g 2TSIE
%

%;

2003

M=

%

N &y,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
0/28

Course on Information Systems 2, summer term 2010

Information Systems 2 3 IJ/ %
: ol ¢

Information Systems 2

3. Distributed Information Systems |: CORBA

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Business Economics and Information Systems
& Institute for Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
1/28

Course on Information Systems 2, summer term 2010

Information Systems 2 3 IJ/ %
: ol ¢

1. Introduction

2. Offering and Using Remote Objects

3. Publishing and Requesting Objects by Names

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 1/28

Information Systems 2/ 1. Introduction Sp
Example Scenario ® 200

Assume, you have to set up an information system that
informs business customers about products you offer and
the prices you charge.

A later stage of the system should allow

— product managers to add, edit and remove products,
— marketing staff to set prices,

— customers to place orders and

— sales staff to mark orders as shipped

— etc.

To accomplish this, many different persons have to
collaborate on different aspects of the data and the
process.

Thus, the whole system has to be distributed.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 1/28

TSI
TN

v

&,

Information Systems 2/ 1. Introduction

Paradigms of Distributed Systems

eung
“iaye0t

In general, one distinguishes two types of distributed

systems:
- . - .
\ / / AN
m— — W - -
/ N\ NIAXT /
- . - -
Client/Server Applications: Peer-to-Peer Applications:

A central server hosts the shared part of There is no central server, but the data

the data and offers services to different s distributed over a network of clients

clients, e.g., access to the data as well (called peers). Peers may communicate

as communication between the clients. directly with each other as well as
indirectly by routing throught the peer
network.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 2/28

.q.aTSiIéi;&

%,ﬁ

&

{O’i?qﬁﬁ‘l‘

Information Systems 2/ 1. Introduction

cj{g.‘i."x"-l ng

CORBA

The Common Object Request Broker Architecture (CORBA)
allows programs

— on different computers,
— written in different languages

to communicate.
Communication is mediated by so called Object Request Brokers

(ORBs).

{client) main(}) (server) main()
Cibyect Ohyect
L—— Reference S Implementation

Generated

Generated

——1 Stub Code Skeleton Code
Cibject —‘ < » Ohject —‘

Reguest Broker Request Broker
network

Key:
Iil ORB Vendor-supplied Code

I:l ORB Vendor-tool Generated Code

I:l User-defined Application code

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
3/28

Course on Information Systems 2, summer term 2010

Information Systems 2/ 1. Introduction s%’%
CORBA Standard B

CORBA is an open standard developed by the Object Management

Group (OMG):

— CORBA 1.0/ Oct. 1991 (Object model, IDL, core DIl; C language
binding)

— CORBA 2.0/ Aug. 1996 (GIOP, IIOP; C++ and Smalltalk language
bindings)

— CORBA 2.2/ Feb. 1998 (POA; Java language binding)
— CORBA 3.0/ Jul. 2002
— CORBA 3.1/ Jan. 2008

CORBA is widespread. E.g., an implementation ships with every Sun
JDK release.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 4/28

. 2ISiEs “

%,ﬁ

&

Information Systems 2/ 1. Introduction

Benefits of CORBA [McHO07]

epftung
Q’ferqﬁnﬂ

e Maturity:
CORBA is developed since 1991.

e Open Standard:
CORBA is standardized by the Object Management Group (OMG).

e Wide platform support:
CORBA is available for mainframes (e.g., IBM OS/390s), Unix & Linux,
Windows, AS/400, Open VMS, OS X and several embedded operating systems.

e Wide language support:
CORBA has language bindings for C, C++, Java, Smalltalk, Ada, COBOL, PL/I,

LISP, Python and IDLScript.

o Efficiency:
CORBA marshals data, i.e., converts data from programming-language types
into binary representations that can be transmitted efficiently.

e Scalability:
CORBA servers can handle huge server-side data as well as high
communication loads from thousands of client applications.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 5/28

Information Systems 2 3 IJ/ %
: ol ¢

1. Introduction

2. Offering and Using Remote Objects

3. Publishing and Requesting Objects by Names

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 6/28

. 2ISiEs A

%,ﬁ

&

Information Systems 2 / 2. Offering and Using Remote Objects
General Procedure

cj{;&wﬂe;r
Q’ferqﬁw

The implementation of a distributed system with CORBA requires
the following four steps:

1. Interface: create the interface description.
2. Implementation: implement the interface.

3. Server: implement a server application offering remote
access to objects.

4. Client: implement a client application using the remote
objects.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 6/28

. 2ISiEs “

%,ﬁ

&

epftung
Q’ferqﬁw

Information Systems 2 / 2. Offering and Using Remote Objects
Step 1: Interface / IDL Description

To specify the interface there is a programming language neutral
Interface Definition Language (IDL):
e Interfaces are grouped in modules (= Java packages).

e Each interface consists of a set of methods with

— arguments,
— return type and
— exceptions.

e Arguments and return values can have
— the usual elementary datatypes or

— an interface type themselves.

e The grammar is very close to Java.

e Interfaces are mapped to specific programming language
interfaces by the use of a tool (e.g., id1 j).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
7/28

Course on Information Systems 2, summer term 2010

. 2ISiEs
o Y

Information Systems 2 / 2. Offering and Using Remote Objects
Step 1: Interface / IDL Description

,;j{!-“"'m‘?{r
-\
Q”"q‘:-qﬁz.

<003

smodule ismll_commerce {
. interface Offer {

3 string name();
4 double price();
I

o}

Figure 4: Offer.idl: Interface description for offers.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 8/28

Information Systems 2 / 2. Offering and Using Remote Objects

Step 1: Interface / IDL to Java/C++ Binding

b
i

IDL Java C++ IDL type Java type
module | package namespace boolean boolean
interface | interface abstract class char / wchar char
operation | method member function octet byte
attribute | pair of methods | pair of functions short / unsigned short short
exception | exception exception long / unsigned long int

To create the Java base class Offer. java and other
derived classes (see below):

id1]

Creates class Offer.java in package ismll_commerce.

—fall Offer.idl

long long / unsigned long long | long
float float
double double
string / wstring String

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010

9/28

. 2ISiEs
& .—-‘S«-"‘_‘_

v

2003

&,

Information Systems 2 / 2. Offering and Using Remote Objects
Step 1: Interface / Derived Java Interface

Q’ferqﬁw

ejifung

smodule ismll_commerce { package ismll_commerce;

. interface Offer { 2
3 string name(); 3
4 double price(); **

s* ismll_commerce/OfferOperations.java .

5 },
6}; +~ Generated by the IDL-to-dava compiler (portable), version'
.* from Offer.idl
Figure 5: Offer.idl: Interface description for «* Monday, May 26, 2008 11:48:56 AM CEST
offers. 0"/

10

i public interface OfferOperations

12{

1w String name ();
« double price ();
s} // interface OfferOperations

Figure 6: OfferOperations.java: derived Java
interface.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 10/28

.q.aTSiIéilp&

%,ﬁ

&

epfwung
Q”é?qﬁw

Information Systems 2 / 2. Offering and Using Remote Objects
Step 2: Implementation

The implementation has to be derived from the abstract server

skeleton or servant class,
in the Sun JDK: OfferPOA.

The implementation may not contain any CORBA specific code.
The servant is generated automatically from the IDL spec.

The servant implements the programming language specific

interface.
In Sun JDK: Of fer.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
11/28

Course on Information Systems 2, summer term 2010

. 2ISiEs
& .—-‘S«-"‘_‘_

Information Systems 2 / 2. Offering and Using Remote Objects

94,

ejifwung
\C
Q”"'?Lf$:|

Step 2: Implementation % s S

package ismll_commerce;

spublic class Offermpl extends OfferPOA {

+ public Offerlmpl(String name, double price) {
5 this.name = name; this.price = price;

o

- public String name() { return name; }

s public double price() { return price; }

o protected String name;
n protected double price;

Figure 7: Offerlmpl.java: implementation of the interface methods.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 12/28

. 2ISiEs
& .—-‘S«-"‘_‘_

N &y,
&
g\
Lsat

Information Systems 2 / 2. Offering and Using Remote Objects

Step 3: Server

The server application has to

1. connect to the ORB infrastructure,

(a) create an ORB with a specific hosthame and port,
(b) retrieve a reference to the root Portable Object Adapter

(POA) and
(c) activate it.

2. create application objects,
(a) using the implementation / servant class from step 2.

3. output references to them,
(a) by looking up string representations of references of the

servants,
in the simplest case Interoperable Object References

(IORs).

4. wait for connections to the application objects.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
13/28

Course on Information Systems 2, summer term 2010

Information Systems 2 / 2. Offering and Using Remote Objects

.q.aTSiIéilp&
s

v

&%

%{5&"-.'-\.1“..'::'
“aygat

Step 3: Server 2003

package ismll_commerce;
.import org.omg.CORBA.ORB;
simport org.omg.PortableServer.*; // POA, POAHelper

4

spublic class OfferServer {

6

7

public static void main(String args[]) {
try{

// a. connect to ORB infrastructure:

String[] argsOrb = new String[] { "-ORBlInitialPort", "9090", "-ORBInitialHost", "localhost"};
ORB orb = ORB.init(argsOrb, null);

POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
rootpoa.the POAManager().activate();

//'b. create application objects:
Offerlmpl offer_PC = new Offerlmpl("PC Core 2 Quad 6600", 899.90);

// c. create references to them:
org.omg.CORBA.Object ref = rootpoa.servant_to_reference(offer_PC);
System.out.printin(orb.object_to_string(ref));

// d. wait for connections to the application objects:
orb.run();

} catch (Exception e) { System.err.printin("ERROR: " + e); e.printStackTrace(System.out); }

Figure 8: OfferServer.java: Simple server.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 14/28

aefsitdy

Information Systems 2 / 2. Offering and Using Remote Objects P
. A
Step 4: Client 2003

&%

Eat

ejifung

The client application has to

1. connect to the ORB infrastructure,
(a) create an ORB with a specific hostname and port,

2. retrieve references to the application objects,
(a) by looking up CORBA objects (represented by client stubs)

by their IOR and
(b) casting them to the interfaces from step 1 using helper

classes.

3. do something with the application object references,
(a) using the interface from step 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
15/28

Course on Information Systems 2, summer term 2010

. 2ISiEs “
e

Information Systems 2 / 2. Offering and Using Remote Objects ’
. “
Step 4: Client 2003

&%

r_j{;&k‘d“ﬂ
Q’ferlfﬁw

package ismll_commerce;

.import org.omg.CORBA.ORB;

spublic class OfferClient {

s public static void main(String args|]) {

6 try{

7 /I a. connect to the ORB infrastructure:

6 String[] argsOrb = new String[] { "-ORBlInitialPort", "9090", "-ORBlInitialHost", "localhost"};
o ORB orb = ORB.init(argsOrb, null);

. /' b. retrieve application object by reference (here: args[0] command line):

12 String refString = args[0];

13 org.omg.CORBA.Object ref = orb.string_to_object(refString);

14 Offer offer_pc = OfferHelper.narrow(ref);

16 // c. do something with them:

7 System.out.printin("Obtained a handle on server object: " + offer_pc);

18 System.out.printin("name: " + offer_pc.name());

1o System.out.printin("price: " + offer_pc.price());

20 } catch (Exception e) { System.out.printin("ERROR : " + e); e.printStackTrace(System.out); }
e}

e}

Figure 9: OfferClient.java: Simple client.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 16/28

. 2ISiEs
& .—-‘S«-"‘_‘_

v

2003

&%

epftung
Q’ferqﬁw

Information Systems 2 / 2. Offering and Using Remote Objects
General Procedure

Example: offers.
1. Interface: create the interface description 0Offer.1id1 and derive the

(a) Java interface Offer. java,
(b) Java implementation base class 0fferPOA. java and

(c) Java helper class OfferHelper. java

by running id1j on it.

2. Implementation: derive the implementation class Of ferImpl. java from
OfferPOA. java implementing the specified interface methods.

3. Server: implement a server application Of ferServer. java that

a) connects to the ORB infrastructure,

(
(b) creates application objects,

(c) outputs references to them and

(d) wait for connections to the application objects.

4. Client: implement a client application OfferClient. java that

(a) connects to the ORB infrastructure,
(b) retrieves application objects by references, and

(c) does something with them.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
17/28

Course on Information Systems 2, summer term 2010

.q.aTSiIéilp&

%,ﬁ

&

epfwung
Q”é?qﬁw

Information Systems 2 / 2. Offering and Using Remote Objects
Running the example

To run the server:
orbd —-ORBInitialPort 9090 —-ORRInitialHost localhost

java 1smll_commerce.OfferServer
The offer server writes the reference to the PC offer

object to the console, something like
TOR:000000000000001d49444c3a09730docochfo3o0fododobh’?2

To run the client:
java 1ismll_commerce.OfferClient IOR:000000000000001d

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
18/28

Course on Information Systems 2, summer term 2010

Information Systems 2 / 2. Offering and Using Remote Objects

Required Files

file function derived | server client
Offer.idl interface — — —
OfferOperations.java | interface + + +
Offer.java interface + + +
OfferHelper.java helper + + +
_OfferStub.java client stub + + +
OfferPOA .java server skeleton + + —
Offerimpl.java implementation — + —
OfferServer.java server — + —
OfferClient.java client — — +

b
i

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2010

19/28

. 2ISiEs
o &2
=2

,;j{!-“"'mg g
-\
Q”"q‘:-qﬁz.

Information Systems 2 / 2. Offering and Using Remote Objects
2003

Class Hierarchy

| InvokeHandler

| Object | IDLEntit A Servant
org.omg.CORBA org.omg.CORBA.portable org.omg.CORBA.PortableServer org.omg.CORBA.portable
A Objectlmgl | OfferOperations i/
org.omg.CORBA .portable —
A OfferPOA
| Offer ‘f
—
C Offerlmpl

C _OfferStub

Figure 10: Class hierarchy for the offer example.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
20/28

Course on Information Systems 2, summer term 2010

. 2ISiEs “
e

v

&

Information Systems 2 / 2. Offering and Using Remote Objects

r_j{;&k‘d“ﬂ
Q’ferlfﬁw

Get/Setter Methods 2003
A pair of Get/Setter methods can be specified more easily by an attribute.
smodule test { package test;
. interface AttributeTest { 2
s readonly attribute string name; s
4 attribute double price; ™
s b s~ test/Attribute TestOperations.java .
6}; +~ Generated by the IDL-to-dJava compiler (portable), version'

, , o -* from attributes.idl
Figure 11: attributes.idl: Alternative interface .* Tuesday, June 3, 2008 8:02:59 AM CEST

description for offers. 2%/

10

i public interface AttributeTestOperations
12{

i String name ();

« double price ();

s void price (double newPrice);

s} // interface AttributeTestOperations

Figure 12: AttributeTestOperations.java: derived
Java interface.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 21/28

Information Systems 2 3 IJ/ %
: ol ¢

1. Introduction

2. Offering and Using Remote Objects

3. Publishing and Requesting Objects by Names

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 22/28

Information Systems 2 / 3. Publishing and Requesting Objects by Names Sprs
Name Services 5 2000 ¥

In practice, using IORs may be too inflexible.

Name Services can be used instead:

e Each ORB allows access to a name service, an object
of class NamingContextExt by the initial reference

NameService.

e The name service object allows to
1. bind names to object references (bind, rebind)

and
2. resolve names to object references (resolve)
3. names are represented as sequences of

NameComponents — for us: strings; “paths”.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 22/28

. 2ISiEs “
e

v

2003

&%

Information Systems 2 / 3. Publishing and Requesting Objects by Names

r_j{;&k‘d“ﬂ
Q’ferlfﬁw

package ismll_commerce;

.import org.omg.CORBA.ORB;

simport org.omg.PortableServer.*; // POA, POAHelper
simport org.omg.CosNaming.*;

spublic class OfferServer NS {

- public static void main(String argsl]) {

5 try{

5 // a. connect to ORB infrastructure:

10 String[] argsOrb = new String[] { "-ORBlInitialPort", "9090", "-ORBlnitialHost", "localhost"};
1 ORB orb = ORB.init(argsOrb, null);

2 POA rootpoa = POAHelper.narrow(orb.resolve initial_references("RootPOA"));
13 rootpoa.the POAManager().activate();

14 org.omg.CORBA.Object nsObj = orb.resolve_initial_references("NameService");
15 NamingContextExt ns = NamingContextExtHelper.narrow(nsObj);

7 /I b. create application objects:

18 Offerlmpl offer_PC = new Offerlmpl("PC Core 2 Quad 6600", 899.90);

20 // c. bind application objects to names:

21 org.omg.CORBA.Object refObj = rootpoa.servant_to_reference(offer_PC);

2 Offer ref = OfferHelper.narrow(refObj);

23 NameComponent path[] = ns.to_name(offer_PC.name());

2 ns.rebind(path, ref);

2 // d. wait for connections to the application objects:

27 orb.run();

2 } catch (Exception e) { System.err.printin("ERROR: " + e); e.printStackTrace(System.out); }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 23/28

Information Systems 2 / 3. Publishing and Requesting Objects by Names Sprs
29 } ¥ 2003 o
30}

Figure 13: Simple server with name service.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
24/28

Course on Information Systems 2, summer term 2010

Information Systems 2 / 3. Publishing and Requesting Objects by Names

. 2ISiEs A
e

v

&,

r_j{;&k‘d“ﬂ
Q’ferlfﬁw

2003

Client with Name Service

package ismll_commerce;
.import org.omg.CORBA.ORB;
simport org.omg.CosNaming.*;

4

spublic class OfferClient_NS {

6

7

public static void main(String args[]) {
try{

// a. connect to the ORB infrastructure:

String[] argsOrb = new String[] { "-ORBlInitialPort", "9090", "-ORBInitialHost", "localhost"};
ORB orb = ORB.init(argsOrb, null);

org.omg.CORBA.Object nsObj = orb.resolve_initial_references("NameService");
NamingContextExt ns = NamingContextExtHelper.narrow(nsQObj);

/' b. retrieve application object by name:

String name = args|0];

org.omg.CORBA.Object ref = ns.resolve_str(name);
Offer offer_pc = OfferHelper.narrow(ref);

// ¢. do something with them:

System.out.printin("Obtained a handle on server object: " + offer_pc);
System.out.printin("name: " + offer_pc.name());
System.out.printin("price: " + offer_pc.price());

} catch (Exception e) { System.out.printin("ERROR : " + €); e.printStackTrace(System.out); }

Figure 14: Simple client with name service.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 25/28

. 2ISiEs “

%,ﬁ

&

epftung
Q’ferqﬁw

Information Systems 2 / 3. Publishing and Requesting Objects by Names
Running the example

To run the server:

orbd -ORBInitialPort 9090
Java 1smll_commerce.OfferServer_NS

—ORBInitialHost localhost

To run the client:
java 1smll_commerce.OfferClient_NS "PC Core 2 Quad 6600"

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
26/28

Course on Information Systems 2, summer term 2010

. 2ISiEs A
e

. . A
Browsing the Name Service 2003
rimport org.omg.CORBA.*;

.import org.omg.CosNaming.*;
spublic class NamespaceBrowser {
s public static void main(String argsl]) {

&

Information Systems 2 / 3. Publishing and Requesting Objects by Names

r_j{;&k‘d“ﬂ
Q’ferlfﬁw

6 try {

7 /I a. connect to the ORB infrastructure:

6 String[] argsOrb = new String[] { "-ORBlInitialPort", "9090", "-ORBlnitialHost", "localhost"};
5 ORB orb = ORB.init(argsOrb, null);

1o NamingContextExt ns = NamingContextExtHelper.narrow(

. orb.resolve_initial_references("NameService"));

12 //'b. get bindings and print them:

13 BindingListHolder bl = new BindingListHolder();

14 BindinglteratorHolder bllt = new BindinglteratorHolder();

s ns.list(1000, bl, bllt);

16 Binding[] bindings = bl.value;

7 for (inti = 0;i < bindings.length; i++) {

18 System.out.print(bindings][i].binding_type == BindingType.ncontext ? "Context: " : "Object: ");
19 System.out.print(bindings]i].binding_name[0].id);

20 for (intj = 1;] < bindings[i].binding_name.length; j++)

21 System.out.print(" /" + bindings][i].binding_name[j].id);

2 System.out.printin();

23 }

2 } catch (Exception e) { System.out.printin("ERROR : " + e); e.printStackTrace(System.out); }
=

26}

Figure 15: Simple nameservice browser.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 27/28

Information Systems 2 / 3. Publishing and Requesting Objects by Names g“p
Summary > 200

e CORBA allows programs on different computers, written in
different languages to communicate.

e Services are described by interface description in a specific
language, the interface description language IDL.

e Programming language-specific interfaces are derived from
the IDL descriptions automatically.

e Implementations based on generated servant base classes
may contain no CORBA specific code.

e To allow clients to locate objects, name services are available.
e The name service itself is a CORBA object; for bootstrapping,

initial references by standard names (“NameService”) are
available.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 28/28

. 2ISiEs
& .—-‘S«-"‘_‘_

v

2003

&%

epfwung
Q”é?qﬁw

Information Systems 2 / 3. Publishing and Requesting Objects by Names
References

[AKSO05] Markus Aleksy, Axel Korthaus, and Martin Schader. Implementing Distributed Sys-

tems with Java and CORBA. Springer, 2005.

[McHO7] Ciaran McHale. CORBA Explained Simply. http://www.ciaranmchale.com/corba-
explained-simply/, 2007.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
28/28

Course on Information Systems 2, summer term 2010

	to1. Introduction
	to2. Offering and Using Remote Objects
	to3. Publishing and Requesting Objects by Names

