Chap4: Spatial Storage and Indexing

4.1 Storage:Disk and Files
4.2 Spatial Indexing
4.3 Trends
4.4 Summary

Learning Objectives

- Learning Objectives (LO)
a LO1: Understand concept of a physical data model
- What is a physical data model?
- Why learn about physical data models?

분 LO2: Learn how to structure data files
ta3: Learn how to use auxiliary data-structures

- Focus on concepts not procedures!
- Mapping Sections to learning objectives
4 LO2
4.1
园 LO3
4.2

Physical model in 3 level design?

- Recall 3 levels of database design
(${ }^{2}$ Conceptual model: high level abstract description
(n Logical model: description of a concrete realization
(0
- Analogy with vehicles

固 Conceptual model: mechanisms to move, turn, stop, ...
눈 Logical models:

- Car: accelerator pedal, steering wheel, brake pedal, ...
- Bicycle: pedal forward to move, turn handle, pull brakes on handle

눈 Physical models:

- Car: engine, transmission, master cylinder, break lines, brake pads, ...
- Bicycle: chain from pedal to wheels, gears, wire from handle to brake pads
- We now go, so to speak, "under the hood"

What is a physical data model?

- What is a physical data model of a database?

둔 Concepts to implement logical data model
圆 Using current components, e.g. computer hardware, operating systems
운 In an efficient and fault-tolerant manner

- Why learn physical data model concepts?

固 To be able to choose between DBMS brand names

- Some brand names do not have spatial indices!

춦 To be able to use DBMS facilities for performance tuning
운 For example, if a query is running slow,

- one may create an index to speed it up

년 For example, if loading of a large number of tuples takes for ever

- one may drop indices on the table before the inserts
- and recreate index after inserts are done!

An interesting fact about physical data model

- Physical data model design is a trade-off between
${ }^{3}$ Efficiently support a small set of basic operations of a few data types
(n Simplicity of overall system
- Each DBMS physical model
(${ }^{2}$ Choose a few physical DM techniques
四 Choice depends chosen sets of operations and data types
- Relational DBMS physical model

눈 Data types: numbers, strings, date, currency

- one-dimensional, totally ordered

분 Operations:

- search on one-dimensional totally order data types
- insert, delete, ...

Common Spatial Queries and Operations

-Physical model provides simpler operations needed by spatial queries!
-Common Queries

- Range query
- Nearest neighbor
- Spatial-join query
- Others (Closest-pair query, Color range query, etc.)

Example schema:

- A big company with a lot of stores and warehouses
- Store(Id int, Name char(30), Location Point)
- Warehouse(Id int, Name char(30), Location Point)

Range query

- Find all objects contained in a rectangle/circle

- Ex. Find all warehouses at dist < 50 Km from location $(0,0)$

Select WarehouseId
From Warehouse
Where distance(Warehouse.Location, Point(0,0)) < 50;

Nearest neighbor query

- Find the object(s) closest to another object

Ex. Find the store closest to store 101

```
Select s2.Id
From Store s1, Store s2
Where s1.Id = 101 and distance(s1.Location, s2.Location) = min
    (Select distance(s1.Location, s3.Location)
    From Store s3);
```


Spatial-ioin query

- Find pairs of objects satisfying a property

- Ex. Find all pairs of stores-warehouses with dist < 10 Km

Select Store.Id, Warehouse.Id
From Store, Warehouse
Where distance(Store.Location, Warehouse.Location)< 10

Other types of queries

- Closest-pair query: Find the closest pair (i.e., with min distance) between a store and a warehouse
욻 (Coral et al., 2000)
- Color range query: What type of objects (e.g., stores, warehouses) are inside a rectangle/circle
은 Find not the objects themselves, but their types
比 (Nanopoulos et al., 2001)
- Computational geometry has many interesting queries

罗 Not all of them have been transferred to SDB realm

Learning Objectives

- Learning Objectives (LO)

눖 LO1: Understand concept of a physical data model

- LO2: Learn how to structure data files
- What is a file structure? Why structure files?
- What are common structures for spatial data file?

년 LO3: Learn how to use auxiliary data-structures

- Mapping Sections to learning objectives

■ LO2
4.1

LO3 - 4.2

4.1.4 File Structures

- What is a file structure?
- A method of organizing records in a file
- For efficient implementation of common file operations on disks
-Example: ordered files
- Measure of efficiency
- I/O cost: Number of disk sectors retrieved from secondary storage
- CPU cost: Number of CPU instruction used
-Two basic categories of file structures in SDB
- Point Access Methods (objects are strictly points)
- Spatial Access Methods (objects have spatial extend)

Spatial Access Methods (SAMs)

- Indexes for spatial data that have extend (not only point data)
- Use only Minimum Bounding Rectangles - MBRs (filtering)

- R-tree (Guttman, 1984) is the prominent SAM
, : Implemented in Oracle, Postgres, Informix
- Approximating spatial operations

분 SDBMS processes MBRs for refinement step
연 Overlap predicate used to approximate topological operations
분 Example: inside(A, B) replaced by

- overlap(MBR(A), MBR(B)) in filter step
- See picture below - Let A be outer polygon and B be the inner one
- inside(A, B) is true only if overlap(MBR(A), MBR(B))
- However overlap is only a filter for inside predicate needing refinement later

- Processing a spatial query Q
-Filter step : find a superset S of object in answer to Q
-Using approximate of spatial data type and operator
-Refinement step : find exact answer to Q reusing a GIS to process S -Using exact spatial data type and operation

Fig 5.1

R-Tree

- A multi-way external memory tree
- Index nodes and data (leaf) nodes
- All leaf nodes appear on the same level
- Every node contains between m
 and M entries
- The root node has at least 2 entries (children)

Example

- eg., w/ fanout 4: group nearby rectangles to parent MBRs; each group -> disk page

Example

- $=4$

Example

- $=4$

R-trees:Insertion

- Insert new MBR in a leaf
- Find the leaf to insert by searching, starting from the root
- How to find the next node to insert the new object?

분 Using ChooseLeaf: Find the entry that needs the least enlargement to include Y. Resolve ties using the area (smallest)

R-trees:Insertion

Insert X

R-trees:Insertion

Insert Y

R-trees:Insertion

- Extend the parent MBR

R-trees:Insertion

- If node is full then Split : ex. Insert w

R-trees:Split

- Split node P1: partition the MBRs into two groups.

- A1: ‘linear’ split
- A2: quadratic split
- A3: exponential split: $2^{\mathrm{M}-1}$ choices

R-trees:Split

- pick two rectangles as 'seeds';
- assign each rectangle 'R' to the ‘closest’ ‘seed’

$\underline{\text { R-trees:Split }}$

- pick two rectangles as 'seeds';
- assign each rectangle 'R' to the 'closest’ ‘seed’:
- 'closest': the smallest increase in area

$\underline{\text { R-trees:Split }}$

- How to pick Seeds:
b Linear: Find the highest and lowest side in each dimension, normalize the separations, choose the pair with the greatest normalized separation
[Quadratic: For each pair E1 and E2, calculate the rectangle $J=\operatorname{MBR}(E 1, E 2)$ and $d=J-E 1-E 2$. Choose the pair with the largest d

R-trees:Insertion (the complete algorithm)

- Use the ChooseLeaf to find the leaf node to insert an entry E
- If leaf node is full, then Split, otherwise insert there a Propagate the split upwards, if necessary
- Adjust parent nodes

R-Trees:Deletion

- Find the leaf node that contains the entry E
- Remove E from this node
- If underflow:

Eliminate the node by removing the node entries and the parent entry
四 Reinsert the orphaned (other entries) into the tree using I nsert

R-trees: Variations

- R+-tree: DO not allow overlapping, so split the objects (similar to z-values)
- R*-tree: change the insertion, deletion algorithms (minimize not only area but also perimeter, forced re-insertion)
- Hilbert R-tree: use the Hilbert values to insert objects into the tree

R-trees:Range search

pseudocode:
check the root
for each branch,
if its MBR intersects the query rectangle apply range-search (or print out, if this is a leaf)

R-trees: NN search

R-trees: NN search

Q: How? (find near neighbor; refine...)

R-trees: NN search (simple algorithm)

- A1: depth-first search; then, range query

R-trees: NN search (simple algorithm)

- A1: depth-first search; then, range query

R-trees: NN search (simple algorithm)

- A1: depth-first search; then, range query

R-trees: NN search (better algorithm)

- Priority queue, with promising MBRs, and their best and worst-case distance
- Main idea: Every face of any MBR contains at least one point of an actual spatial object!

R-trees: NN search (better algorithm)

consider only P2 and P4, for illustration

R-trees: NN search (better algorithm)

best of P4

=> P 4 is useless

R-trees: NN search (better algorithm)

what is really the worst of, say, P2?

R-trees: NN search (better algorithm)

what is really the worst of, say, P2?

- A: the smallest of the two red segments!

MINDIST, MINMAXDIST

- MINDIST(P, R) = min possible distance of P from R
- MINMAXDIST $=$ the min of the max possible distances from P to a vertex of R
- Lower and an upper bound on the actual distance of R from P

Downward pruning: MINDIST(P, R) > MINMAXDIST(P, R') => discard M

R
MINDIST
P

R'

MINMAXDIST

Upward pruning: $\operatorname{MINDIST}(\mathrm{P}, \mathrm{R})>\operatorname{Dist}(\mathrm{P}$, currNN $)=>$ discard visit to R

Order of searching

- Depth first order
: Inspect children in MINDIST order
분 For each node in the tree keep a list of nodes to be visited
: : Prune some of these nodes in the list
년 Continue until the lists are empty

```
Procedure NNSearch(Node, Point, Nearest)
1. if Node.type == LEAF
2. for i=1 to Node.count
3. dist = objectDIST(Point, Node.branch[i].rect)
4. if dist < Nearest.dist
5. Nearest.dist = dist
6. Nearest.rect = Node.branch[i].rect
7. endif
8. endfor
9. else
10. genBranchList(branchList)
11. sortBranchList(branchList)
12. last = pruneBranchList(Node, Point, Nearest, branchList)
13. for i = 1 to last
14. newNode = Node.branch[branchList[i]]
15. NNSearch(newNode, Point, Nearest)
16. last = pruneBranchList(Node, Point, Nearest, branchList)
17. endfor
18. endif
19. end
```


NN example

Optimal Strategy for NN search

- Global order
(as Maintain distance to all entries in a common list

분 Order the list by MINDIST
변 Repeat

- Inspect the next MBR in the list
- Add the children to the list and reorder
(antil all remaining MBRs can be pruned

Optimal NN: example

4 page accesses

Generalize to k-NN

- Keep a sorted buffer of at most k current nearest neighbors
- Pruning is done according to the distance of the furthest nearest neighbor in this buffer
- Example:

R-trees: performance analysis

- How many disk (=node) accesses we'll need for

년 range
感nn
: tatial joins
why does it matter?

R-trees: performance analysis

- A: because we can design split etc algorithms accordingly; also, do queryoptimization
- motivating question: on, e.g., split, should we try to minimize the area (volume)? the perimeter? the overlap? or a weighted combination? why?

R-trees: performance analysis

- How many disk accesses for range queries?
maery distribution wrt location?
四 " " wrt size?

R-trees: performance analysis

- How many disk accesses for range queries?路 query distribution wrt location? uniform; (biased) s " " wrt size? uniform

- easier case: we know the positions of parent MBRs, eg:

- How many times will P1 be retrieved (unif. queries)?

- How many times will P1 be retrieved (unif. POINT queries)?

- How many times will P1 be retrieved (unif. POINT queries)? $A: \times 1^{*} \times 2$

- How many times will P1 be retrieved (unif. queries of size q1xq2)?

- How many times will P1 be retrieved (unif. queries of size q1xq2)? A: (x1+q1)*(x2+q2)

R-trees: performance analysis

- Thus, given a tree with n nodes $(\mathrm{i}=1, \ldots \mathrm{n})$ we expect

$$
\begin{aligned}
D A\left(q_{1}, q_{2}\right) & =\sum_{i}^{n}\left(x_{i, 1}+q_{1}\right)\left(x_{i, 2}+q_{2}\right) \\
& =\sum_{i}^{n} x_{i, 1} * x_{i, 2}+ \\
& q_{1} \sum_{i}^{n} x_{i, 2}+q_{2} \sum_{i}^{n} x_{i, 1} \\
& +q_{1} * q_{2} * n
\end{aligned}
$$

R-trees: performance analysis

- Thus, given a tree with n nodes $(\mathrm{i}=1, \ldots \mathrm{n})$ we expect

$$
\begin{aligned}
& D A\left(q_{1}, q_{2}\right)=\sum_{i}^{n}\left(x_{i, 1}+q_{1}\right)\left(x_{i, 2}+q_{2}\right) \\
&=\sum_{i}^{n} x_{i, 1} * x_{i, 2}+\quad \longrightarrow \text { 'volume' } \\
& q_{1} \sum_{i}^{n} x_{i, 2}+q_{2} \sum_{i}^{n} x_{i, 1} \longrightarrow \text { 'surface area' } \\
&+q_{1} * q_{2} * n \\
& \text { count }
\end{aligned}
$$

‘overlap' does not seem to matter

R-trees: performance analysis

Conclusions:

- splits should try to minimize area and perimeter
- ie., we want few, small, square-like parent MBRs
- rule of thumb: shoot for queries with $\mathrm{q} 1=\mathrm{q} 2=$ 0.1 (or $=0.05$ or so).

