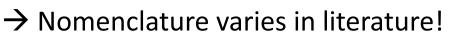
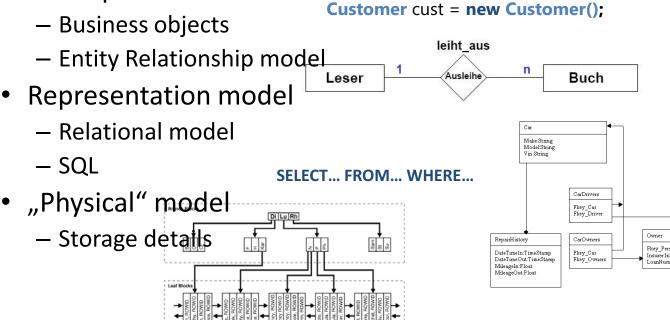
Information Systems 2 1. Modelling Information Systems I: Databases

Lars Schmidt-Thieme Artus Krohn-Grimberghe http://www.ismll.uni-hildesheim.de/

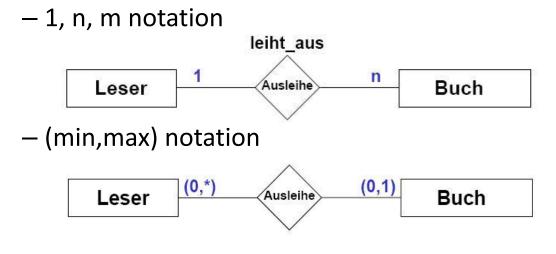

Recap

- Why databases?
- 3 levels of data models
- E/R modeling
- Relational model


Why databases?

- Persistent data storage
- Integrated (Students, Courses, ...)
- Shared
- Integrity
- Data standards can be enforced
- Eliminate reduncancy
- Eliminate inconsistency

Conceptual, Representation, and Physical Data Models



Conceptual model

Entity Relationship model

- Entities, weak entities, attributes, keys, relations
- Cardinality

Let's move on

- We have seen a way to model our mini-world conceptually, let's now think about how to store the belonging data
 - Hierarchic systems outdated
 - Network systems outdated
 - Relational model state of the art
 - Describes data structure (following slides)
 - Data manipulation
 - Data integrity

Basic Concepts

The Relational model organizes data in tables.

Relational model	common sense table
attribute	column
attribute domain	value domain of a column
tuple	row
relation	table
null value	cells without entry (missing values, unappropriate attributes)
key	set of columns which values uniquely identify a row
primary key	key usually used for identifying rows

Kundennr	Name	Geburtstag
1	Frank Müller	20.11.1980
2	Fred Schmidt	6.6.1972
3	Heribert Mayer	11.1.1954
4	Frank Müller	3.7.1978

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Information Systems 2, summer term 2008 17/43

Information Systems 2 / 3. The Relational Model

Basic Concepts / Foreign Keys

an attribute (or set of attributes) that contains the key value of another relation.

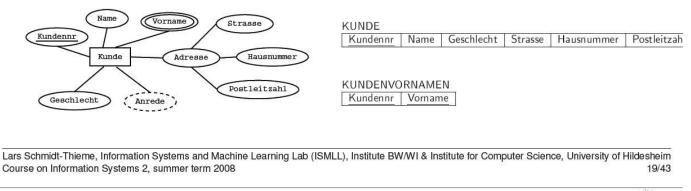
The value domain of the foreign key must be the same as the value domain of the key of the **referenced relation**.

For each tuple of the **referencing relation** the value of the foreign keys must occur among the values of the key attribute of the referenced relation or be null (**referential integrity**).

KUNDE		
Kundennr	Name	Geburtstag
1	Frank Müller	20.11.1980
2	Fred Schmidt	6.6.1972
3	Heribert Mayer	11.1.1954
4	Frank Müller	3.7.1978

Rechnungsnr	Rechnungsdatum	Rechnungsbetrag	Kundenn
1099	12.2.2000	2099,-	2
1100	12.2.2000	589,-	1
1101	13.2.2000	4490,-	3
1102	15.2.2000	3349,-	2
1103	18.2.2000	10500,-	5

Information Systems 2 / 3. The Relational Model


Mapping an ER Model to a Relational Model / Regular Entity

young 2003

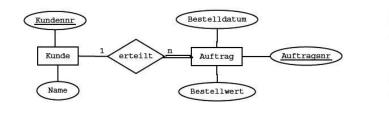
Multi-valued attributes are mapped to an own relation that contains

- the foreign key of the entity relation and
- the value of the attribute.

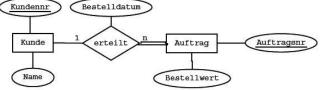
Together they define the primary key of the new relation.

Information Systems 2 / 3. The Relational Model

Mapping an ER Model to a Relational Model / Binary Relation 1:n



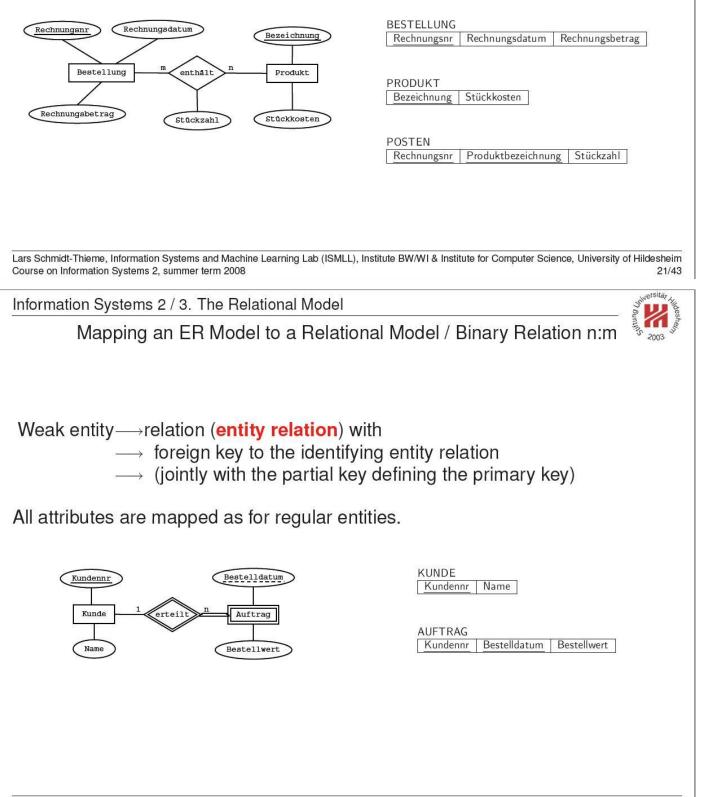
Binary relation $1:n \rightarrow add a$ foreign key


 \longrightarrow referencing the entity relationship on the 1-side

 \longrightarrow to the entity relationship on the n-side.

All attributes of the relation are added to the entity relationship on the n-side.

var	iant:		
Ku	ndennr	$\boldsymbol{\zeta}$	Bes


KUNDE			
Kundennr	Name		
- 90 - 1000	372		
ALIETRAC			
AUFTRAG Auftragsnr	Bestelldatum	Bestellwert	Kundenni

Mapping an ER Model to a Relational Model / Binary Relation n:m

Binary relation $n:m \longrightarrow$ relation (relationship relation) with

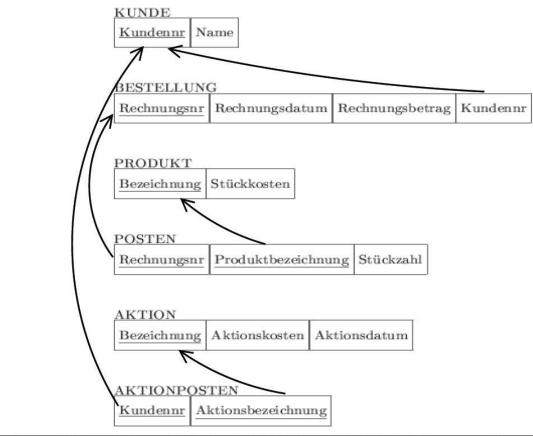
- \longrightarrow foreign key to the entity relation on the n-side and
- \longrightarrow foreign key to the entity relation on the m-side
- \longrightarrow (jointly defining the primary key)

All attributes of the relation are mapped to attributes of the relationship relation.

Information Systems 2 / 3. The Relational Model

Mapping an ER Model to a Relational Model / Summary

	JANNE
10	6un
	ALL OF
	2003

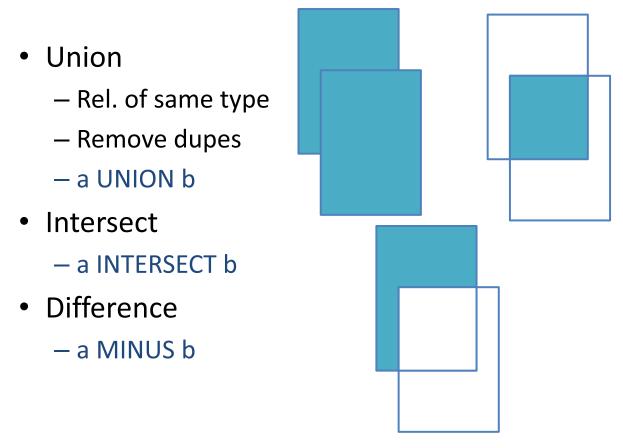

ER model	Relational model
entity	relation (entity relation)
relation, binary, 1:1	add foreign key to one of the participating entity relations
relation, binary, 1:n	add foreign key to the participating entity relation on the
	n-side
relation, binary, n:m	relation (relationship relation) with 2 foreign keys
relation, n-ary	relation (relationship relation) with n foreign keys
attribute, simple	add attribute to relation
attribute, complex	add attributes to relation, one for each component
attribute, multi-valued	relation with foreign key
key	primary or secondary key

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Information Systems 2, summer term 2008 23/43

Information Systems 2 / 3. The Relational Model

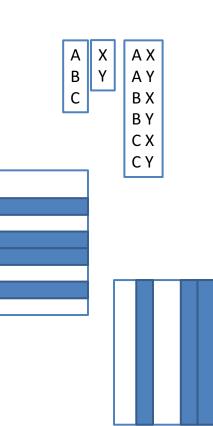
Mapping an ER Model to a Relational Model / Example

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim Course on Information Systems 2, summer term 2008 24/43

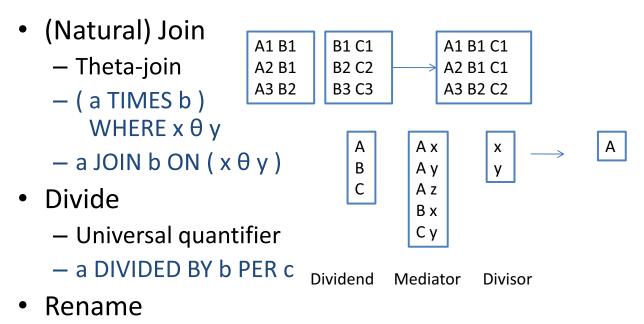

Relational model – data manipulation

- Two languages defined
 - Relational Algebra
 - Relational Calculus
- Neither is navigating nor record-based but both are set-based and descriptive
- Mathematical foundation
- Relational closure
 - Lecture Diskrete Methoden (first semester)

Relational Algebra


- Collection of operators that take relations as their operands and return a relation as their result
 - Nesting relational operators of arbitrary complexity possible
 - Relation type inference rules (esp. for "header")

Relational operators



Relational operators (cont'd)

- Product
 - Cartesian product
 - Needs renaming of dupe attribute!
 - a TIMES b
- Restrict
 - Sometimes called Theta-Restrict
 - a WHERE x θ y
- Project
 - "vertical" subset of relation
 - a {x, y, z}

Relational operators (cont'd)

- (a RENAME City AS aCity)

Buch	InvNr	Titel	ISBN	Autor
	0007	Dr. No	3-125	James B.
	1201	Objektbanken	3-111	Heuer
	4711	Datenbanken	3-765	Vossen
	4712	Datenbanken	3-891	Ullman
	4717	Pascal	3-999	Wirth

• (1) Get Name from Ausleihe

	Ausleihe	InvNr	Name
(2) Get InvNr ISBN from Bເ		4711 1201 0007 4712	Meyer Schulz Müller Meyer

- (3) Get all data from Buch except where Autor is "Wirth"
- (4) Combine Buch and Ausleihe

• ...

Not (yet) covered

- Relational Algebra integrity
- Relational Calculus
- SQL (tomorrow!)
- XML (in two weeks)
- Impedance mismatch
- Normalization