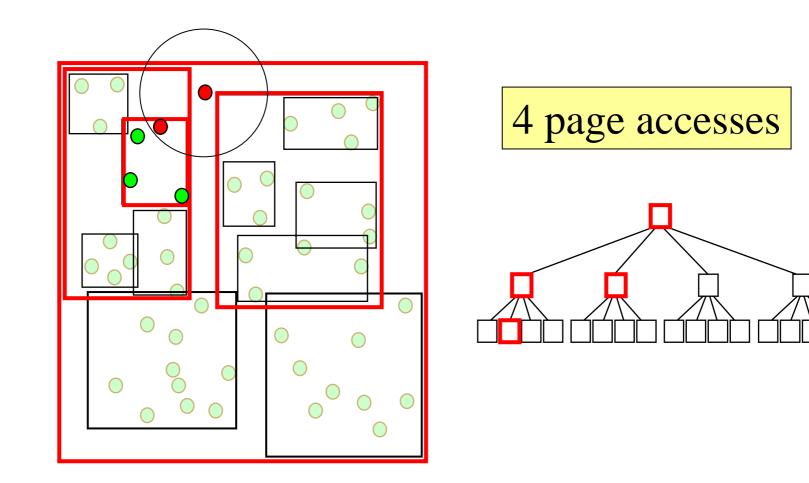

NN example



Optimal Strategy for NN search

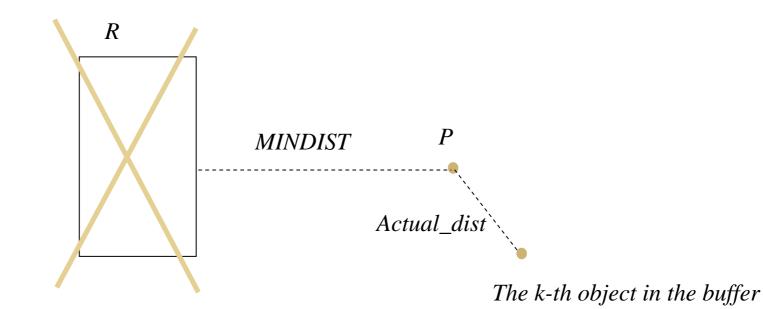
- Global order
 - Maintain distance to all entries in a common list
 - Order the list by MINDIST
 - Repeat
 - Inspect the next MBR in the list
 - Add the children to the list and reorder
 - Until all remaining MBRs can be pruned

Optimal NN: example



Generalize to k-NN

- Keep a sorted buffer of at most *k* current nearest neighbors
- Pruning is done according to the distance of the furthest nearest neighbor in this buffer
- Example:



How many disk (=node) accesses we'll need for

range

nn 🗗

spatial joins

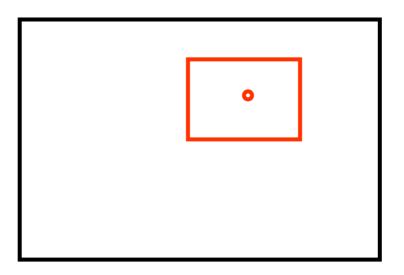
why does it matter?

Spatial Databases

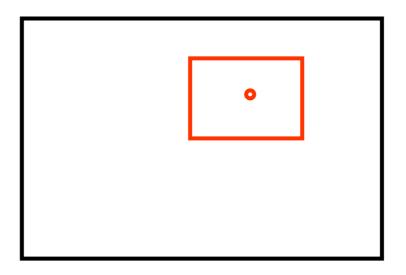
- A: because we can design split etc algorithms accordingly; also, do queryoptimization
- motivating question: on, e.g., split, should we try to minimize the area (volume)? the perimeter? the overlap? or a weighted combination? why?

How many disk accesses for range queries?
 a query distribution wrt location?

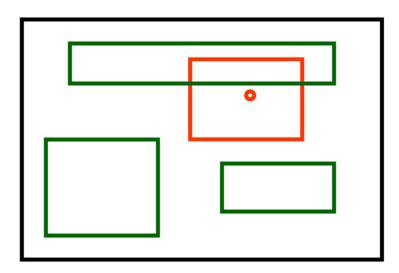
wrt size?



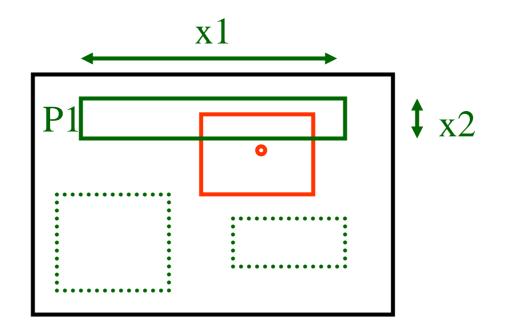
How many disk accesses for range queries?
 query distribution wrt location? uniform; (biased)
 " " wrt size? uniform



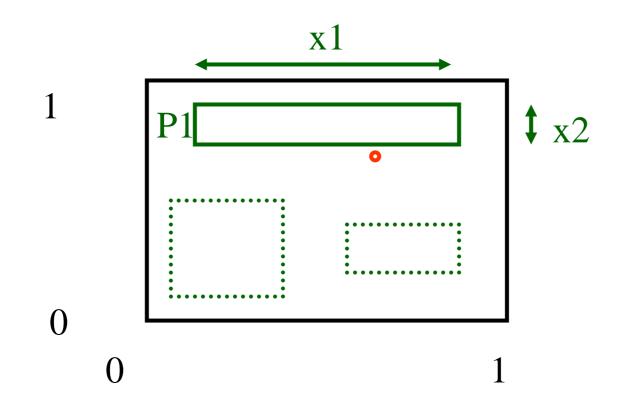
• easier case: we know the positions of parent MBRs, eg:



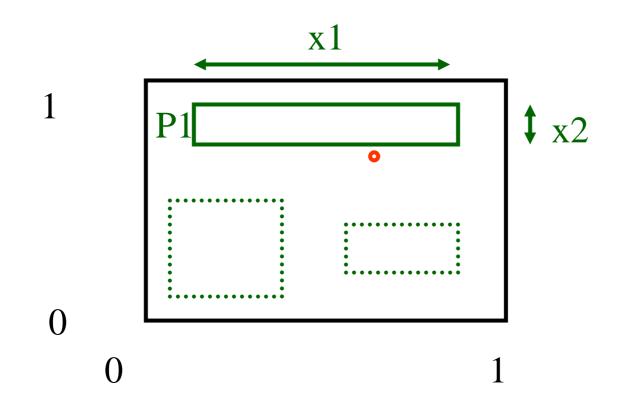
• How many times will P1 be retrieved (unif. queries)?



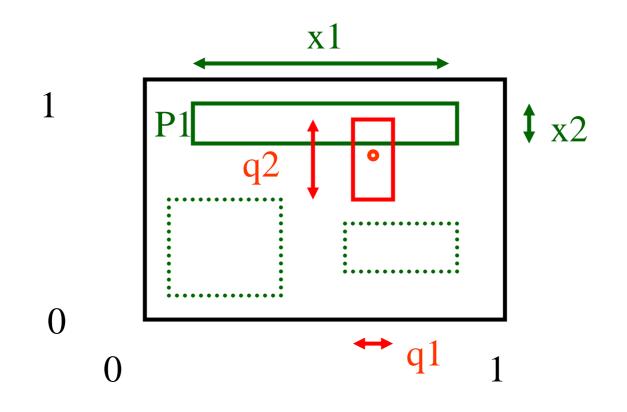
How many times will P1 be retrieved (unif. POINT queries)?



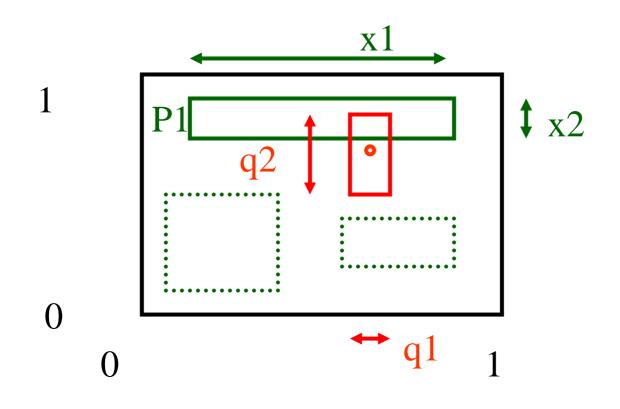
How many times will P1 be retrieved (unif. POINT queries)? A: x1*x2



How many times will P1 be retrieved (unif. queries of size q1xq2)?



How many times will P1 be retrieved (unif. queries of size q1xq2)? A: (x1+q1)*(x2+q2)



Thus, given a tree with n nodes (i=1, ... n) we expect

$$DA(q_1, q_2) = \sum_{i}^{n} (x_{i,1} + q_1)(x_{i,2} + q_2)$$
$$= \sum_{i}^{n} x_{i,1} * x_{i,2} + q_1 \sum_{i}^{n} x_{i,2} + q_2 \sum_{i}^{n} x_{i,1}$$
$$+ q_1 * q_2 * n$$

Thus, given a tree with n nodes (i=1, ... n) we expect

$$DA(q_1, q_2) = \sum_{i}^{n} (x_{i,1} + q_1)(x_{i,2} + q_2)$$

$$= \sum_{i}^{n} x_{i,1} * x_{i,2} + \cdots \quad \text{`volume'}$$

$$q_1 \sum_{i}^{n} x_{i,2} + q_2 \sum_{i}^{n} x_{i,1} \quad \text{`surface area'}$$

$$+ q_1 * q_2 * n \quad \text{count}$$

'overlap' does not seem to matter

Conclusions:

- splits should try to minimize area and perimeter
- ie., we want few, small, square-like parent MBRs
- rule of thumb: shoot for queries with q1=q2 = 0.1 (or =0.05 or so).