
XML Declaration
• XML documents should (but do not have to) begin

with an XML declaration

• The XML declaration looks like a processing
instruction with the name xml and the version,
standalone and encoding attributes

• Example:

<?xml version=“1.0” encoding=“UTF-16”
standalone=“yes”?>

• If the XML is included in the document, it must be
the first thing in the document

Valid XML Documents

• An XML document is said to be valid if it respects the format rules

defined by an associated Document Type Definition (DTD)

• DTDs are written in a formal syntax that defines:

– which elements may appear in an XML document

– what is the allowed content for each element

– what are the attributes each element may have

• A validating parser compares an XML document against its DTD and

can tell if the DTD constraints are violated

• DTDs can be defined inside the XML document or in a external

document (or in both ways, as we will see)

Well-formed XML documents

To be well-formed, an XML must adhere to the
following rules:
– Every start-tag must have a matching end-tag
– Elements may nest, but not overlap
– There must be exactly one root element
– Attribute values must be quoted
– An element may not have two attributes with the

same name
– Comments and processing instructions may not

appear inside tags
– No unescaped < or & signs may occur in the character

data of an element or attribute

Valid XML Documents (...)
DTDs are associated with XML documents by including a Document Type

Declaration in the XML document prolog

<?xml version=“1.0” standalone=“no”?>

<!DOCTYPE person SYSTEM

“http://someserver.org/person.dtd”>

<person>

...

</person>

If the document resides on the same host as the DTD, a relative URL may

be used:

<?xml version=“1.0” standalone=“no”?>

<!DOCTYPE person SYSTEM “/dtds/person.dtd”>

...

Valid XML Documents (...)
It is sometime useful (e.g., for debugging purposes) to have the DTD
defined inside the XML document

XML allows the following syntax:

<?xml version=“1.0”?>

<!DOCTYPE person [

<!ELEMENT first_name (#PCDATA)>

<!ELEMENT last_name (#PCDATA)>

<!ELEMENT profession (#PCDATA)>

<!ELEMENT name (first_name, last_name)>

<!ELEMENT person (name, profession*)>

]>

<person>

...

</person>

Valid XML Documents (...)
It is sometime useful to mix an internal DTD with an external one. This is
possible only if no conflicts arise between the two DTDs (neither one can
override the element declarations the other makes (but entity declarations
can be overridden)):

<?xml version=“1.0”?>

<!DOCTYPE person SYSTEM “name.dtd” [

<!ELEMENT profession (#PCDATA)>

<!ELEMENT person (name, profession*)>

]>

<person>

...

</person>

DTD syntax: <!ELEMENT ...>

(1/4)

<!ELEMENT name content-model>

name is a valid XML name

content-model can be:

– parsed character data, i.e. text:
<!ELEMENT phone_number (#PCDATA)>

– child elements:
<!ELEMENT fax (phone_number)>

– Sequences:
<!ELEMENT name (first_name, last_name)>

– Choices:
<!ELEMENT methodResponse (params | fault)>

DTD syntax: <!ELEMENT ...>

(2/4)
Suffixes can be appended to an element name in a
content specification to impose cardinality
constraints

? zero or one occurence

* zero or more occurences

+ one or more occurences

<!ELEMENT name (first_name, middle_name*, last_name?)>

This example imposes that each name element contains one
first_name element followed by zero or more middle_name
elements and zero or one last_name element.

DTD syntax: <!ELEMENT ...>

(3/4)

• Mixed content (i.e. text together with child elements):

<!ELEMENT paragraph (#PCDATA | bold)*>

The #PCDATA keyword must always the first child in the list!

Ex:

<paragraph>

This paragraph contains text that may be

formatted using a <bold>bold font!</bold>

</paragraph>

• Empty elements:

<!ELEMENT image EMPTY>

DTD syntax: <!ELEMENT ...>

(4/4)

• Any content:

<!ELEMENT page ANY>

Note: ANY does not allow you to use undeclared

elements, useful in the initial design of a DTD,

discouraged in a finished DTD.

DTD syntax: <!ATTLIST ...>

(1/4)

• Attributes are declared for elements using the

ATTLIST keyword

• name is the name of the element
<!ATTLIST name

attribute-name1 type default-value

attribute-name2 type default-value

...>

DTD syntax: <!ATTLIST ...>

(2/4)
• Character data: means any character

(excluding < and “) but no elements or
entities

<!ATTLIST doc

language CDATA “HTML”>

Element name

attribute name, type and default declaration

DTD syntax: <!ATTLIST ...>

(3/4)

• Enumeration: list of possible values separated by
vertical bars

<!ATTLIST date

month (jan|feb|mar|...|dec)

#REQUIRED>

• Ex:

<date month=“oct”>...</date>

<date month=“October”>...</date>

error!

DTD syntax: <!ATTLIST ...>

(4/4)

• ID: an XML name that is unique within the XML
document

• IDREF or IDREFS: a reference (or a whitespace
separated list of references) to the ID type
attribute of some element in the document

• NMTOKEN or NMTOKENS: a named toked (or a
list of named tokens). Named tokens follow the
same restrictions of XML names, but any of the
allowed characters may be the first character of
the token

ID example

<!ATTLIST credit-card

number ID #REQUIRED>

If we define two credit-card elements with the
same value for the number attribute within the
same document, we get a validation error

<credit-card number=“5555-666-555-

666”/>

<credit-card number=“5555-666-555-

666”/>

IDREF example

<!ATTLIST credit-card

number ID #REQUIRED>

<!ATTLIST order

cardno IDREF #REQUIRED>

If we define an order that refers to an ID attribute that is
not defined within the document we get a validation
error

<credit-card number=“5555-666-555-
666”/>

<order cardno=“5555-666-555-666”/>

<order cardno=“1234-4321-5678-8765”/>

The default declaration

• #IMPLIED

Optional attribute. May or may not be declared inside
the element.

• #REQUIRED

Required attribute. Each instance of the element must
provide a value for the attribute.

• #FIXED

The attribute value is constant and immutable.

• Literal

The default value is given as a quoted string

An Example of DTD

<?xml version=“1.0”?>

<!DOCTYPE person [

<!ELEMENT person (name+,
profession*)>

<!ELEMENT name EMPTY>

<!ATTLIST name first CDATA #REQUIRED

last CDATA #REQUIRED>

<!ELEMENT profession EMPTY>

<!ATTLIST profession value CDATA
#REQUIRED>

]>...

An Example of DTD

...

<person>

<name first=“Alan” last=“Turing”/>

<profession value=“Computer

scientist”/>

<profession value=“Mathematician”/>

<profession value=“Cryptographer”/>

</person>

