XML and Semantic Web Technologies

II. XML / 1. Unicode, URIs, and XML Syntax

1. Unicode

2. Uniform Resource Identifiers (URIs)

3. XML Syntax
Coded Character Sets

<table>
<thead>
<tr>
<th>name</th>
<th>codes</th>
<th>examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII code</td>
<td>0–127</td>
<td>64 \rightarrow A</td>
</tr>
<tr>
<td>ISO-8859-1, ISO-LATIN-1</td>
<td>0–255</td>
<td>0–127 as ASCII, 196 \rightarrow α</td>
</tr>
<tr>
<td>ISO-8859-7</td>
<td>0–255</td>
<td>0–127 as ASCII, 225 \rightarrow α</td>
</tr>
<tr>
<td>Unicode</td>
<td>0–(2^{32} − 1)</td>
<td>0–255 as ISO-8859-1</td>
</tr>
</tbody>
</table>

Unicode is organized in 256 groups à 256 planes à 256 rows à 256 cells.

Plane 0 (codes 0–65535) is called **basis multilingual plane (BMP)**.

Non ISO-8859-1 characters are mapped to higher codes, e.g., 945 \rightarrow α.
Unicode

Assigned characters of the Unicode standard (v6.0.0, 2011) can be found at http://www.unicode.org/charts/.

Unicode also specifies character classes for each character, as

- letters (capital and small),
- digits,
- punctuation,
- control characters.
The Unicode Character Code Charts

Character Encoding Schemata are trivial for 1-byte coded character sets.

Direct representations of Unicode:

UCS-2: direct representation of codes 0–65535 with 2 bytes.

UCS-4: direct representation of all codes with 4 bytes.
Drawbacks of direct representations:

- **bytecode 0x00 occurs** (that marks string endings in C), e.g., in UCS-4:

 \[A \mapsto 65 \mapsto (0, 0, 0, 65) \]

- uniform blow-up of storage space, but most texts mostly use ASCII or ISO-8859-1.

- error-prone, as if one byte is lost, all following data will be decoded incorrectly.

Unicode Transformation Formats (UTF)

Unicode Transformation Formats (UTF) use a variable number of bytes for coding a character.

UTF-8:

- **0x00–0x7f** (bit sequences 0........) code ASCII characters directly,

- **0xc0–0xfd** (bit sequences 11.......) mark the start of a multi-byte character representation (and code its length and leading bits of its code),

- **0x80–0xbf** (bit sequences 10.......) code continuations of multi-byte character representations,

- **0xfe, 0xff** (bit sequences 111111.) are not used.

<table>
<thead>
<tr>
<th>bit sequence</th>
<th>bytes</th>
<th>free bits</th>
<th>character codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0....</td>
<td>1</td>
<td>7</td>
<td>0x00–0x7f</td>
</tr>
<tr>
<td>110....</td>
<td>2</td>
<td>5 + 6 = 11</td>
<td>0x80–0x7ff</td>
</tr>
<tr>
<td>1110....</td>
<td>3</td>
<td>4 + 2 \cdot 6 = 16</td>
<td>0x800–0xffff</td>
</tr>
<tr>
<td>11110...</td>
<td>4</td>
<td>3 + 3 \cdot 6 = 21</td>
<td>0x10000–0x1fffff</td>
</tr>
<tr>
<td>111110..</td>
<td>5</td>
<td>2 + 4 \cdot 6 = 26</td>
<td>0x200000–0x3fffffff</td>
</tr>
<tr>
<td>1111110.</td>
<td>6</td>
<td>1 + 5 \cdot 6 = 31</td>
<td>0x4000000–0xffffffff</td>
</tr>
</tbody>
</table>
II. XML / 1. Unicode, URIs, and XML Syntax

1. Unicode

2. Uniform Resource Identifiers (URIs)

3. XML Syntax

Uniform Resource Identifiers (URIs)

URIs are used to identify resources.

Example:

http://www.ismll.uni-hildesheim.de/lehre/xml-09s/index.html

URIs are defined in RFC 3986 (01/2005).
Generic URI syntax

![Generic URI syntax](http://www.informatik.uni-freiburg.de:8080/secret/top.jsp?id=20&from=1)

```
scheme host port path query
authority

scheme-specific part

mailto: lst@informatik.uni-freiburg.de

scheme scheme-specific part
```

Figure 6: Typical parts of URIs.

Generic URI syntax:

\[
\langle URI \rangle := \langle \text{scheme} \rangle : \langle \text{scheme-specific-part} \rangle
\]

Hierarchical URIs

An URI is called **hierarchical** iff

\[
\langle \text{scheme-specific-part} \rangle := (\! \! / \! / \langle \text{authority} \rangle \! \! [\langle \text{path} \rangle] \\
\quad [\langle \text{path} \rangle] \! \! \{ ? \langle \text{query} \rangle \} \! \! \# \langle \text{fragment} \rangle
\]

\[
\langle \text{path} \rangle := (/ \langle \text{path-segment} \rangle)^+
\]

otherwise its called **opaque**.

The path-segments . and .. have special meaning: context path and parent path.

A hierarchical URI is called **server-based** iff

\[
\langle \text{authority} \rangle := [\langle \text{userinfo} \rangle @] \langle \text{host} \rangle [: \langle \text{port} \rangle]
\]

otherwise it is called **registry-based**.
Fragment identifiers are used to identify parts of the resource identified by an URI.

Example:

http://www.informatik.uni-freiburg.de/xml/books.html#R03

```
<html>
<body>
<li><a name="EE04">Rainer Eckstein, Silke Eckstein: <em>XML und Datenmodellierung</em>, 2004.</a></li>
</body>
</html>
```

Figure 7: HTML document at http://www.informatik.uni-freiburg.de/xml/books.html.

A relative URI is defined as:

\[
\text{⟨relativeURI⟩ ::= (// ⟨authority⟩ [⟨path⟩]
| ⟨path⟩
| ⟨relativePath⟩) [? ⟨query⟩]}
\]

\[
\text{⟨relativePath⟩ ::= ⟨path-segment⟩ (/ ⟨path-segment⟩)*}
\]

Figure 8: A Base URI is the context for resolving relative URIs [RFC 2396].
URI schemes

URI schemes are managed by Internet Assigned Numbers Authority (IANA).

<table>
<thead>
<tr>
<th>Scheme Name</th>
<th>Description</th>
<th>Reference</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp</td>
<td>File Transfer Protocol</td>
<td>RFC 1738</td>
<td>server-based</td>
</tr>
<tr>
<td>http</td>
<td>Hypertext Transfer Protocol</td>
<td>RFC 2616</td>
<td>server-based</td>
</tr>
<tr>
<td>mailto</td>
<td>Electronic mail address</td>
<td>RFC 2368</td>
<td>server-based</td>
</tr>
<tr>
<td>file</td>
<td>Host-specific file names</td>
<td>RFC 1738</td>
<td>server-based</td>
</tr>
<tr>
<td>pop</td>
<td>Post Office Protocol v3</td>
<td>RFC 2384</td>
<td>server-based</td>
</tr>
<tr>
<td>dav</td>
<td>dav</td>
<td>RFC 2518</td>
<td>server-based</td>
</tr>
<tr>
<td>tel</td>
<td>telephone</td>
<td>RFC 2806</td>
<td>opaque</td>
</tr>
<tr>
<td>https</td>
<td>Hypertext Transfer Protocol Secure</td>
<td>RFC 2818</td>
<td>server-based</td>
</tr>
<tr>
<td>urn</td>
<td>Uniform Resource Names</td>
<td>RFC 2141</td>
<td>opaque</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

Example:

tel:+(49)-761-203-8164

Figure 9: URI types.
URNs are special kinds of URIs that

- **map other namespaces** into URN-space,
- are required to remain **globally unique and persistent** (even when the resource ceases to exist or becomes unavailable).
- have scheme `urn`.

\[
\langle \text{URN} \rangle := \text{urn}: \langle \text{namespace} \rangle : \langle \text{namespace-specific-part} \rangle
\]

Examples:

urn:isbn:0-395-36341-1
urn:newsml:reuters.com:20000206:IIMFFH05643_2000-02-06_17-54-01_L0615

A book or a news item (identified by an URN) may be retrieved from different locations (URLs).

<table>
<thead>
<tr>
<th>URN Namespaces</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ietf</td>
<td>1</td>
<td>RFC 2648</td>
</tr>
<tr>
<td>pin</td>
<td>2</td>
<td>RFC 3043</td>
</tr>
<tr>
<td>issn</td>
<td>3</td>
<td>RFC 3044</td>
</tr>
<tr>
<td>oid</td>
<td>4</td>
<td>RFC 3061</td>
</tr>
<tr>
<td>newsml</td>
<td>5</td>
<td>RFC 3085</td>
</tr>
<tr>
<td>oasis</td>
<td>6</td>
<td>RFC 3121</td>
</tr>
<tr>
<td>xmlorg</td>
<td>7</td>
<td>RFC 3120</td>
</tr>
<tr>
<td>publicid</td>
<td>8</td>
<td>RFC 3151</td>
</tr>
<tr>
<td>isbn</td>
<td>9</td>
<td>RFC 3187</td>
</tr>
<tr>
<td>nbn</td>
<td>10</td>
<td>RFC 3188</td>
</tr>
<tr>
<td>web3d</td>
<td>11</td>
<td>RFC 3541</td>
</tr>
<tr>
<td>mpeg</td>
<td>12</td>
<td>RFC 3614</td>
</tr>
<tr>
<td>mace</td>
<td>13</td>
<td>RFC 3613</td>
</tr>
<tr>
<td>fipa</td>
<td>14</td>
<td>RFC 3616</td>
</tr>
<tr>
<td>swift</td>
<td>15</td>
<td>RFC 3615</td>
</tr>
</tbody>
</table>

40 URN namespaces (as of 2008-12-09; http://www.iana.org/assignments/urn-namespaces)
Characters Allowed in URIs

In URIs only some characters may be used literally in non-syntactic parts ("data"). All others have to be escaped using their code (in some character encoding):

\[
\langle \text{dataChars} \rangle := \langle \text{alphanum} \rangle | - | _ | . | ! | ~ | * | ' | (|)
\]

\[
\langle \text{escapedChar} \rangle := \% \langle \text{hexDigit} \rangle \langle \text{hexDigit} \rangle
\]

Codes have been interpreted as codes in different character encodings, depending on the URI scheme.

UTF-8 is recommended by RFC 2718 and already used by some schemes (e.g., urn, imap, pop).

Example:

\[
\text{http://www.informatik.uni-freiburg.de/login.jsp?name=Hans\%20Meyer}
\]

Internationalized Resource Identifiers (IRIs)

IRIs allow more characters to be used literally (RFC 3987; 01/2005).

In IRIs only

- data characters that can be misinterpreted as syntactic characters and
- some bidirectional formatting characters

have to be escaped.

All other data characters are used literally (in some character encoding, e.g., UTF-8).

Example:

\[
\text{http://www.informatik.uni-freiburg.de/login.jsp?name=Hans\%20Müller}
\]

Schemes still are restricted to US ASCII characters.
II. XML / 1. Unicode, URIs, and XML Syntax

1. Unicode

2. Uniform Resource Identifiers (URIs)

3. XML Syntax

W3C development process

W3C specifications are called **Recommendations**.

Stages of W3C recommendations:

<table>
<thead>
<tr>
<th>stage</th>
<th>completion date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XML 1.0</td>
</tr>
<tr>
<td>Working Draft</td>
<td>1996/11/14</td>
</tr>
<tr>
<td></td>
<td>1997/11/17</td>
</tr>
<tr>
<td>Last Call Working Draft</td>
<td></td>
</tr>
<tr>
<td>Candidate Recommendation</td>
<td></td>
</tr>
<tr>
<td>Proposed Recommendation</td>
<td>1997/12/08</td>
</tr>
<tr>
<td>Recommendation</td>
<td>1998/02/10</td>
</tr>
<tr>
<td>Working Draft (2nd edition)</td>
<td>2000/08/14</td>
</tr>
<tr>
<td>Recommendation (2nd edition)</td>
<td>2000/10/06</td>
</tr>
<tr>
<td>Proposed Edited Recommendation (3rd edition)</td>
<td>2003/10/30</td>
</tr>
<tr>
<td>Recommendation (3rd edition)</td>
<td>2004/02/04</td>
</tr>
<tr>
<td>Recommendation (4th edition)</td>
<td>2006/08/16</td>
</tr>
<tr>
<td>Recommendation (5th edition)</td>
<td>2008/11/26</td>
</tr>
</tbody>
</table>
Every XML document consists of a **prolog** and a single element, called **root element**.

\[
\langle \text{document} \rangle := \langle \text{prolog} \rangle \langle \text{element} \rangle \ (\ (\langle \text{Comment} \rangle \mid \langle \text{PI} \rangle \mid \langle \text{S} \rangle \)^* \\
\langle \text{prolog} \rangle := \langle ?\text{xml} \langle \text{S} \rangle \text{version} = "1.1" \ \\
\ (\langle \text{S} \rangle \text{encoding} = \langle \text{encoding} \rangle \)? \ \\
\ (\langle \text{S} \rangle \text{standalone} = ("yes" \mid "no"))? \ \\
\langle \text{S} \rangle?\ ?> \ \\
(\ (\langle \text{Comment} \rangle \mid \langle \text{PI} \rangle \mid \langle \text{S} \rangle \)^* \\
(\langle \text{DoctypeDecl} \rangle (\ (\langle \text{Comment} \rangle \mid \langle \text{PI} \rangle \mid \langle \text{S} \rangle \)^*)?)
\]

In all productions

- matching " can be replaced by ’.
- = may be surrounded by spaces (i.e., match \langle S\rangle? = \langle S\rangle?).

\[
\langle \text{S} \rangle := (\#x20 \mid \#x9 \mid \#xD \mid \#xA)+
\]

Figure 10: A minimal XML document with root element "page".

In XML 1.1 the version attribute is mandatory.

If the version attribute is missing, version 1.0 is assumed.
Elements and Attributes

\[
\langle \text{element} \rangle := \langle \text{emptyElementTag} \rangle \\
| \langle \text{STag} \rangle \langle \text{content} \rangle \langle \text{ETag} \rangle
\]

\[
\langle \text{emptyElementTag} \rangle := < \langle \text{Name} \rangle (\langle S \rangle \langle \text{Name} \rangle = " \langle \text{AttValue} \rangle ")^* \langle S \rangle ? / >
\]

\[
\langle \text{STag} \rangle := < \langle \text{Name} \rangle (\langle S \rangle \langle \text{Name} \rangle = " \langle \text{AttValue} \rangle ")^* \langle S \rangle ? >
\]

\[
\langle \text{ETag} \rangle := </ \langle \text{Name} \rangle \langle S \rangle ? >
\]

\(\langle \text{Name} \rangle s\)

- start with a unicode letter or _
 (_ is also allowed, but used for namespaces).
- may contain unicode letters, uncode digits, -, ., or ..

A wellformed document requires,

- that start and end tag of each element match,
- that for each tag the same attribute never occurs twice.

Figure 11: More than one root element.
Not-wellformed Documents (2/2)

The contents of an element can be made up from 6 different things:

1. other elements,
2. Character data,
3. References,
4. CDATA sections,
5. Processing instructions, and
6. comments.

\[
\langle \text{content} \rangle := \langle \text{CharData} \rangle ?
\quad ((\langle \text{element} \rangle | \langle \text{Reference} \rangle | \langle \text{CDSect} \rangle | \langle \text{PI} \rangle | \langle \text{Comment} \rangle)
\quad \langle \text{CharData} \rangle ?)^*
\]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on XML and Semantic Web Technologies, summer term 2012
Character data

(CCharData) may contain any characters except
	<, &, or the sequence >]]

Attribute values may not contain

• "", if delimited by "",
• ’’, if delimited by ’’,

These characters can be expressed by references.

<?xml version="1.1"?>
<abstract>
 x^2 = y has no real solution for y < 0.
 But there are solutions for y = 0 & for y > 0.
</abstract>

Figure 14: Forbidden characters in character data.

<?xml version="1.1"?>
<abstract>
 x^2 = y has no real solution for y < 0.
 But there are solutions for y = 0 & for y > 0.
</abstract>

Figure 15: Using references in character data.
References

\[\langle \text{Reference} \rangle := \langle \text{EntityRef} \rangle \mid \langle \text{CharRef} \rangle \]
\[\langle \text{CharRef} \rangle := \& \# [0-9]+ ; \]
\[| \& \#x [0-9a-fA-F]+ ; \]
\[\langle \text{EntityRef} \rangle := \& \langle \text{Name} \rangle ; \]

There are five predefined entity references:

\[\< ; \> \& \' \" \]
\[< > & , " \]

All other entities known from HTML (as \ä) are not predefined in XML.

Custom entities can be defined in the document type declaration.

CDATA sections

CDATA sections allow the literal usage of all characters (except the sequence]]>).

\[\langle \text{CDSect} \rangle := <! \[\text{CDATA} \[\text{\langle \text{Data} \rangle} \]]> \]

CDATA sections are typically used for longer text containing < or &.

CDATA sections are flat, i.e., there is no possibility to structure them with elements (as < or & are interpreted literally).
Character data and CDATA sections

```xml
<?xml version="1.1"?>
<abstract>
  x^2 = y has no real solution for y &lt; 0.
  But there are solutions for y = 0 & x26; for y & 0.
</abstract>
```

Figure 16: Using numeric character references.

```xml
<?xml version="1.1"?>
<abstract><![CDATA[
  x^2 = y has no real solution for y < 0.
  But there are solutions for y = 0 & for y > 0.
]]></abstract>
```

Figure 17: Using a CDATA-section.

```xml
<?xml version="1.1"?>
<book abstract="Discusses meaning of &quot;wellformed&quot;">  
  <author>John Doe</author>  
  <title>About wellformedness</title>  
</book>
```

Figure 18: Literal usage of attribute delimiter.

```xml
<?xml version="1.1"?>
<book abstract='Discusses meaning of "wellformed"'>  
  <author>John Doe</author>  
  <title>About wellformedness</title>  
</book>
```

Figure 19: Using different attribute delimiters.

```xml
<?xml version="1.1"?>
<book abstract="Discusses meaning of &quot;wellformed&quot;">  
  <author>John Doe</author>  
  <title>About wellformedness</title>  
</book>
```

Figure 20: Using references in attribute values.
Comments can occur in the prolog and in the contents of elements.

Comments are not allowed to contain the character sequence `--`.

\[
\langle \text{Comment}\rangle := \langle ! -- \langle \text{Char}\rangle^* -- \rangle
\]

```
<?xml version="1.1"?>
<!-- list is not complete yet ! -->
<books>
<!-- yet to be ordered -->
<book>
  <author><fn>Rainer</fn><sn>Eckstein</sn></author>
  <author><fn>Silke</fn><sn>Eckstein</sn></author>
  <title>XML und Datenmodellierung</title>
  <year><!-- look up year of publication --></year>
</book>
</books>
```

Figure 21: Comments in the prolog and in the contents of elements.
<?xml version="1.1"?>
<book>
 <author><fn>Rainer</fn><sn>Eckstein</sn></author>
 <author><fn>Silke</fn><sn>Eckstein</sn></author>
 <title>XML und Datenmodellierung</title>
 <year><!-- edition="1" -->>2004</year>
</book>

Figure 22: Comments in tags are not allowed.

<?xml version="1.1"?>
<books>
 <!-- 2004 -- -->
 <book>
 <author><fn>Rainer</fn><sn>Eckstein</sn></author>
 <author><fn>Silke</fn><sn>Eckstein</sn></author>
 <title>XML und Datenmodellierung</title>
 <year>2004</year>
 </book>
</books>

Figure 23: -- -- is not allowed in comments.

Processing Instructions

Processing instructions (PIs) allow documents to contain instructions for applications.

\[
\langle PI \rangle := \langle? \langle Name \rangle (\langle S \rangle \langle Char \rangle^*)? \rangle?
\]

The name of a PI must be different from xml.
Character encoding schemata

Character encoding schemata are specified by the name they are registered with at IANA (http://www.iana.org/assignments/character-sets), e.g.,

- **US-ASCII**
- **ISO-8859-1**
- **ISO-10646-UCS-2** or **csUnicode** (UCS2)
- **ISO-10646-UCS-4** or **csUCS4** (UCS4)
- **UTF-8**
- **UTF-16**
- ...

If no encoding is specified in the XML declaration, UTF-8 is assumed.

```xml
<?xml version="1.1" encoding="ISO-8859-1" ?>
<page>
  Grüß Gott !
</page>
```

Figure 24: Non-wellformed document (assumed to be ISO-8859-1 coded).

```xml
<?xml version="1.1"?>
<page>
  Grüß Gott !
</page>
```

Figure 25: XML document coded in ISO-8859-1.
There are two predefined attributes,

- `xml:lang`

and

- `xml:space`,

that can be used with any element.

`xml:lang` specifies the language of the character contents of elements and attributes with (RFC 3066)

- an ISO language code
 (http://www.loc.gov/standards/iso639-2/langcodes.html)

 or

- an IANA language code
 (http://www.iana.org/assignments/language-tags).

Example ISO and IANA language codes:

<table>
<thead>
<tr>
<th>language code</th>
<th>meaning</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>de</td>
<td>ISO</td>
<td>German</td>
</tr>
<tr>
<td>de-CH</td>
<td>ISO</td>
<td>German, Swiss variant</td>
</tr>
<tr>
<td>de-DE</td>
<td>ISO</td>
<td>German, German variant</td>
</tr>
<tr>
<td>en</td>
<td>ISO</td>
<td>English</td>
</tr>
<tr>
<td>en-US</td>
<td>ISO</td>
<td>US English</td>
</tr>
<tr>
<td>en-GB</td>
<td>ISO</td>
<td>Britain English</td>
</tr>
<tr>
<td>tlh</td>
<td>ISO</td>
<td>Klingon</td>
</tr>
<tr>
<td>de-1901</td>
<td>IANA</td>
<td>German, traditional orthography</td>
</tr>
<tr>
<td>de-1996</td>
<td>IANA</td>
<td>German, orthography of 1996</td>
</tr>
</tbody>
</table>
<?xml version="1.1"?>
<page>
 <p xml:lang="de">Guten <s>Morgen</s>!</p>
 <p xml:lang="en">Good <s>morning</s>!</p>
 <table>
 <tr><td>USD</td><td>0</td><td>1</td><td>...</td></tr>
 <tr><td>EUR</td><td>0</td><td>0.839818</td><td>...</td></tr>
 </table>
</page>

Figure 26: Language attribute.