
Information Systems 2

Information Systems 2

4. Distributed Information Systems II: Web Services

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Business Economics and Information Systems

& Institute for Computer Science
University of Hildesheim

http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 1/30

Information Systems 2

Web Service Protocol Stack

layer task examples
(Service) Transport Protocol transport

messages
HTTP, SMTP, FTP

(XML) Messaging Protocol encode
messages

XML-RPC, WS-Addressing, SOAP

(Service) Description Protocol describe
public
interface

WSDL

(Service) Discovery Protocol discover
services

UDDI

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 1/30

Information Systems 2

1. Message Transport: HTTP

2. Message Encoding: SOAP

3. Implementing Web Services: Axis2 engine

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 2/30

Information Systems 2 / 1. Message Transport: HTTP

Request and Response

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 2/30

Information Systems 2 / 1. Message Transport: HTTP

Open Systems Interconnection Basic Reference Model (OSI Model)

Communication is structured in so-called network
layers:

The full OSI model contains 7 layers:

application, presentation, session, transport,
network, data Link, and physical layer

some of which often are lumped together in 5 or 4 layers
as above.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 3/30

Information Systems 2 / 1. Message Transport: HTTP

Hypertext Transfer Protocol (HTTP)

– HTTP is a protocol for the exchange of information via
a request/response paradigma.

– HTTP is coordinated by
– W3C and
– the Internet Engineering Task Force (IETF).

– Different versions of HTTP are described in a series of
Request for Comments (RFCs), most actually
– HTTP 1.1 in RFC 2616 from June, 1999.

– HTTP messages consist of
– a response/request line,
– optional header lines
– an entity body

(delimited by an empty line from the headers)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 4/30

Information Systems 2 / 1. Message Transport: HTTP

Hypertext Transfer Protocol (HTTP) / Syntax

〈request〉 := 〈request line〉
(〈general header〉 | 〈request header〉 | 〈entity header〉)*
〈CRLF 〉
〈entity body〉

〈response〉 := 〈response line〉
(〈general header〉 | 〈response header〉 | 〈entity header〉)*
〈CRLF 〉
〈entity body〉

〈request line〉 := 〈method〉 〈SP〉 〈request uri〉 〈SP〉 〈http version〉 〈CRLF 〉

〈response line〉 := 〈http version〉 〈SP〉 〈status code〉 〈SP〉 〈reason phrase〉 〈CRLF 〉

where 〈SP〉 denotes a space
and 〈CRLF 〉 a newline.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 5/30

Information Systems 2 / 1. Message Transport: HTTP

Most common Request Headers

Host
server request is sent to.

From
client response originated from.

User-Agent
browser used on the client.

Accept, Accept-Charset, Accept-Encoding, Accept-Language
charset, encoding and language prefered by the client.

Referer
URI of resource containing the link to the request URI.

Authorization
login and password information.

If-modified-since
conditional request.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 6/30

Information Systems 2 / 1. Message Transport: HTTP

Most common Entity and General Headers

Entity headers:

Content-Encoding, Content-Length, Content-Type,
Content-Language
encoding, length, type and language of content entity
returned.

Last-modified
timestamp entity last has been modified.

Expires
timestamp until entity is valid.

General headers:

Date
date and time of request / response.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 7/30

Information Systems 2 / 1. Message Transport: HTTP

Request Methods

GET
– Requests the entity identified by the request URI.
– Signals that the resource should not be altered by

the operations.

POST
– Submits data to the specified resource and

requests a result entity in return.
– The data is sent in the entity body of the request.

PUT
– Uploads an entity for storage under the request URI.

DELETE
– Deletes the entity identified by the request URI.

as well as the more specialized methods HEAD, TRACE,
OPTIONS and CONNECT.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 8/30

Information Systems 2 / 1. Message Transport: HTTP

HTTP Status Codes

The success of the request is signaled by a status code:

code meaning
... ...
200 OK
201 Created
... ...
301 Moved Permanently
... ...
400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
... ...
500 Internal Server Error
... ...

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 9/30

Information Systems 2 / 1. Message Transport: HTTP

Example HTTP Headers

1 GET /index.html HTTP/1.1
2 Host: localhost:8090
3 User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.8.1.14) Gecko/20080410 SUSE/2.0.0.14-0.1 Firefox/2.0.0.14
4 Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
5 Accept-Language: en-us,en;q=0.5
6 Accept-Encoding: gzip,deflate
7 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
8 Keep-Alive: 300
9 Connection: keep-alive

Figure 3: Request by Firefox

1 GET /index.html HTTP/1.1
2 User-Agent: Mozilla/5.0 (compatible; Konqueror/3.5; Linux) KHTML/3.5.7 (like Gecko) SUSE
3 Accept: text/html, image/jpeg, image/png, text/*, image/*, */*
4 Accept-Encoding: x-gzip, x-deflate, gzip, deflate
5 Accept-Charset: utf-8, utf-8;q=0.5, *;q=0.5
6 Accept-Language: en, de
7 Host: localhost:8090
8 Connection: Keep-Alive

Figure 4: Request by Konqueror

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 10/30

Information Systems 2 / 1. Message Transport: HTTP

Example HTTP Headers

1 HTTP/1.1 200 OK
2 Server: Apache-Coyote/1.1
3 ETag: W/"10852-1213607922000"
4 Last-Modified: Mon, 16 Jun 2008 09:18:42 GMT
5 Content-Type: text/html
6 Content-Length: 10852
7 Date: Mon, 16 Jun 2008 20:59:45 GMT
8 Connection: keep-alive
9

10 <html lang="de">
11 <head>
12 ...
13 </head>
14 ...
15 </html>

Figure 5: Response by Tomcat

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 11/30

Information Systems 2

1. Message Transport: HTTP

2. Message Encoding: SOAP

3. Implementing Web Services: Axis2 engine

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 12/30

Information Systems 2 / 2. Message Encoding: SOAP

– SOAP defines a format for exchanging structured and typed
information between peers in a decentralized, distributed
environment, consisting of:

– Messaging Framework: Processing Model, Extensibility
Model, Protocol Binding Framework, Message Construct.

– Adjuncts: SOAP Data Model, SOAP Encoding, SOAP RPC
Representation, a Convention for Describing Features and
Bindings, Message Exchange Patterns and Features, SOAP
HTTP Binding.

– SOAP is an XML application. Its namespace is
http://www.w3.org/2003/05/soap-envelope

– SOAP can use the XML Schema type system.

– SOAP is managed by the W3C,
its actual version is SOAP 1.2 (April 27, 2007).

– SOAP originally was the acronym for Simple Object Access
Protocol, but this name is no longer used.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 12/30

Information Systems 2 / 2. Message Encoding: SOAP

Core SOAP Components

1. SOAP Message Format:
— provides overall structure (envelope) of request/response
messages.

2. SOAP Data Model:
— conceptual type system for arguments and return values of
procedures.

3. SOAP Encoding:
— XML representation of the SOAP Data Model.

4. SOAP Remote Procedure Calls (RPCs):
— how to specify method calls.

5. SOAP HTTP Binding:
— how to transport SOAP messages via HTTP.

Only the SOAP Envelope is mandatory,
all other components can be replaced by other specifications
independently.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 13/30

Information Systems 2 / 2. Message Encoding: SOAP

SOAP Messages

The root element of a SOAP message:

<Envelope>
Content: 〈Header〉 ?

〈Body〉
</Envelope>

The optional header carries information about the
processing of the message by intermediary SOAP nodes.
(not handeled here)

The mandatory body element:
– contains any number of children elements.
– which are web service-specific

(i.e., not described by SOAP!).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 14/30

Information Systems 2 / 2. Message Encoding: SOAP

SOAP Data Model (1/2)

The SOAP data model models data items as directed labeled graphs.

It contains the following data items:

simple value: a simple lexical value.
a node with a lexical value and an
optional XML schema type.

struct: a compound of named parts.
a node with labeled outgoing
edges.

array: a compound of indexed parts.
a node with numbered outgoing
edges.

type: xs:int
value: 17

type: xs:int
value: 17

type: xs:string
value: Miller

type: xs:string
value: Anna

fo
re

name

sirname

age

type: xs:string
value: Clara

type: xs:string
value: Berta

type: xs:string
value: Anna

1
2

3

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 15/30

Information Systems 2 / 2. Message Encoding: SOAP

SOAP Data Model (2/2)

The target nodes of structs and arrays can be any valid
SOAP data items, i.e., simple values as well as
themselves structs or arrays.

type: xs:string
value: Anna

type: xs:int
value: 17

type: xs:string
value: Miller

age

sirname

forename

name

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 16/30

Information Systems 2 / 2. Message Encoding: SOAP

SOAP Encoding
The SOAP encoding provides a representation for SOAP data
instances as XML:

– Each edge of a SOAP data instance is represented as element.
Its name is the label of the edge (structs) or arbitrary (arrays).

– The SOAP type of the target node (optinally) can be expressed by
the attribute

nodeType
as: “simple”, “struct” or “array”.

– Simple values of target nodes are expressed as character
content of the edge element, their type by the attribute

xsi:type

type: xs:int
value: 17 1 <XXX enc:nodeType="simple" xsi:type="xs:int">17</XXX>

The names for the SOAP encoding primitives belong to the
namespace

http://www.w3.org/2003/05/soap-encoding
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 17/30

Information Systems 2 / 2. Message Encoding: SOAP

SOAP Encoding / Structs

– Structs as target nodes are expressed as sequence of outgoing
named edges.

type: xs:int
value: 17

type: xs:string
value: Miller

type: xs:string
value: Anna

fo
re

name

sirname

age

1 <XXX enc:nodeType="struct" xmlns:app="http://www.ismll.de/examples/soap/encoding1">
2 <app:forename enc:nodeType="simple" xsi:type="xs:string">Anna</app:forename>
3 <app:sirname enc:nodeType="simple" xsi:type="xs:string">Miller</app:sirname>
4 <app:age enc:nodeType="simple" xsi:type="xs:int">17</app:age>
5 </XXX>

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 18/30

Information Systems 2 / 2. Message Encoding: SOAP

SOAP Encoding / Arrays
– Arrays as target nodes are expressed as sequence of unnamed

edges.
– The element name is arbitrary, the position denotes the index.
– The type of the array element and the size of the array can be

specified by the attributes
itemType
arraySize

type: xs:string
value: Clara

type: xs:string
value: Berta

type: xs:string
value: Anna

1
2

3

1 <XXX enc:nodeType="array" enc:itemType="xs:string" enc:arraySize="3">
2 <Y>Anna</Y>
3 <Y>Berta</Y>
4 <Y>Clara</Y>
5 </XXX>

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 19/30

Information Systems 2 / 2. Message Encoding: SOAP

SOAP Encoding / References
– Instead of provided as element content, target nodes can also be

pointed to by the attribute
ref

– For each ref, there must an element with attribute
id

having the same value in the same envelope.

type: xs:int
value: 17

type: xs:string
value: Miller

type: xs:string
value: Anna

fo
re

name

sirname

age

1 <XXX enc:nodeType="struct" xmlns:app="http://www.ismll.de/examples/soap/encoding1">
2 <app:forename enc:ref="Annas forename"/>
3 <app:sirname enc:ref="Anna/sirname"/>
4 <app:age enc:ref="v13"/>
5 </XXX>
6 <Y enc:id="Annas forename" enc:nodeType="simple" xsi:type="xs:string">Anna</Y>
7 <Y enc:id="Anna/sirname" enc:nodeType="simple" xsi:type="xs:string">Miller</Y>
8 <Y enc:id="v13" enc:nodeType="simple" xsi:type="xs:int">17</Y>

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 20/30

Information Systems 2 / 2. Message Encoding: SOAP

SOAP Remote Procedure Calls (RPC)

To invoke an SOAP RPC, the following information is needed:

– The address of the target SOAP node.

– A procedure or method name.

– Arguments passed to the procedure as identity/value pairs.

– Property values of the binding.

– Header data (optional).

The namespace for SOAP rpc primitives is

http://www.w3.org/2003/05/soap-rpc

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 21/30

Information Systems 2 / 2. Message Encoding: SOAP

SOAP Remote Procedure Calls (RPC)

An RPC invocation is encoded as single struct with the in or
in/out arguments as parts, i.e.:

– Encoded as element in the SOAP body.
The name of the element is the name of the procedure called.

– Each in or in/out argument as outgoing edge named by the
argument name, i.e., as nested element.

An RPC response is encoded as single struct with the out or
in/out arguments and the result as parts:

– Encoded as element in the SOAP body.
The name of the element is arbitrary.

– Each out or in/out argument as edge named by the argument
name.

– If the result type is not void, an outgoing edge named
rpc:result

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 22/30

Information Systems 2 / 2. Message Encoding: SOAP

Example / Request

Assume there is a webservice at the address
“http://localhost:8080/axis2/services/CalculatorService” offering a
procedure “add” that takes two integer arguments “i1” and “i2”
and returns the sum of both values.

To invoke this service, we could sent the following SOAP
message:

1 <?xml version="1.0" encoding="utf-8"?>
2 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
3 xmlns:xs="http://www.w3.org/2001/XMLSchema"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xmlns:enc="http://www.w3.org/2003/05/soap-encoding"
6 xmlns:calc="http://ismll.de/examples/soap/Calculator">
7 <env:Body>
8 <calc:add env:encodingStyle="http://www.w3.org/2003/05/soap-encoding">
9 <calc:op1 enc:nodeType="simple" xsi:type="xs:int">7</calc:op1>

10 <calc:op2 enc:nodeType="simple" xsi:type="xs:int">8</calc:op2>
11 </calc:add>
12 </env:Body>
13 </env:Envelope>

Figure 14: A simple SOAP request.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 23/30

Information Systems 2 / 2. Message Encoding: SOAP

Example / Response

The service could respond with the following SOAP message:
1 <?xml version="1.0" encoding="utf-8"?>
2 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
3 xmlns:xs="http://www.w3.org/2001/XMLSchema"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xmlns:enc="http://www.w3.org/2003/05/soap-encoding"
6 xmlns:calc="http://ismll.de/examples/soap/Calculator"
7 xmlns:rpc="http://www.w3.org/2003/05/soap-rpc">
8 <env:Body>
9 <calc:response env:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

10 <rpc:result enc:nodeType="simple" xsi:type="xs:int">15</rpc:result>
11 </calc:response>
12 </env:Body>
13 </env:Envelope>

Figure 15: A simple SOAP response.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 24/30

Information Systems 2 / 2. Message Encoding: SOAP

SOAP HTTP Binding

SOAP allows different underlying protocolls for transporting the
message.

The most common one is HTTP via the POST method:

– Usually with media-type application/xml+soap
(specified in the HTTP header field Media-Type).

Practically, to sent our SOAP request message, we could use a
download tool such as wget:

wget --post-file=request-manual-all.xml
--header=’Content-Type: application/soap+xml’
http://localhost:8080/axis2/services/CalculatorService

(The HTTP header field “SOAPAction” from SOAP 1.1 is obsolete
in SOAP 1.2. The action optionally can be encoded as the action
feature of the MIME type.)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 25/30

Information Systems 2 / 2. Message Encoding: SOAP

A remark about SOAP 1.1

In older examples you will also find the old SOAP v1.1
namespace identifiers

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/

that should no longer be used.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 26/30

Information Systems 2

1. Message Transport: HTTP

2. Message Encoding: SOAP

3. Implementing Web Services: Axis2 engine

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 27/30

Information Systems 2 / 3. Implementing Web Services: Axis2 engine

Implementing a Web Service

SOAP tells you how to use a web service technically, when you
know,

– where it is,
– which methods it offers and
– with which signatures.

SOAP does not tell you at all how to implement a web service.

How to implement a web service depends on the web service
engine, e.g.,

– Apache Axis2, http://ws.apache.org/axis2/
(v1.4, Feb. 2008)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 27/30

Information Systems 2 / 3. Implementing Web Services: Axis2 engine

Installing Apache Axis2

unzip axis2-1.4-bin.zip
cd axis2-1.4/
chmod a+x bin/axis2server.sh
./bin/axis2server.sh

Now the Axis2 engine is running on port 8080.

You can get a list of deployed web services by visiting

http://localhost:8080/

with a web browser.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 28/30

Information Systems 2 / 3. Implementing Web Services: Axis2 engine

Deploying a Web Service in Axis2 (1/2)

A minimal web service implementation is made from just two files:
1. The implementation Calculator.java:

1 public class Calculator {
2 public int add(int i1, int i2) {
3 return i1 + i2;
4 }
5

6 public int subtract(int i1, int i2) {
7 return i1 - i2;
8 }
9 }

2. An Axis-specific webservice descriptor services.xml:
1 <service name="CalculatorService" scope="application" targetNamespace="http://ismll.de/examples/soap/Calculator">
2 <description>Calculator</description>
3 <messageReceivers>
4 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-only"
5 class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver"/>
6 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-out"
7 class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>
8 </messageReceivers>
9 <schema schemaNamespace="http://ismll.de/examples/soap/Calculator"/>

10 <parameter name="ServiceClass">Calculator</parameter>
11 </service>

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 29/30

Information Systems 2 / 3. Implementing Web Services: Axis2 engine

Deploying a Web Service in Axis2 (2/2)

Web services can be archived in Axis archives (.aar; jar-archives):

– containing the classes in the root and
– the webservice descriptor services.xml in the subdirectory
META-INF.

> jar tf Calculator.aar
META-INF/
META-INF/MANIFEST.MF
Calculator.class
META-INF/services.xml

Axis archives can be deployed by simply copying them to the Axis2
services repository:

> cp Calculator.aar ~/ws/axis2-1.4/repository/services/

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 30/30

Information Systems 2 / 3. Implementing Web Services: Axis2 engine

References

[ZTP05] Olaf Zimmermann, Mark Tomlinson, and Stefan Peuser. Perspectives on Web Ser-
vices — Applying SOAP, WSDL and UDDI to Real-World Projects. Springer, 2005.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2008 30/30

