
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 0/43

XML and Semantic Web Technologies

XML and Semantic Web Technologies

I. XML / 4. XML Path Language (XPath)

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute of Economics and Information Systems

& Institute of Computer Science
University of Hildesheim

http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 1/43

XML and Semantic Web Technologies

I. XML / 4. XML Path Language (XPath)

1. XPath Data Model

2. XPath Path Expressions

3. XPath Expressions

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 1/43

XML and Semantic Web Technologies / 1. XPath Data Model

XPath Specification

XML Path Language is an expression language for XSLT & XQuery consisting of

1. XQuery 1.0 and XPath 2.0 Data Model (2nd ed., Rec-2010/12/14),

2. XML Path Language (XPath) 2.0 (2n ed., Rec-2010/12/14),

3. XQuery 1.0 and XPath 2.0 Functions and Operators (2nd ed., Rec-2010/12/14)

as well as further documents (Formal Semantics, Requirements, Use Cases, etc.).

XPath 2.0 is a superset of XPath 1.0 (REC-1999/11/16) that improves by

• using (node) sequences instead of node sets,

• exploiting type information available through XML Schema,

• adding some powerful language constructs (e.g., if- and for-expressions).

XPath 2.0 is implemented, e.g., in Saxon (but not yet in Xalan).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 1/43

XML and Semantic Web Technologies / 1. XPath Data Model

Abstract Types in XML Schema

In XML Schema types can serve two different purposes:

• as types to associate information items with,

• as basetypes for derived types.

If a type should only be used as basetype, it can be declared abstract.

concrete type

abstract type

consists of
(derived by list)

is subtype
(derived by restriction)

is subtype
(no formal derivation)

anySimpleType

anyType

complex types

listsunionsatomic

duration

dateTime

time

date

gYearMonth anyURI

QName

heyBinary

base64Binary

NOTATION

gYear

gMonthDay

gDay

gMonth

decimal float double boolean string

primitive types

nonPositiveInteger

negativeInteger long

integer

int unsignedInt

unsignedShortshort

byte unsignedByte

unsignedLong positiveInteger

nonNegativeInteger normalizedString

token

Namelanguage

NCName

ENTITYID IDREF

NMTOKEN NMTOKENS

IDREFS ENTITIES

Figure 1: Abstract basetypes in XML Schema type hierarchy.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 2/43

XML and Semantic Web Technologies / 1. XPath Data Model

Additional Datatypes in XPath

There are 5 new datatypes defined in the XPath namespace

http://www.w3.org/2003/11/xpath-datatypes

• untyped,

• anyAtomicType (abstract) and untypedAtomic,

• and two duration types dayTimeDuration and yearMonthDuration.

concrete type

abstract type

consists of
(derived by list)

is subtype
(derived by restriction)

is subtype
(no formal derivation)

anySimpleType

anyType

complex types

listsunionsatomic

duration

dateTime

time

date

gYearMonth anyURI

QName

heyBinary

base64Binary

NOTATION

gYear

gMonthDay

gDay

gMonth

decimal float double boolean string

primitive types

nonPositiveInteger

negativeInteger long

integer

int unsignedInt

unsignedShortshort

byte unsignedByte

unsignedLong positiveInteger

nonNegativeInteger normalizedString

token

Namelanguage

NCName

ENTITYID IDREF

NMTOKEN NMTOKENS

IDREFS ENTITIES

xdt:anyAtomicType

xdt:untypedAtomic

xdt:untyped

Figure 2: Additional types from XPath.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 3/43

XML and Semantic Web Technologies / 1. XPath Data Model

Node Kinds

The XPath Data Model describes a XML document as a tree with nodes of 7 dif-
ferent kinds:

document node unique root node of the tree
(6= root element of the XML document !),

element node for each element,

text node for character data in element contents,

processing-instruction node for each PI,

comment node for each comment,

attribute node for each attribute of each element
(in most contexts not regarded as node, e.g., node()),

namespace node for each xmlns-attribute of each element
(no longer exposed in XPath 2.0).

Only element nodes can occur as interior nodes of the tree.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 4/43

XML and Semantic Web Technologies / 1. XPath Data Model
1 <?xml version="1.1"?>
2 <!-- first ideas -->
3 <?xml-stylesheet href=’article.css’ type=’text/css’?>
4 <article author="John Doe" version="2004/06/07">
5 <title>What others say</title>
6 A short<!-- 20 pages--> overview ...
7 </article>
Figure 3: Sample document

document

first ideas
xml-stylesheet:

href='article.css' type='text/css'
article

author=
John Doe

version=
2004/06/07

title A em 20 pages overview ...

What em say

others

short

Figure 4: Document tree of the sample document.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 5/43

XML and Semantic Web Technologies / 1. XPath Data Model

Document Order

The set of nodes carries a total order called document order
(that is partially implementation-dependent).
For two nodes x, y:

x ≺ y :⇔x is the parent of y,
or x and y are siblings and

(x is a namespace and y is not
or x is an attribute and y is neither a namespace nor an attribute
or x, y are elements, PIs, comments or text and x occurs in XML before y)

Document order is any total order that extends the transitive hull of ≺,
i.e., the order of

• two namespace nodes or

• two attribute nodes

of the same element is implementation-dependent.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 6/43

XML and Semantic Web Technologies / 1. XPath Data Model

11 Accessors

document element attribute namespace PI comment text
node-kind document element attribute namespace processing- comment text

instruction
base-uri base-uri/p base-uri/p /p – base-uri/p /p /p
parent – g g g g g g
node-name – name name prefix target – –
type – type type – – – uA
string-value cc value/cc value ns-uri content content content
typed-value as uA value/cc value as uA as xs:string as xs:string as uA
children g g – – – – –
attributes – g – – – – –
namespaces – g – – – – –
nilled – g – – – – –

g = given / stored property, /p = or property of parent, – = empty list (), uA = xdt:untypedAtomic,
cc = concatenation of the contents of all its text-node descendants in document order.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 7/43

XML and Semantic Web Technologies / 1. XPath Data Model

Accessors / typed-value

For element or attribute nodes x:

type(x) :=

QName of type of x, if x is schema-validated,
xdt:untypedAny, if x is an element node,
xdt:untypedAtomic, if x is an attribute node

string-value(x) :=

string representation of the value of x,

if x is of simple type or complex type / simple content
concatenation of the contents of all its text-node descendants,

otherwise

typed-value(x) :=

value of x,
if x is of simple type or complex type / simple content

string-value(x) as xdt:untypedAtomic,
if type(x) = xdt:untypedAny or complex type/mixed content

error,
if x is of of complex type / complex content

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 8/43

XML and Semantic Web Technologies

I. XML / 4. XML Path Language (XPath)

1. XPath Data Model

2. XPath Path Expressions

3. XPath Expressions

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 9/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Node Tests

〈PathExpr〉 := (/ 〈RelativePathExpr〉?) | 〈RelativePathExpr〉

〈RelativePathExpr〉 := 〈StepExpr〉 (/ 〈StepExpr〉)*

〈StepExpr〉 := 〈Axis〉 :: 〈NodeTest〉 〈Predicates〉 /* axis step */
| 〈PrimaryExpr〉 〈Predicates〉 /* filter step */

〈Axis〉 := self
| child | descendant | descendant-or-self
| following-sibling | following
| parent | ancestor | ancestor-or-self
| preceding-sibling | preceding
| attribute

〈NodeTest〉 := 〈QName〉 | * | (〈NCName〉 : *) | (* : 〈NCName〉) /* NameTest */
| 〈KindTest〉

〈Predicates〉 := ([〈Expr〉])*
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 9/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Axes

self

Figure 5: Self axis.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 10/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Axes

parent
child
self

Figure 6: Child and parent axis.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 11/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Axes

ancestor
descendant
parent
child
self

Figure 7: Descendant and ancestor axis.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 12/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Axes

following−sibling
preceding−sibling

ancestor
descendant
parent
child
self

Figure 8: Following-sibling and preceding-sibling axis.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 13/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Axes

following
preceding

following−sibling
preceding−sibling

ancestor
descendant
parent
child
self

Figure 9: Following and preceding axis.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 14/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Node Tests

Absolute path expressions start with the document node as context node,
for relative path expressions the context node is set by the host language.

Step expressions successively shift the context node.

Axis selects a sequence of nodes relative to the context node ("scope").

Node tests allow to choose a subsequence of these nodes by tests on names or
types / kinds.

Predicates allow more complex choices of subsequences of these nodes.

Sequences of nodes are always in document order.
Context positions are assigned starting from 1

• in document order for forward axes and

• in reverse document order for reverse axes.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 15/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Node Tests / Example

1 <?xml version="1.1"?>
2 <books>
3 <book>
4 <author>R.E.</author><author>S.E.</author>
5 <title>XML und DM</title></book>
6 <book>
7 <author>E.R.</author><title>Learning XML</title></book>
8 <book>
9 <author>N.W.</author><author>L.M.</author>

10 <title>DocBook</title></book>
11 </books>

Figure 10: An abreviated books document books-short.xml.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 16/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Node Tests / Example

Query: /descendant-or-self::title

document

books

book book book

author author title

R.E. S.E. XML und DM

author title

E.R. Learning XML

author author title

N.W. L.M. DocBook

Figure 11: Result of XPath query /descendant-or-self::title.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 17/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Node Tests / Example

Query: /descendant-or-self::title[contains(string(.),"XML")]

document

books

book book book

author author title

R.E. S.E. XML und DM

author title

E.R. Learning XML

author author title

N.W. L.M. DocBook

Figure 12: Result of XPath query /descendant-or-self::title[contains(string(.),"XML")].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 18/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Node Tests / Example

Query: /descendant-or-self::title[contains(string(.),"XML")]/parent::node()

document

books

book book book

author author title

R.E. S.E. XML und DM

author title

E.R. Learning XML

author author title

N.W. L.M. DocBook

Figure 13: Result of XPath query /descendant-or-self::title[contains(string(.),"XML")]/parent::node().

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 19/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Node Tests / Example

Query: /descendant-or-self::title[contains(string(.),"XML")]/parent::node()/child::author

document

books

book book book

author author title

R.E. S.E. XML und DM

author title

E.R. Learning XML

author author title

N.W. L.M. DocBook

Figure 14: Result of XPath query /descendant-or-self::title[contains(string(.),"XML")]/parent::node()/child::author.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 20/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Performing XPath Queries by Saxon

XPath queries can be performed, e.g., by Saxon.

1 /descendant-or-self::title[contains(string(.),"XML")]/parent::node()/child::author

Figure 15: File books.xpath containing an XPath query.

call (with saxon.jar in classpath):

java net.sf.saxon.Query -s books-short.xml books.xpath

1 <?xml version="1.0" encoding="UTF-8"?>
2 <author>R.E.</author>
3 <?xml version="1.0" encoding="UTF-8"?>
4 <author>S.E.</author>
5 <?xml version="1.0" encoding="UTF-8"?>
6 <author>E.R.</author>

Figure 16: Result of the XPath query above.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 21/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Kind Tests

〈KindTest〉 := document-node (ElementTest?)
| ElementTest
| text ()
| processing-instruction ((〈NCName〉)?)
| comment ()
| AttributeTest
| node ()

〈ElementTest〉 := element (((〈SchemaContextPath〉 〈QName〉)
| ((〈QName〉 | *) (, (〈QName〉 | *) nillable?)?))?)

〈AttributeTest〉 := attribute (((〈SchemaContextPath〉 〈QName〉)
| (〈QName〉 | *) (, (〈QName〉 | *))?))?)

〈SchemaContextPath〉 := (〈QName〉 | (type (〈QName〉))) / (〈QName〉 /)*

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 22/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Abbreviated Syntax

abbreviation meaning
no axis name child:: axis
e.g., section/para child::section/child::para
@ as axis name attribute:: axis
e.g., section/@no child::section/attribute::no
// /descendant-or-self::node()/
e.g., section//para child::section/descendant-or-self::node()/child::para
.. parent::node()
e.g., ../section parent::node()/child::section
[number] [position()=number]
e.g., section[1] section[position()=1]

/descendant-or-self::title[contains(string(.),"XML")]/parent::node()/
child::author[position()=1]

can be written more compactly as

//title[contains(string(.),"XML")]/../author[1]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 23/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Axis Steps / Abbreviated Syntax

Do not confuse

//section[1]
= /descendant-or-self::node()/child::section[1]

with

/descendant::section[1]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 24/43

XML and Semantic Web Technologies / 2. XPath Path Expressions

Accessors

Most accessors of the XPath data model can be queried:

accessor XPath expression
node-kind [Node-kind tests]
base-uri base-uri(x)
parent x/..
node-name node-name(x)

local-name(x)
namespace-uri(x)

type [castable-as and instance-of tests]
string-value string(x)
typed-value data(x)
children x/node()
attributes x/@*
namespaces get-in-scope-prefixes(x)

get-namespace-uri-for-prefix(prefix)
nilled

If a sequence of atomic values is expected in a context,
then the typed value data(x) of a node is returned (atomization).
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 25/43

XML and Semantic Web Technologies

I. XML / 4. XML Path Language (XPath)

1. XPath Data Model

2. XPath Path Expressions

3. XPath Expressions

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 26/43

XML and Semantic Web Technologies / 3. XPath Expressions

Expressions

〈Expr〉 := 〈ExprSingle〉 (, 〈ExprSingle〉)*

〈ExprSingle〉 := 〈PrimaryExpr〉
| 〈Expr〉 〈Operator〉 〈Expr〉
| 〈PathExpr〉
| 〈ForExpr〉
| 〈QuantifiedExpr〉
| 〈IfExpr〉
| 〈TypeExpr〉

〈ExprComment〉 := (: (〈ExprCommentContent〉 | 〈ExprComment〉)* :)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 26/43

XML and Semantic Web Technologies / 3. XPath Expressions

Primary expressions

〈PrimaryExpr〉 := 〈IntegerLiteral〉 | 〈DecimalLiteral〉 | 〈DoubleLiteral〉
| 〈StringLiteral〉
| $ 〈QName〉 /* variable reference */
| . /* context item */
| 〈QName〉 ((〈ExprSingle〉 (, 〈ExprSingle〉)*)?)

/* function call */
| (〈Expr〉?)

Variables can be bound by

• for-expressions,

• quantified expressions, and

• the host language (XSL, XQuery).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 27/43

XML and Semantic Web Technologies / 3. XPath Expressions

Working with Numbers

XPath has the usual operators for numerical values (+, -, *, mod).

Division is written as div (as / is already used for step-expressions).
idiv is used for interger division.

XPath has the basic functions abs, ceiling, floor, round.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 28/43

XML and Semantic Web Technologies / 3. XPath Expressions

Working with Stringsfunction returns
string-length(x) length of string x
substring(x, f, l) substring of x starting at f and of length l.
concat(x, y, ...) concatenation of two or more strings
string-join(x, s) concatenation of the strings in sequence x using separator

s.
normalize-space(x) whitespace-normalization of x.
upper-case(x) upper-cased value of x.
lower-case(x) lower-cased value of x.
translate(x, y, z) x with all occurrences of characters in y replaced by char-

acters in z at same position.
contains(x, y) true, if x contains y.
starts-with(x, y) true, if x starts with y.
ends-with(x, y) true, if x ends with y.
substring-before(x, y) substring of x before first occurrence of y.
substring-after(x, y) substring of x after first occurrence of y.
matches(x, r) true, if x matches the regular expression r.
replace(x, r, q) x with all substrings matched by the regexp. r replaced by

q.
tokenize(x, r) a sequence of substrings of x separated by substrings of

x that match the regexp. r.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 29/43

XML and Semantic Web Technologies / 3. XPath Expressions

Working with Sequences

Sequences can be explicitly constructed by the concatenation operator ",".

function returns
count(s) length of sequence s.
avg(s), sum(s), average, sum, minimum, maximum of sequence s.
min(s), max(s)
zero-or-one(s), one-or-more(s), s, if count(s) ∈ {0, 1}, ≥ 1, = 1.
exactly-one(s)
distinct-values(s) sequence containing each element of s exactly once
insert-before(s, i, t) s with t inserted at position i.
remove(s, i) s without item at position i.
reverse(s) s in reverse order.
subsequence(s, f, l) subsequence of s starting at f and of length l.
index-of(s, x) sequence of positions at which x occurs in s.
empty(s), exists(s) true, if count(s) = 0, 6= 0.

Strings are not sequences but atomic types !

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 30/43

XML and Semantic Web Technologies / 3. XPath Expressions

Working with Sequence / Filter Steps

So called filter steps implement indexed access to sequences:

• x[i] returns the i-th element of the sequence x.
(with i a numeric expression).

• x[b] returns all items of sequence x for which b evaluates to true
(with b a boolean expression that may contain the context item ".").

"Filter steps" cannot be chained by "/" (contrary to axis steps).
But predicates "[...]" can be chained.

XPath expression result
(1,3,2)[2] 3

(1,3,2)[. ge 2] 3,2

tokenize("The quick brown fox jumps "The", "fox", "the"
over the lazy dog.", " ")[string-length(.) < 4]

(1,3,2)[. ge 2][. lt 3] 2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 31/43

XML and Semantic Web Technologies / 3. XPath Expressions

Working with Sequence / Comparison Operators

XPath has 3 different sets of comparison operators:

value comparison: eq, ne, lt, le, gt, and ge.
Operands must be atomic, otherwise a type error is raised.

general comparison: =, !=, <, <=, >, and >=.
Operands may be sequences.
The comparison evaluates to true, if it holds between any two items in the re-
spective sequences
(existentially quantification).

node comparison: is, <<, >>.
Operands must be single nodes.
"is" checks node identity, << and >> document order.

Sample expressions applied to books-short.xml:
XPath expression result
//book[2]/author eq "E.R" true
//book[1]/author eq "R.E" [ERROR]
//book[1]/author = "R.E" true

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 32/43

XML and Semantic Web Technologies / 3. XPath Expressions

Working with Sequences of Nodes

expression result
x union y, x|y sequence containing nodes in x or in y exactly once in document

order
x intersect y sequence containing nodes in x and in y exactly once in document

order
x except y sequence containing nodes in x but not in y exactly once in docu-

ment order

These operators do not work for sequences of atomic values.

Sample expressions applied to books-short.xml:

expression result
(//book[1]/author) union (//book[2]/author) <author>R.E.</author>

<author>S.E.</author>
<author>E.R.</author>

(//book[2]/author) union (//book[2]/author) <author>E.R.</author>

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 33/43

XML and Semantic Web Technologies / 3. XPath Expressions

Loop Expressions (for)

〈ForClause〉 := for $ 〈QName〉 in 〈ExprSingle〉
(, $ 〈QName〉 in 〈ExprSingle〉)*
return 〈ExprSingle〉

for returns a sequence where each item is
the result of the evaluation of the return-expression
for the variables bound to the items of the for-expressions successively.

XPath variables are "read-only" and cannot be modified.

Variables bound by XPath expressions (as by for) are of local scope of that expres-
sions.

Variables also can be bound by constructs of the host language (XSL, XQuery).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 34/43

XML and Semantic Web Technologies / 3. XPath Expressions

Loop Expressions (for)

1 <?xml version="1.1"?>
2 <books>
3 <book isbn="0-596-00420-6">
4 <author>Erik T. Ray</author><title>Learning XML</title><year>2003</year></book>
5 <book isbn="1-565-92580-7">
6 <author>Norman Walsh</author><author>Leonard Muellner</author>
7 <title>DocBook: The Definitive Guide</title><year>1999</year></book>
8 <book isbn="no">
9 <author>Jon Doe</author><author>Alice Smith</author><author>Bob Miller</author>

10 <title>About something</title><year>1990</year></book>
11 </books>
Figure 17: Sample document.

1 for $x in //book return
2 concat($x/author[1], ": ", $x/title, ", ", $x/year, ".")
Figure 18: Sample XPath query.

1 Erik T. Ray: Learning XML, 2003.
2 Norman Walsh: DocBook: The Definitive Guide, 1999.
3 Jon Doe: About something, 1990.
Figure 19: Result of the sample query on the sample document.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 35/43

XML and Semantic Web Technologies / 3. XPath Expressions

Conditional Expressions (if)

〈IfExpr〉 := if (〈Expr〉) then 〈ExprSingle〉 else 〈ExprSingle〉

If a boolean value is expected in a context (as here in the if-expression),
then its Effective Boolean Value is computed:

Effective Boolean Value(x) :=

false, if x = false
false, if x = () is the empty sequence
false, if x = ”” is the empty string
false, if x = 0 is of numeric type and zero
false, if x = NaN is of type float/double and NaN
true, otherwise

There are not boolean literals, but functions true() and false().

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 36/43

XML and Semantic Web Technologies / 3. XPath Expressions

Conditional Expressions (if)

1 <?xml version="1.1"?>
2 <books>
3 <book isbn="0-596-00420-6">
4 <author>Erik T. Ray</author><title>Learning XML</title><year>2003</year></book>
5 <book isbn="1-565-92580-7">
6 <author>Norman Walsh</author><author>Leonard Muellner</author>
7 <title>DocBook: The Definitive Guide</title><year>1999</year></book>
8 <book isbn="no">
9 <author>Jon Doe</author><author>Alice Smith</author><author>Bob Miller</author>

10 <title>About something</title><year>1990</year></book>
11 </books>

Figure 20: Sample document.

1 for $x in //book return
2 if (count($x/author) ge 3) then
3 concat($x/author[1], " et al.")
4 else
5 string-join($x/author, " and ")
Figure 21: Sample XPath query.

1 Erik T. Ray
2 Norman Walsh and Leonard Muellner
3 Jon Doe et al.

Figure 22: Result of the sample query on the
sample document.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 37/43

XML and Semantic Web Technologies / 3. XPath Expressions

Quantified Expressions

〈QuantifiedExpr〉 := (some | every)
$ 〈QName〉 in 〈ExprSingle〉
(, $ 〈QName〉 in 〈ExprSingle〉)*
satisfies 〈ExprSingle〉

1 //book[some $x in author satisfies contains($x, "R.")]

Figure 23: Sample XPath query.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <book>
3 <author>R.E.</author>
4 <author>S.E.</author>
5 <title>XML und DM</title>
6 </book>
7 <?xml version="1.0" encoding="UTF-8"?>
8 <book>
9 <author>E.R.</author>

10 <title>Learning XML</title>
11 </book>

Figure 24: Result of the sample query on the document books-short.xml.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 38/43

XML and Semantic Web Technologies / 3. XPath Expressions

Quantified Expressions

1 //book[every $x in author satisfies contains($x, "R.")]

Figure 25: Sample XPath query.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <book>
3 <author>E.R.</author>
4 <title>Learning XML</title>
5 </book>

Figure 26: Result of the sample query on the document books-short.xml.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 39/43

XML and Semantic Web Technologies / 3. XPath Expressions

Type Expressions (casting)

〈TypeExpression〉 := 〈ExprSingle〉
((instance of 〈SequenceType〉)
| (treat as 〈SequenceType〉)
| (castable as 〈SingleType〉)
| (cast as 〈SingleType〉))

〈SequenceType〉 := (〈QName〉 | 〈KindTest〉 | (item ())) (? | * | +)?)
| (void ())

〈SingleType〉 := 〈QName〉 ??

instance and castable check if a given expression is of given type.

cast casts an expression to a given type.

treat disables compile-time checks of expression types, but does not cast at
runtime
(i.e., will throw an error, if the expression does not happen to be of correct type).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 40/43

XML and Semantic Web Technologies / 3. XPath Expressions

Type Expressions (casting)

To make use of XML Schema types, namespaces have to be declared by means
of the host language (XSL, XQuery).

1 declare namespace xs="http://www.w3.org/2001/XMLSchema";
2

3 1 castable as xs:string

Figure 27: XPath expression using XML schema types, embedded in XQuery.
1 castable as xs:string true

"Hello" castable as xs:decimal false

(1,2,3) instance of xs:decimal* true

(1,2,3) instance of xs:string* false

concat(11, " is prime.") [compile ERROR]

concat(11 cast as xs:string, " is prime.") "11 is prime."

string-join((1 to 10) treat as xs:string*, ", ") [compiles, but runtime ERROR]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 41/43

XML and Semantic Web Technologies / 3. XPath Expressions

Operator Precedence

prio. operator operand types
/
unary +, - numeric
cast as
castable as
treat as
instance of
intersect, except node-sequence
union, | node-sequence
*, div, idiv, mod numeric, durations
+, - numeric, dates
to integer
eq, ne, lt, le, gt, ge, =, !=, <, <=, >, >= simple types
is, «, » node
and boolean
or boolean
for-in-return, if-then-else, some/every-is-satisfies
,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 42/43

XML and Semantic Web Technologies / 3. XPath Expressions

References

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on XML and Semantic Web Technologies, summer term 2012 43/43

	to1. XPath Data Model
	to2. XPath Path Expressions
	to3. XPath Expressions

