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Information Systems 2 / 1. Petri Nets

Overview

– Petri nets are models for parallel computation.

– A Petri net represents a parallel system as graph of
component states (places) and transitions between them.

– You can executew Petri nets online (jPNS) at
http://robotics.ee.uwa.edu.au/pns/java/

There also is a more advanced open source Petri net editor
(PIPE2):

http://pipe2.sourceforge.net/

– Petri Nets have been invented by the German mathematician
Carl Adam Petri in 1962.
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Information Systems 2 / 1. Petri Nets

Definition

A Petri net is a directed graph (P ∪̇ T, F ) over two (disjoint) sorts
of nodes, called places P and transitions T respectively, where

– all roots and leaves are places and
– edges connect only places with transitions,

and not places with places or transitions with transitions,
i.e., F ⊆ (P × T ) ∪ (T × P ).

Graphical representation:

places — circles
transitions — bars (or boxes)
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Information Systems 2 / 1. Petri Nets

Interpretation

The components of a Petri net have the following interpretation:

– places denote a stopping point in a process as, e.g., the
attainment of a milestone;
from the perspective of a transition, a place denotes a
condition.

– transitions denote an event or action.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 3/29



Information Systems 2 / 1. Petri Nets

Inputs and Outputs

inputs / preconditions of a transition t ∈ T :
the places with edges into t, i.e.,

•t := fanin(t) := {p ∈ P | (p, t) ∈ F}

outputs / postconditions of a transition t ∈ T :
the places with edges from t, i.e.,

t• := fanout(t) := {p ∈ P | (t, p) ∈ F}
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Information Systems 2 / 1. Petri Nets

State of a Petri Net

The state of a Petri net is described by the markings of the
places by tokens, i.e.,

M : P → N
where M(p) denotes the number of tokens assigned to place
p ∈ P at a given point in time.

Graphical representation:

tokens — black dots
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Information Systems 2 / 1. Petri Nets

State Change of a Petri Net

A transition t ∈ T is said to be enabled if each of its inputs
contains at least one token, i.e.,

M(p) ≥ 1 ∀p ∈ •t

An enabled transition t ∈ T may fire, i.e., change the state of the
Petri net from a state M into a new state Mnew by

– remove one token from each of its inputs and
– add one token to each of its outputs, i.e.,

Mnew(p) := M(p)− 1 ∀p ∈ •t,
Mnew(p) := M(p) + 1 ∀p ∈ t•

The new state is also denoted by t(M) := Mnew.

If several transitions are enabled, the next transition to fire is
choosen at random.
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Information Systems 2 / 1. Petri Nets

State Change of a Petri Net / Example
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Information Systems 2 / 1. Petri Nets
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Information Systems 2 / 1. Petri Nets

AND vs. OR

AND: both inputs are required.

OR: at least one input is required.
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Information Systems 2 / 1. Petri Nets

OR vs. XOR

OR: at least one input is required.

XOR: exactly one input is required.
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Information Systems 2 / 1. Petri Nets

Example (1/4)

Assume there is a robot with three states:
P0 robot works outside special workplace
P1 robot waits for access to special workplace
P2 robot works inside special workplace

and three events:
T0 finish work outside special workplace
T1 enter special workplace
T2 finish work in special workplace

that works repeatedly:
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Information Systems 2 / 1. Petri Nets

Example (2/4)

A system consisting of two such robots can be described as
follows:
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Information Systems 2 / 1. Petri Nets

Example (3/4)

Now assume the special workplace cannot be used by both
robots at the same time:

with additional place:

P3 special workplace available

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 12/29



Information Systems 2 / 1. Petri Nets

Example (4/4)

Now assume a third robot assembles one component produced
by the two robots each immediately and its input buffer can hold
maximal 4 components.

with additional places:

P4 buffer place for component 2 available
P5 buffer place for component 1 available

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim
Course on Information Systems 2, summer term 2010 13/29



Information Systems 2 / 1. Petri Nets

Reachability

A given marking N of a Petri net is said to be reachable from a
marking M if there exist transistions t1, t2, . . . , tn ∈ T with

N = tn(tn−1(. . . t2(t1(M)) . . .))

Example:
1. The state

P0 = 0, P1 = 0, P2 = 1, P0b = 1, P1b = 0, P2b = 0, P3 = 0

denoting the first robot to work in the special workplace while the
second works outside, is reachable for the net robots (3/4) from
the initial marking

P0 = 1, P1 = 0, P2 = 0, P0b = 1, P1b = 0, P2b = 0, P3 = 1

by the transition sequence T0, T1.

2. The state

P0 = 0, P1 = 0, P2 = 1, P0b = 0, P1b = 0, P2b = 1, P3 = 0

denoting both robots to work in the special workplace, is not
reachable from the initial state.
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Information Systems 2 / 1. Petri Nets

Boundedness and Saveness

For k ∈ N, a Petri net is called k-bounded for an initial marking
M if no state with a place containing more than k tokens is
reachable from M .

A Petri net is called save for an initial marking M , if it is
1-bounded for M .
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Information Systems 2 / 1. Petri Nets

Boundedness and Saveness / Example (1/2)

Two robots with states:
P0 robot available
P1 robot works on component

and events:
T0 start working
T1 finish work on component

working in sequence.

P2 input component for second robot available
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Information Systems 2 / 1. Petri Nets

Boundedness and Saveness / Example (2/2)

The former example is not bounded as the first robot could
produce arbitrary many tokens in P2 without the second robot
ever consuming one.

Introducing a new place

P3 buffer place available

with initially 3 tokens renders the example 3-bounded.
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Information Systems 2 / 1. Petri Nets

Deadlock

A mutex can easily produce a deadlock, i.e., all processes
waiting for the availability of the mutex.
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Information Systems 2 / 2. The Pi Calculus

Overview

– The π-calculus is a another model for concurrent computation.

– The π-calculus is a formal language for defining concurrent
communicating processes (usually called agents).

– The π-calculus relies on message passing between
concurrent processes.

– The π-calculus got his name to resemble the lambda calculus,
the minimal model for functional programming (Church/Kleene
1930s).
Here π (= greek p) as “parallel”.

– The π-calculus was invented by the Scottish mathematician
Robin Milner in the 1990s.
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Information Systems 2 / 2. The Pi Calculus

Initial Example

1 Introdu
tionThe �-
al
ulus is a mathemati
al model of pro
esses whose inter
onne
tions
hange as they intera
t. The basi
 
omputational step is the transfer of a 
om-muni
ation link between two pro
esses; the re
ipient 
an then use the link forfurther intera
tion with other parties. This makes the 
al
ulus suitable for mod-elling systems where the a

essible resour
es vary over time. It also providesa signi�
ant expressive power sin
e the notions of a

ess and resour
e underliemu
h of the theory of 
on
urrent 
omputation, in the same way as the moreabstra
t and mathemati
ally tra
table 
on
ept of a fun
tion underlies fun
tional
omputation. This introdu
tion to the �-
al
ulus is intended for a theoreti
allyin
lined reader who knows a little about the general prin
iples of pro
ess algebraand who wishes to learn the fundamentals of the 
al
ulus and its most 
ommonand stable variants.Let us �rst 
onsider an example. Suppose a server 
ontrols a

ess to a printerand that a 
lient wishes to use it. In the original state only the server itself hasa

ess to the printer, represented by a 
ommuni
ation link a. After an intera
-tion with the 
lient along some other link b this a

ess to the printer has beentransferred:
ServerAfter intera
tion:b 
a

Before intera
tion:
PrinterPrinter

Server Client Client

In the �-
al
ulus this is expressed as follows: the server that sends a along bis ba : S ; the 
lient that re
eives some link along b and then uses it to send dataalong it is b(
) : 
d : P . The intera
tion depi
ted above is formulatedba : S j b(
) : 
d : P ��! S j ad : PWe see here that a plays two di�erent roles. In the intera
tion between the serverand the 
lient it is an obje
t transferred from one to the other. In a furtherintera
tion between the 
lient and the printer it is the name of the 
ommuni
ation3
[Par01]

(b̄〈a〉.S) | (b(x).x̄〈d〉.P )
τ−→ S | ā〈d〉.P
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Information Systems 2 / 2. The Pi Calculus

Agents

Let X be a set of atomic elements, called names.

An agent is defined as follows:
R ::= 0 do nothing

x̄〈y〉.P send data y to channel x, then proceed as P
x(y).P receive data into y from channel x, then proceed as P
P + Q proceed either as P or as Q
P |Q proceed as P and as Q in parallel
(νx)P create fresh local name x
!P arbitrary replication of P , i.e., P |P |P | . . .

where P,Q are agents and x, y ∈ X are names.

To modularize complex agents, one usually allows definitions of
abbreviations as

A(x1, x2, . . . , xn) := P

as well as using such definitions

A(x1, x2, . . . , xn) proceed as defined by A

where P is an agent and A is a name
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Information Systems 2 / 2. The Pi Calculus

Bound and Free Names

There are two ways to bind a name y in π-calculus:

– by receiving into a name: x(y).P .
– by creating a name: (νy)P .

All free / unbound names figure as named constants that agents
must agree on:

agent free names
0 ∅
x̄〈y〉.P free(P ) ∪ {x, y}
x(y).P free(P ) \ {y} ∪ {x}
P + Q free(P ) ∪ free(Q)
P |Q free(P ) ∪ free(Q)
(νx)P free(P ) \ {x}
!P free(P )
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Information Systems 2 / 2. The Pi Calculus

Structural Congruence / Example

The same agent can be expressed by different formulas:

(b̄〈a〉.S) | (b(x).x̄〈d〉.P )

(b(x).x̄〈d〉.P ) | (b̄〈a〉.S)

(b(y).ȳ〈d〉.P ) | (b̄〈a〉.S)

Therefore one defines a notion of equivalent formulas
(structurally equivalent).
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Information Systems 2 / 2. The Pi Calculus

Structural Congruence

The following agents are said to be structurally congruent:

P ≡ Q if P and Q differ only in bound names
P + Q ≡ Q + P +-symmetry
P + 0 ≡ P +-neutrality of 0
P |Q ≡ Q |P |-symmetry
P | 0 ≡ P |-neutrality of 0

!P ≡ P | !P !-expansion
(νx)0 ≡ 0 restriction of null

(νx)(νy)P ≡ (νy)(νx)P ν-communtativity
(νx)(P |Q) ≡ P | (νx)Q if x 6∈ free(P )

Formulas
(a(x).0) and (ā〈b〉.0)

are abbreviated as
a(x) and ā〈b〉

respectively.
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Information Systems 2 / 2. The Pi Calculus

Reduction

A reduction P → Q describes that P results in Q by parallel
computation.

Reduction rules:

communication:

(. . . + x̄〈z〉.P ) | (. . . + x(y).Q) −→ P |Q[z/y]

reduction under composition:
P −→ Q

P |R −→ Q |R

reduction under restriction:
P −→ Q

(νx)P −→ (νx)Q

same reduction for structurally equivalent agents:
P −→ Q P ≡ P ′ Q ≡ Q′

P ′ −→ Q′
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Information Systems 2 / 2. The Pi Calculus

Structured Messages

Often one agent needs to pass a message that consists of
several parts.

Just sending both parts sequentially, may lead to garbled
messages. Example:

(a(x).a(y)) | (ā〈b1〉.ā〈c1〉) | (ā〈b2〉.ā〈c2〉)
intends to sent either (b1, c1) or (b2, c2) and bind it to (x, y), but it
may happen that actually the second agent sents b1, then the
thrird b2, so (x, y) is bound to (b1, b2).

Private channels can avoid this problem:
ā〈b1, b2, · · · , bn〉 := (νw)(ā〈w〉.w̄〈b1〉.w̄〈b2〉. · · · .w̄〈bn〉)
a(x1, x2, · · · , xn) := a(w).w(b1).w(b2). · · · .w(bn)

Now the example can we written as
a(x, y) | ā〈b1, c1〉 | ā〈b2, c2〉

and just the private channel name w is exchanged via the public
channel a,
the actual data (b1, c1) is sent via the private channel w.
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Information Systems 2 / 2. The Pi Calculus

An Example (1/3)

showing how to encode a single recursive de�nition with a single parameter. Thus,suppose we have A(x) def= Pwhere we assume that fn(P ) � fxg, and that P may contain occurrences of A(perhaps with di�erent parameters). The idea is, �rst, to replace every recursivecall A(y) within P by a little process ay which excites a new copy of P . (Here ais a new name.) Let us denote by bP the result of doing these replacements in P .Then the replication !a(x): bPcorresponds to the parametric process A(x). We now have to take care of theoutermost calls of A. So let A(z) occur in some system S; then we replace it by(�a)(az j !a(x): bP )Note that this places a separate copy of the replication at each call A(z) in S.Alternatively one can make do with a single copy; transform S to bS by replacingeach call A(z) just by az, and then replace S by(�a)( bS j !a(x): bP )Of course, these translations do not behave identically with the original, becausethey do one more reduction for each call of A; but they are weakly congruent tothe original (in the sense of [19]), which is all we would require in applications.From now on, in applications we shall freely use parametric recursive de�ni-tions; but, knowing that translation is possible, in our theoretical development weshall ignore them and stick to replication.3.2 Mobile telephonesHere is a \
owgraph" of our �rst application:'& $%base1ZZZZZZgive1ZZZZZZalert1������talk1������switch1 '& $%idlebase2������ give2������alert2���� @@XXXBBk kcar(talk1; switch1)'& $%centre111 [Mil93]
4 concurrent agents: car, two bases and centre.
8 named channels: talk t1, t2, switch s1, s2, give g1, g2, alert a1, a2.
First base uses channels t1 and s1 to communicate with car,
g1 and a1 to communicate with centre.
Second base uses channels t2 and s2 to communicate with car,
g2 and a2 to communicate with centre.
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Information Systems 2 / 2. The Pi Calculus

An Example (2/3)

System1 :=(νt1, t2, s1, s2, g1, g2, a1, a2)

(Car(t1, s1) |Base(t1, s1, g1, a1) | IdleBase(t2, s2, g2, a2) |Centre1)

Car(t, s) :=t().Car(t, s) + s(t′, s′).Car(t′, s′)
Base(t, s, g, a) :=t().Base(t, s, g, a) + g(t′, s′).s̄〈t′, s′〉.IdleBase(t, s, g, a)

IdleBase(t, s, g, a) :=a().Base(t, s, g, a)

Centre1 :=ḡ1〈t2, s2〉.ā2〈〉.Centre2

Centre2 :=ḡ2〈t1, s1〉.ā1〈〉.Centre1
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Information Systems 2 / 2. The Pi Calculus

An Example (3/3)

System1 := (νt1, t2, s1, s2, g1, g2, a1, a2)

(Car(t1, s1) |Base(t1, s1, g1, a1) | IdleBase(t2, s2, g2, a2) |Centre1)

≡ . . . | (. . . + g1(t
′, s′).s̄1〈t′, s′〉.IdleBase(t1, s1, g1, a1) | . . . | (ḡ1〈t2, s2〉.ā2〈〉.Centre2)

→ . . . | (s̄1〈t2, s2〉.IdleBase(t1, s1, g1, a1) | . . . | (ā2〈〉.Centre2)

≡(. . . + s1(t
′, s′).Car(t′, s′)) | (s̄1〈t2, s2〉.IdleBase(t1, s1, g1, a1) | . . . | (ā2〈〉.Centre2)

→Car(t2, s2) | IdleBase(t1, s1, g1, a1) | . . . | (ā2〈〉.Centre2)

≡Car(t2, s2) | IdleBase(t1, s1, g1, a1) | (a2().Base(t2, s2, g2, a2)) | (ā2〈〉.Centre2)

→Car(t2, s2) | IdleBase(t1, s1, g1, a1) |Base(t2, s2, g2, a2) |Centre2
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