
Chap4: Spatial Storage and Indexing

4.1 Storage:Disk and Files
4.2 Spatial Indexing
4.3 Trends
4.4 Summary

2

Learning Objectives
Learning Objectives (LO)

LO1: Understand concept of a physical data model
• What is a physical data model?
• Why learn about physical data models?

LO2: Learn how to structure data files
LO3: Learn how to use auxiliary data-structures

Focus on concepts not procedures!
Mapping Sections to learning objectives

LO2 - 4.1
LO3 - 4.2

3

Physical model in 3 level design?

Recall 3 levels of database design
Conceptual model: high level abstract description
Logical model: description of a concrete realization
Physical model: implementation using basic components

Analogy with vehicles
Conceptual model: mechanisms to move, turn, stop, ...
Logical models:

• Car: accelerator pedal, steering wheel, brake pedal, …
• Bicycle: pedal forward to move, turn handle, pull brakes on handle

Physical models :
• Car: engine, transmission, master cylinder, break lines, brake pads, …
• Bicycle: chain from pedal to wheels, gears, wire from handle to brake pads

We now go, so to speak, “under the hood”

4

What is a physical data model?

What is a physical data model of a database?
Concepts to implement logical data model
Using current components, e.g. computer hardware, operating systems
In an efficient and fault-tolerant manner

Why learn physical data model concepts?
To be able to choose between DBMS brand names

• Some brand names do not have spatial indices!

To be able to use DBMS facilities for performance tuning
For example, if a query is running slow,

• one may create an index to speed it up

For example, if loading of a large number of tuples takes for ever
• one may drop indices on the table before the inserts
• and recreate index after inserts are done!

5

An interesting fact about physical data model

Physical data model design is a trade-off between
Efficiently support a small set of basic operations of a few data types
Simplicity of overall system

Each DBMS physical model
Choose a few physical DM techniques
Choice depends chosen sets of operations and data types

Relational DBMS physical model
Data types: numbers, strings, date, currency

• one-dimensional, totally ordered

Operations:
• search on one-dimensional totally order data types
• insert, delete, ...

6

Common Spatial Queries and Operations
•Physical model provides simpler operations needed by spatial queries!

•Common Queries
•Range query

•Nearest neighbor

•Spatial-join query

• Others (Closest-pair query, Color range query, etc.)

Example schema:

• A big company with a lot of stores and warehouses

• Store(Id int, Name char(30), Location Point)

• Warehouse(Id int, Name char(30), Location Point)

Range query

Find all objects contained in a rectangle/circle

Ex. Find all warehouses at dist < 50 Km from location (0,0)

Select WarehouseId
From Warehouse
Where distance(Warehouse.Location, Point(0,0)) < 50;

7

Nearest neighbor query

Find the object(s) closest to another object

Ex. Find the store closest to store 101

Select s2.Id

From Store s1, Store s2
Where s1.Id = 101 and distance(s1.Location, s2.Location) = min

(Select distance(s1.Location, s3.Location)

From Store s3);
8

Spatial-join query

Find pairs of objects satisfying a property

Ex. Find all pairs of stores-warehouses with dist < 10 Km

Select Store.Id, Warehouse.Id
From Store, Warehouse

Where distance(Store.Location, Warehouse.Location)< 10

9

Other types of queries

Closest-pair query: Find the closest pair (i.e., with min
distance) between a store and a warehouse

(Coral et al., 2000)

Color range query: What type of objects (e.g., stores,
warehouses) are inside a rectangle/circle

Find not the objects themselves, but their types
(Nanopoulos et al., 2001)

Computational geometry has many interesting queries
Not all of them have been transferred to SDB realm

10

11

Learning Objectives
Learning Objectives (LO)

LO1: Understand concept of a physical data model
LO2: Learn how to structure data files

• What is a file structure? Why structure files?
• What are common structures for spatial data file?

LO3: Learn how to use auxiliary data-structures

Mapping Sections to learning objectives
LO2 - 4.1
LO3 - 4.2

12

4.1.4 File Structures

• What is a file structure?
• A method of organizing records in a file
• For efficient implementation of common file operations on disks
•Example: ordered files

• Measure of efficiency
• I/O cost: Number of disk sectors retrieved from secondary storage
• CPU cost: Number of CPU instruction used

•Two basic categories of file structures in SDB
• Point Access Methods (objects are strictly points)
• Spatial Access Methods (objects have spatial extend)

Spatial Access Methods (SAMs)

Indexes for spatial data that have extend (not only point
data)
Use only Minimum Bounding Rectangles – MBRs (filtering)

R-tree (Guttman, 1984) is the prominent SAM
Implemented in Oracle, Postgres, Informix

13

14

Approximate Spatial Operations
Approximating spatial operations

SDBMS processes MBRs for refinement step
Overlap predicate used to approximate topological operations
Example: inside(A, B) replaced by

• overlap(MBR(A), MBR(B)) in filter step
• See picture below - Let A be outer polygon and B be the inner one
• inside(A, B) is true only if overlap(MBR(A), MBR(B))
• However overlap is only a filter for inside predicate needing refinement later

15

R-tree query processing:Filter-Refining

Fig 5.1

Query result

Filter step Refinement step

Query

Spatial index

Candidate set

Load object geometry

Test on exact
geometry

False hits Hits

• Processing a spatial query Q
•Filter step : find a superset S of object in answer to Q

•Using approximate of spatial data type and operator
•Refinement step : find exact answer to Q reusing a GIS to process S

•Using exact spatial data type and operation

16

R-Tree

x

y

a b

c d

e

f

g

1

2

3 4

5

6

7

8 9

10

11

12 13

14

15 16

1

R

x y

a b c d
[1,2,3] [6,7] [4,5] [8,9] [10,11]

gfe
[12,13,14] [15,16]

• A multi-way external memory tree
• Index nodes and data (leaf) nodes
• All leaf nodes appear on the same
level
• Every node contains between m
and M entries
• The root node has at least 2 entries
(children)

Example

eg., w/ fanout 4: group nearby rectangles to parent
MBRs; each group -> disk page

A
B

C

D
E

F
G

H

J

I

17

Example

F=4

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4
F GD E

H I JA B C

18

Example

F=4

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

19

R-trees:Insertion

Insert new MBR in a leaf
Find the leaf to insert by searching, starting from the root
How to find the next node to insert the new object?

Using ChooseLeaf: Find the entry that needs the least enlargement
to include Y. Resolve ties using the area (smallest)

20

R-trees:Insertion

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CX

X

Insert X

21

R-trees:Insertion

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CY

Insert Y

22

R-trees:Insertion

Extend the parent MBR

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CY
Y

23

R-trees:Insertion

If node is full then Split : ex. Insert w

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

W

K

K

24

R-trees:Split

Split node P1: partition the MBRs into two groups.

A
B

C W

KP1
• A1: ‘linear’ split

• A2: quadratic split

• A3: exponential split:

2M-1 choices

25

R-trees:Split

pick two rectangles as ‘seeds’;
assign each rectangle ‘R’ to the ‘closest’ ‘seed’

seed1

seed2
R

26

R-trees:Split

pick two rectangles as ‘seeds’;
assign each rectangle ‘R’ to the ‘closest’ ‘seed’:
‘closest’: the smallest increase in area

seed1

seed2
R

27

R-trees:Split

How to pick Seeds:
Linear:Find the highest and lowest side in each
dimension, normalize the separations, choose the pair
with the greatest normalized separation
Quadratic: For each pair E1 and E2, calculate the
rectangle J=MBR(E1, E2) and d= J-E1-E2. Choose the
pair with the largest d

28

R-trees:Insertion (the complete algorithm)

Use the ChooseLeaf to find the leaf node to insert an
entry E
If leaf node is full, then Split, otherwise insert there

Propagate the split upwards, if necessary

Adjust parent nodes

29

R-Trees:Deletion

Find the leaf node that contains the entry E
Remove E from this node
If underflow:

Eliminate the node by removing the node entries and
the parent entry
Reinsert the orphaned (other entries) into the tree using
Insert

30

R-trees: Variations

R+-tree: DO not allow overlapping, so split the objects
(similar to z-values)
R*-tree: change the insertion, deletion algorithms
(minimize not only area but also perimeter, forced
re-insertion)
Hilbert R-tree: use the Hilbert values to insert objects into
the tree

31

32

R-trees:Range search

pseudocode:
check the root
for each branch,

if its MBR intersects the query rectangle
apply range-search (or print out, if this

is a leaf)

33

Example (DFS searching)

R-trees: NN search

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

34

R-trees: NN search

Q: How? (find near neighbor; refine...)

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

35

R-trees: NN search (simple algorithm)

A1: depth-first search; then, range query

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

36

R-trees: NN search (simple algorithm)

A1: depth-first search; then, range query

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

37

R-trees: NN search (simple algorithm)

A1: depth-first search; then, range query

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

38

R-trees: NN search (better algorithm)

Priority queue, with promising MBRs, and their best and
worst-case distance
Main idea: Every face of any MBR contains at least one
point of an actual spatial object!

39

R-trees: NN search (better algorithm)

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

consider only P2 and P4, for illustration

40

R-trees: NN search (better algorithm)

D
E

H

J
P2

P4q

worst of P2

best of P4
=> P4 is useless

for 1-nn

41

R-trees: NN search (better algorithm)

D
E

P2
q

worst of P2

what is really the worst of, say, P2?

42

R-trees: NN search (better algorithm)

P2
q

what is really the worst of, say, P2?
A: the smallest of the two red segments!

43

44

MINDIST, MINMAXDIST
MINDIST(P, R) = min possible distance of P from R
MINMAXDIST = the min of the max possible distances from P to a
vertex of R
Lower and an upper bound on the actual distance of R from P

45

Pruning with MINDIST and MINMAXDIST

Upward pruning: MINDIST(P, R) > Dist(P, currNN) => discard visit to R

R
R’

MINDIST P

MINMAXDIST

Downward pruning: MINDIST(P, R) > MINMAXDIST(P, R') => discard M

R

NN

MINDIST

P

dist

Order of searching

Depth first order
Inspect children in MINDIST order
For each node in the tree keep a list of
nodes to be visited
Prune some of these nodes in the list
Continue until the lists are empty

46

47

Branch and bound NN-search algorithm

48

p12

p8p8

NN example

R1 R2

R3 R4 R5

p6 p7p5p1 p2

Pointers to data tuples

p8p3 p4 p9 p10p11 p12p13

R6 R7

p1
p7

p6

p2

p3

p4

p5

p9
p10

p11

p13

Query point

Candidate NN point: ∅Candidate NN point: p8

R3 R4
R5

R6

R7

R1

R2 p12

p8

Result: p12

49

Optimal Strategy for NN search

Global order
Maintain distance to all entries in a common
list
Order the list by MINDIST
Repeat
• Inspect the next MBR in the list
• Add the children to the list and reorder

Until all remaining MBRs can be pruned

50

Optimal NN: example

4 page accesses

51

Generalize to k-NN

Keep a sorted buffer of at most k current nearest neighbors
Pruning is done according to the distance of the furthest
nearest neighbor in this buffer
Example:

R

The k-th object in the buffer

MINDIST P

Actual_dist

R-trees: performance analysis

How many disk (=node) accesses we’ll
need for

range
nn
spatial joins

why does it matter?

52

R-trees: performance analysis

A: because we can design split etc
algorithms accordingly; also, do query-
optimization
motivating question: on, e.g., split,
should we try to minimize the area
(volume)? the perimeter? the overlap?
or a weighted combination? why?

53

R-trees: performance analysis

How many disk accesses for range queries?
query distribution wrt location?

“ “ wrt size?

54

R-trees: performance analysis

How many disk accesses for range queries?
query distribution wrt location? uniform; (biased)

“ “ wrt size? uniform

55

R-trees: performance analysis

easier case: we know the positions of parent MBRs, eg:

56

R-trees: performance analysis

How many times will P1 be retrieved (unif. queries)?

P1

x1

x2

57

R-trees: performance analysis

How many times will P1 be retrieved (unif. POINT
queries)?

P1

x1

x2

0 1
0

1

58

R-trees: performance analysis

How many times will P1 be retrieved (unif. POINT
queries)? A: x1*x2

P1

x1

x2

0 1
0

1

59

R-trees: performance analysis

How many times will P1 be retrieved (unif. queries of
size q1xq2)?

P1

x1

x2

0 1
0

1

q1

q2

60

R-trees: performance analysis

How many times will P1 be retrieved (unif. queries of
size q1xq2)? A: (x1+q1)*(x2+q2)

P1

x1

x2

0 1
0

1

q1

q2

61

R-trees: performance analysis

Thus, given a tree with n nodes (i=1, ... n) we expect

))((),(22,11,21 qxqxqqDA i

n

i
i ++=∑

+∗=∑ 2,1, i

n

i
i xx

1,22,1 i

n

i
i

n

i
xqxq ∑∑ +

nqq ∗∗+ 21

62

R-trees: performance analysis

Thus, given a tree with n nodes (i=1, ... n) we expect

‘volume’

‘surface area’

count

))((),(22,11,21 qxqxqqDA i

n

i
i ++=∑

+∗=∑ 2,1, i

n

i
i xx

1,22,1 i

n

i
i

n

i
xqxq ∑∑ +

nqq ∗∗+ 21

‘overlap’ does not seem to matter63

R-trees: performance analysis

Conclusions:
• splits should try to minimize area and perimeter
• ie., we want few, small, square-like parent MBRs
• rule of thumb: shoot for queries with q1=q2 =

0.1 (or =0.05 or so).

64

	Chap4: Spatial Storage and Indexing��4.1 Storage:Disk and Files�4.2 Spatial Indexing�4.3 Trends�4.4 Summary�
	Learning Objectives
	Physical model in 3 level design?
	What is a physical data model?
	An interesting fact about physical data model
	Common Spatial Queries and Operations
	Range query
	Nearest neighbor query
	Spatial-join query
	Other types of queries
	Learning Objectives
	4.1.4 File Structures
	Spatial Access Methods (SAMs)
	Approximate Spatial Operations
	R-tree query processing:Filter-Refining
	R-Tree
	Example
	Example
	Example
	R-trees:Insertion
	R-trees:Insertion
	R-trees:Insertion
	R-trees:Insertion
	R-trees:Insertion
	R-trees:Split
	R-trees:Split
	R-trees:Split
	R-trees:Split
	R-trees:Insertion (the complete algorithm)
	R-Trees:Deletion
	R-trees: Variations
	R-trees:Range search
	Example (DFS searching)
	R-trees: NN search
	R-trees: NN search
	R-trees: NN search (simple algorithm)
	R-trees: NN search (simple algorithm)
	R-trees: NN search (simple algorithm)
	R-trees: NN search (better algorithm)
	R-trees: NN search (better algorithm)
	R-trees: NN search (better algorithm)
	R-trees: NN search (better algorithm)
	R-trees: NN search (better algorithm)
	MINDIST, MINMAXDIST
	Pruning with MINDIST and MINMAXDIST
	Order of searching
	Branch and bound NN-search algorithm
	NN example
	Optimal Strategy for NN search
	Optimal NN: example
	Generalize to k-NN
	R-trees: performance analysis
	R-trees: performance analysis
	R-trees: performance analysis
	R-trees: performance analysis
	R-trees: performance analysis
	R-trees: performance analysis
	R-trees: performance analysis
	R-trees: performance analysis
	R-trees: performance analysis
	R-trees: performance analysis
	R-trees: performance analysis
	R-trees: performance analysis
	R-trees: performance analysis

