
Spatial Data Mining

Overview of Classification Techniques
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Decision Trees
Tree-based classifiers for instances represented as feature-vectors.  
Nodes test features, there is one branch for each value of the feature, 
and leaves specify the category.

Can represent arbitrary conjunction and disjunction. Can represent 
any classification function over discrete feature vectors.
Can be rewritten as a set of rules, i.e. disjunctive normal form (DNF).

red ∧ circle → pos
red ∧ circle → A
blue → B;  red ∧ square → B
green → C;   red ∧ triangle → C

color

red blue green

shape

circle square triangle
neg pos

pos neg neg

color

red blue green

shape

circle square triangle
B C

A B C
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shape

circle square triangle

Top-Down Decision Tree Induction
Recursively build a tree top-down by divide and 
conquer. <big, red, circle>: +       <small, red, circle>: +

<small, red, square>: − <big, blue, circle>: −

<big, red, circle>: +       
<small, red, circle>: +
<small, red, square>: −

color

red blue green

<big, red, circle>: +       
<small, red, circle>: +

pos
<small, red, square>: −
neg pos

<big, blue, circle>: −
neg neg
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Picking a Good Split Feature

Goal is to have the resulting tree be as small as possible, 
per Occam’s razor.
Finding a minimal decision tree (nodes, leaves, or depth) 
is an NP-hard optimization problem.
Top-down divide-and-conquer method does a greedy 
search for a simple tree but does not guarantee to find the 
smallest.

General lesson in ML:  “Greed is good.”
Want to pick a feature that creates subsets of examples 
that are relatively “pure” in a single class so they are 
“closer” to being leaf nodes.
There are a variety of heuristics for picking a good test, a 
popular one is based on information gain that originated 
with the ID3 system of Quinlan (1979).
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Entropy
Entropy (disorder, impurity) of a set of examples, S, relative to a 
binary classification is:

where p1 is the fraction of positive examples in S and p0 is the 
fraction of negatives.
If all examples are in one category, entropy is zero (we define 
0⋅log(0)=0)
If examples are equally mixed (p1=p0=0.5), entropy is a 
maximum of 1.
Entropy can be viewed as the number of bits required on 
average to encode the class of an example in S where data 
compression (e.g. Huffman coding) is used to give shorter codes 
to more likely cases.
For multi-class problems with c categories, entropy generalizes 
to:
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Entropy Plot for Binary Classification
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Information Gain
The information gain of a feature F is the expected reduction in 
entropy resulting from splitting on this feature.

where Sv is the subset of S having value v for feature F.
Entropy of each resulting subset weighted by its relative size.
Example:

<big, red, circle>: +          <small, red, circle>: +
<small, red, square>: − <big, blue, circle>: −

)()(),(
)(

v
FValuesv

v SEntropy
S
S

SEntropyFSGain ∑
∈

−=

2+, 2 −: E=1
size

big          small
1+,1− 1+,1−
E=1        E=1

Gain=1−(0.5⋅1 + 0.5⋅1) = 0

2+, 2 − : E=1
color

red          blue
2+,1− 0+,1−
E=0.918   E=0

Gain=1−(0.75⋅0.918 +
0.25⋅0) = 0.311

2+, 2 − : E=1
shape

circle      square
2+,1− 0+,1−
E=0.918   E=0

Gain=1−(0.75⋅0.918 +
0.25⋅0) = 0.311
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History of Decision-Tree Research

Hunt and colleagues use exhaustive search decision-tree 
methods (CLS) to model human concept learning in the 
1960’s.
In the late 70’s, Quinlan developed ID3 with the 
information gain heuristic to learn expert systems from 
examples.
Simulataneously, Breiman and Friedman and colleagues 
develop CART (Classification and Regression Trees), 
similar to ID3.
In the 1980’s a variety of improvements are introduced to 
handle noise, continuous features, missing features, and 
improved splitting criteria. Various expert-system 
development tools results.
Quinlan’s updated decision-tree package (C4.5) released 
in 1993.
Weka includes Java version of C4.5 called J48.



9

Computational Complexity
Worst case builds a complete tree where every path 
test every feature. Assume n examples and m
features.

At each level, i, in the tree, must examine the 
remaining m− i features for each instance at the level 
to calculate info gains.

However, learned tree is rarely complete (number of 
leaves is ≤ n). In practice, complexity is linear in both 
number of features (m) and number of training 
examples (n).

F1

Fm

⋅⋅⋅⋅⋅ Maximum of n examples spread across
all nodes at each of the m levels

)(
1
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=
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Overfitting
Learning a tree that classifies the training data perfectly 
may not lead to the tree with the best generalization to 
unseen data.

There may be noise in the training data that the tree is 
erroneously fitting.
The algorithm may be making poor decisions towards the leaves 
of the tree that are based on very little data and may not reflect 
reliable trends.

A hypothesis, h, is said to overfit the training data is 
there exists another hypothesis which, h´, such that h
has less error than h´ on the training data but greater 
error on independent test data.

hypothesis complexity

ac
cu

ra
cy on training data

on test data
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Overfitting Example

voltage (V)

cu
rr

en
t 

(I
)

Testing Ohms Law: V = IR   (I = (1/R)V)

Ohm was wrong, we have found a more accurate function!

Perfect fit to training data with an 9th degree polynomial
(can fit n points exactly with an n-1 degree polynomial)

Experimentally
measure 10
points

Fit a curve to
the resulting data.
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Overfitting Example

voltage (V)

cu
rr

en
t 

(I
)

Testing Ohms Law: V = IR   (I = (1/R)V)

Better generalization with a linear function
that fits training data less accurately.
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Overfitting Prevention (Pruning) Methods
Two basic approaches for decision trees

Prepruning: Stop growing tree as some point during top-
down construction when there is no longer sufficient data to 
make reliable decisions.
Postpruning: Grow the full tree, then remove subtrees that 
do not have sufficient evidence.

Label leaf resulting from pruning with the majority 
class of the remaining data, or a class probability 
distribution. 
Method for determining which subtrees to prune:

Cross-validation: Reserve some training data as a hold-out 
set (validation set, tuning set) to evaluate utility of 
subtrees.
Statistical test: Use a statistical test on the training data to 
determine if any observed regularity can be dismisses as 
likely due to random chance.
Minimum description length (MDL): Determine if the 
additional complexity of the hypothesis is less complex than 
just explicitly remembering any exceptions resulting from 
pruning.
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Neural Network Learning

Learning approach based on modeling adaptation in biological neural 
systems.
Perceptron: Initial algorithm for learning simple neural networks 
(single layer) developed in the 1950’s.
Backpropagation: More complex algorithm for learning multi-layer 
neural networks developed in the 1980’s.
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Artificial Neuron Model
Model network as a graph with cells as nodes and 
synaptic connections as weighted edges from node i
to node j, wji

Model net input to cell as

Cell output is: 

1
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Perceptron Learning Algorithm
Iteratively update weights until convergence.

Each execution of the outer loop is typically 
called an epoch.

Initialize weights to random values
Until outputs of all training examples are correct

For each training pair, E, do: 
Compute current output oj for E given its inputs
Compare current output to target value, tj , for E
Update synaptic weights and threshold using learning rule
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Perceptron Learning Rule

Update weights by:

where η is the “learning rate”
tj is the teacher specified output for unit j.

Equivalent to rules:
If output is correct do nothing.
If output is high, lower weights on active inputs
If output is low, increase weights on active inputs

Also adjust threshold to compensate:

ijjjiji ootww )( −+= η

)( jjjj otTT −−= η
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Concept Perceptron Cannot Learn
Cannot learn exclusive-or, or parity function in general.

o3

o2

??+1

0
1

–

+–
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Perceptron Limits

System obviously cannot learn concepts it cannot represent.
Minksy and Papert (1969) wrote a book analyzing the perceptron and 
demonstrating many functions it could not learn.
These results discouraged further research on neural nets; and 
symbolic AI became the dominate paradigm.
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Multi-Layer Networks
Multi-layer networks can represent arbitrary functions, but 
an effective learning algorithm for such networks was 
thought to be difficult.
A typical multi-layer network consists of an input, hidden 
and output layer, each fully connected to the next, with 
activation feeding forward.

The weights determine the function computed. Given an 
arbitrary number of hidden units, any boolean function 
can be computed with a single hidden layer.

output

hidden

input

activation
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Sample Learned XOR Network
3.11

−7.386.96

−5.24

−3.6
−3.58

−5.74

−2.03A

X Y

B

O

−5.57

Hidden Unit A represents: ¬(X ∧ Y)
Hidden Unit B represents: ¬(X ∨ Y)
Output O represents:  A ∧ ¬B = ¬(X ∧ Y) ∧ (X ∨ Y)

= X ⊕ Y
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Comments on Training Algorithm
Not guaranteed to converge to zero training 
error, may converge to local optima or 
oscillate indefinitely.
However, in practice, does converge to low 
error for many large networks on real data.
Many epochs (thousands) may be required, 
hours or days of training for large networks.
To avoid local-minima problems, run several 
trials starting with different random weights 
(random restarts).

Take results of trial with lowest training set error.
Build a committee of results from multiple trials 
(possibly weighting votes by training set 
accuracy).
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Determining the Best  Number of Hidden Units
Too few hidden units prevents the network from 
adequately fitting the data.
Too many hidden units can result in over-fitting.

Use internal cross-validation to empirically determine 
an optimal number of hidden units.

er
ro

r

on training data
0 # hidden units

on test data
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Successful Applications

Text to Speech (NetTalk)
Fraud detection
Financial Applications

HNC (eventually bought by Fair Isaac)
Chemical Plant Control

Pavillion Technologies
Automated Vehicles
Game Playing

Neurogammon
Handwriting recognition
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Issues in Neural Nets

More efficient training methods:
Quickprop
Conjugate gradient (exploits 2nd derivative)

Learning the proper network architecture:
Grow network until able to fit data

• Cascade Correlation
• Upstart

Shrink large network until unable to fit data
• Optimal Brain Damage

Recurrent networks that use feedback and can 
learn finite state machines with “backpropagation 
through time.”



Linear Separators
Which of the linear separators is optimal? 



Classification Margin
Distance from example xi to the separator is 
Examples closest to the hyperplane are support vectors. 
Margin ρ of the separator is the distance between support 
vectors.

w
xw br i
T +

=

r

ρ



M aximum M argin C lassification
Maximizing the margin is good according to intuition and 
PAC theory.
Implies that only support vectors matter; other training 
examples are ignorable. 



Soft Margin Classification  

What if the training set is not linearly separable?
Slack variables ξi can be added to allow misclassification of difficult or 
noisy examples, resulting margin called soft.

ξi

ξi



Non-linear SVMs

Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard? 

How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x



Non-linear SVMs:  Feature spaces

General idea:   the original feature space can always be mapped to 
some higher-dimensional feature space where the training set is 
separable:

Φ:  x→ φ(x)



SVM applications
SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and 
gained increasing popularity in late 1990s.
SVMs are currently among the best performers for a number of 
classification tasks ranging from text to genomic data.
SVMs can be applied to complex data types beyond feature vectors (e.g. 
graphs, sequences, relational data) by designing kernel functions for 
such data.
SVM techniques have been extended to a number of tasks such as 
regression [Vapnik et al. ’97], principal component analysis [Schölkopf 
et al. ’99], etc. 
Most popular optimization algorithms for SVMs use decomposition to 
hill-climb over a subset of αi’s at a time, e.g. SMO [Platt ’99] and 
[Joachims ’99]
Tuning SVMs remains a black art:  selecting a specific kernel and 

parameters is usually done in a try-and-see manner. 
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Instance-Based Learning

Unlike other learning algorithms, does not involve 
construction of an explicit abstract generalization but 
classifies new instances based on direct comparison and 
similarity to known training instances.
Training can be very easy, just memorizing training 
instances.
Testing can be very expensive, requiring detailed 
comparison to all past training instances.
Also known as:

Case-based 
Exemplar-based
Nearest Neighbor
Memory-based
Lazy Learning
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Similarity/Distance Metrics
Instance-based methods assume a function for 
determining the similarity or distance between any 
two instances.
For continuous feature vectors, Euclidian distance is 
the generic choice:

∑
=
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n

p
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1
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Where ap(x) is the value of the pth feature of instance x.
• For discrete features, assume distance between two 

values is 0 if they are the same and 1 if they are 
different (e.g. Hamming distance for bit vectors).

• To compensate for difference in units across 
features, scale all continuous values to the interval 
[0,1].
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Other Distance Metrics

Mahalanobis distance
Scale-invariant metric that normalizes for variance.

Cosine Similarity
Cosine of the angle between the two vectors.
Used in text and other high-dimensional data.

Pearson correlation
Standard statistical correlation coefficient.
Used for bioinformatics data.

Edit distance
Used to measure distance between unbounded length 
strings.
Used in text and bioinformatics.
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k-Nearest Neighbor Example
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Implicit Classification Function
Although it is not necessary to explicitly 
calculate it, the learned classification rule is 
based on regions of the feature space closest 
to each training example.
For 1-nearest neighbor with Euclidian 
distance, the Voronoi diagram gives the 
complex polyhedra segmenting the space into 
the regions closest to each point.
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Efficient Indexing

Linear search to find the nearest neighbors is not 
efficient for large training sets.
Indexing structures can be built to speed testing.
For Euclidian distance, a kd-tree can be built that 
reduces the expected time to find the nearest 
neighbor to O(log n) in the number of training 
examples.

Nodes branch on threshold tests on individual features 
and leaves terminate at nearest neighbors.

Other indexing structures possible for other 
metrics or string data.

Inverted index for text retrieval.
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Rules and Instances in
Human Learning Biases

Psychological experiments 
show that people from 
different cultures exhibit 
distinct  categorization 
biases.
“Western” subjects favor 
simple rules (straight stem) 
and classify the target object 
in group 2.
“Asian” subjects favor global 
similarity and classify the 
target object in group 1. 
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Other Issues

Can reduce storage of training instances to a small set of 
representative examples.

Support vectors in an SVM are somewhat analogous.
Can be used for more complex relational or graph data.

Similarity computation is complex since it involves some sort of
graph isomorphism.

Can be used in problems other than classification.
Case-based planning
Case-based reasoning in law and business.
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Bayesian Networks

Directed Acyclic Graph (DAG)

Nodes are random variables
Edges indicate causal influences

Burglary Earthquake

Alarm

JohnCalls MaryCalls
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Conditional Probability Tables
Each node has a conditional probability table (CPT) 
that gives the probability of each of its values given 
every possible combination of values for its parents 
(conditioning case).

Roots (sources) of the DAG that have no parents are given prior 
probabilities.

Burglary Earthquake

Alarm

JohnCalls MaryCalls

P(B)

.001

P(E)

.002

B E P(A)
T T .95
T F .94
F T .29
F F .001

A P(M)
T .70
F .01

A P(J)
T .90
F .05
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Bayes Net Inference

Given known values for some evidence 
variables, determine the posterior probability of 
some query variables.
Example: Given that John calls, what is the 
probability that there is a Burglary?

Burglary Earthquake

Alarm

JohnCalls MaryCalls

???
John calls 90% of the time there
is an Alarm and the Alarm detects
94% of Burglaries so people
generally think it should be fairly high.

However, this ignores the prior
probability of John calling. 
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Bayes Net Inference
Example: Given that John calls, what is the 
probability that there is a Burglary?

Burglary Earthquake

Alarm

JohnCalls MaryCalls

???
P(B)

.001

John also calls 5% of the time when 
there
is no Alarm. So over 1,000 days we 
expect 1 Burglary and John will 
probably call. However, he will also 
call with a false report 50 times on 
average. So the call is about 50 times 
more likely a false report:
P(Burglary | JohnCalls) ≈ 0.02

A P(J)
T .90
F .05



Learning Ensembles
Learn multiple alternative definitions of a concept 
using different training data or different learning 
algorithms.
Combine decisions of multiple definitions, e.g. using 
weighted voting.
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Value of Ensembles

When combing multiple independent and
diverse decisions each of which is at least more 
accurate than random guessing, random errors 
cancel each other out, correct decisions are 
reinforced.
Human ensembles are demonstrably better

How many jelly beans in the jar?: Individual 
estimates vs. group average.
Who Wants to be a Millionaire: Expert friend vs. 
audience vote.
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Experimental Results on Ensembles
(Freund & Schapire, 1996; Quinlan, 1996)

Ensembles have been used to improve 
generalization accuracy on a wide variety of 
problems.
On average, Boosting provides a larger increase in 
accuracy than Bagging.
Boosting on rare occasions can degrade accuracy.
Bagging more consistently provides a modest 
improvement.
Boosting is particularly subject to over-fitting 
when there is significant noise in the training 
data.
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K-Fold Cross Validation Comments

Every example gets used as a test example once 
and as a training example k–1 times.
All test sets are independent; however, training 
sets overlap significantly.
Measures accuracy of hypothesis generated for 
[(k–1)/k]⋅|D| training examples.
Standard method is 10-fold.
If k is low, not sufficient number of train/test 
trials; if k is high, test set is small and test 
variance is high and run time is increased.
If k=|D|, method is called leave-one-out cross 
validation.
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