
Information Systems 2

Information Systems 2

1. Modelling Information Systems I: Databases

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)

Institute for Business Economics and Information Systems

& Institute for Computer Science

University of Hildesheim

http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 1/44

Information Systems 2

1. What is a database?

2. Entity Relationship Models

3. The Relational Model

4. Basics of SQL

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 1/44

Information Systems 2 / 1. What is a database?

Why Databases?

Benefits of databases:

• Data can be shared.

• Redundancy can be reduced.

• Inconsistency can be avoided (to some extent).

• Transaction support can be provided.

• Integrity can be maintained.

[?]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 1/44

Information Systems 2 / 1. What is a database?

Schema and State

• Schema (intension):

describes the structure of a database with so-called schema

constructs.

The schema often is represented graphically.

• State (extension, contents):

describes the contents of a database at a given point in time

(snapshot).

The state can be described by a set of instances of schema

constructs.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 2/44

Information Systems 2 / 1. What is a database?

Schema and State / Example

Example:

A small company keeps a list of its customers in an OO Calc

table. It contains a column each for name, address, phone

number and email address. By now, there are just two rows:

name address phone email

Anna Müller Schuhstaße 3, 31139 Hildesheim 05121 / 123456 mueller@example.com

Bert Meier Hauptstraße 11, 30300 Hannover 050 / 12480 meier@beispiel.de

Here,

• “name”, “address” etc. are schema constructs.

• “Anna Müller”, “Schuhstraße 3” etc. describe the state.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 3/44

Information Systems 2 / 1. What is a database?

Data Model

A data model provides a formal description of how data may be

structured and accessed.

It covers:

• data structures:

that may be used to define the schema of a database.

• integrity rules:

placed on the data structures to enforce integrity constraints.

• data manipulation operators:

which allow to query and change the data.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 4/44

Information Systems 2 / 1. What is a database?

Levels of Data Models

Usually one distinguishes 3 different levels of data models:

Conceptual models

(also logical models; high-level models):

describe data in terms close to the concepts of

users, e.g.:

• Object model: describes data as objects

that are instances of classes, which have

properties and methods; classes are

organized in an inheritance hierarchy.

• Entity Relationship model (P. Chen 1976):

describes data as entities with attributes

and relations.

Representation models

(also Implementation Models):

describe data in terms that are close to

implementations, e.g.:

• Relational data model (Edgar Codd, 1969):

describes data as tables (relations).

• Network data model (Charles Bachman,

1969): describes data as a network of

records (example: LDAP).

• Hierarchical data model (mainframe era):

describes data as a tree of records.

Physical models

(also low-level models; storage models;

internal models):

describe storage of data in detail.

Sometimes the logical level is split in

• external models (also user logical

models): describes data from the

perspective of different users.

• conceptual models (also community

logical models): describes data from the

perspective of the community of all users.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 5/44

Information Systems 2 / 1. What is a database?

Levels of Data Models

Accordingly, one distinguishes three different levels of schemata:

• Internal schema:

describes physical structures in which the data is stored.

• Conceptual schema:

describes the structure of the whole database for users.

• External schema (also user view):

describes the structure of a a part of the database for a

specific user or user group.

Data is stored accordingly to the internal schema.

There are mappings between internal schema and higher

schemata.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 6/44

Information Systems 2

1. What is a database?

2. Entity Relationship Models

3. The Relational Model

4. Basics of SQL

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 7/44

Information Systems 2 / 2. Entity Relationship Models

Components

construct models diagram

entity entity, object, thing in the real world rectangle

attribute property of a thing oval

relation relation between two or more things diamond

Kunde

Name

Adresse

Postleitzahl

Hausnummer

StrasseVorname

AnredeGeschlecht

Kundennr

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 7/44

Information Systems 2 / 2. Entity Relationship Models

Properties of Attributes

simple vs. complex:

simple attributes cannot be decomposed into

parts, complex attributes are composed of other

attributes.

single-valued vs. multi-valued:

for single-valued attributes each entity has at

most one value, for multi-valued attributes an

entity may have several values.

stored vs. derived:

stored attributes are stored explicitly in the

database, derived attributes can be computed

from other information.

value domain:

the values of an attribute come from a fixed set,

e.g., integers, real numbers, strings of a

maximal length etc.

null value:

the special value null marks missing values or

attributes that do not apply for a given entity.

Kunde

Name

Adresse

Postleitzahl

Hausnummer

StrasseVorname

AnredeGeschlecht

Kundennr

complex: an oval with attached ovals.

multi-valued: double oval.

derived: dashed border.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 8/44

Information Systems 2 / 2. Entity Relationship Models

Entities

Things of the same type, i.e., things that

can be described by the same attributes

and relations, are modeled as instances

of an entity.

key attributes: an attribute whichs

value occurs among all instances of an

entity at most once, i.e., allows to

identify an instance, is called a key.

Most entities have exactly one key. But

they may also have none or several

keys.

regular vs. weak:

an entity with at least one key is called

regular. An entity without key is called

weak.

Kunde

Name

Adresse

Postleitzahl

Hausnummer

StrasseVorname

AnredeGeschlecht

Kundennr

underlined: key attribute.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 9/44

Information Systems 2 / 2. Entity Relationship Models

Relations

Relations are used to model

relationships between entities. The

entities involved are called

participating entities.

Arity:

the number of participating entities of a

relation is called its arity.

Role names: the positions at which

entities can enter a relation are called

roles. E.g., Auftragserteiler, Auftrag,

Auftragsbearbeiter.

Role names are especially important if

the same entity can participate in

several roles in a relationship.

AuftragKunde erteilt

Figure 4: A binary (2-ary) relation:

[Kunde] erteilt [Auftrag].

AuftragKunde erteilt bei

Mitarbeiter

Figure 5: A ternary (3-ary) relation:

[Kunde] erteilt [Auftrag] bei [Mitarbeiter].

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 10/44

Information Systems 2 / 2. Entity Relationship Models

Relations / Cardinality Constraints

Cardinality constraint:

restricts how often an instance of an

entity may participate in a relation.

1:1:

an instance is allowed to participate at

most with one other instance.

1:n:

an instance of role 1 may participate at

most with n other instances in role 2, but

an instance of role 2 may participate at

most with one other instances in role 1.

n:m:

an instance of role 1 may participate at

most with n other instances in role 2, an

instance of role 2 may participate at

most with m other instances in role 1.

AuftragRechnung
1 1

erstellt für

AuftragKunde
1 n

erteilt

ProduktAuftrag
m n

enthält

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 11/44

Information Systems 2 / 2. Entity Relationship Models

Relations / Total vs. Partial Participation

Total Participation:

An entity participates totally in a relation,

if each instance must be related to

some other instances by that relation.

(lower bound cardinaliy restriction ≥ 1).

Partial Participation:

An entity participates partially in a

relation, otherwise.

AuftragKunde
1 n

erteilt

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 12/44

Information Systems 2 / 2. Entity Relationship Models

Relations / Attributes

Attributes:

Relations may have attributes, too.

Each instance of the relation, i.e., each

tuple of instances of entities between

which the relation holds, has a value for

each of the attributes of the relation.

ProduktAuftrag
m n

enthält

Stückzahl

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 13/44

Information Systems 2 / 2. Entity Relationship Models

Weak Entities

Weak entity:

an entity without a key attribute.

Instances of weak entities are identified

indirectly by means of a relation.

An instance of a weak entity is identified

as the instance that

• is related to a given other entity

(identifying entity; owner entity)

• with respect to a given relation

(identifying relation) and

• has a given value for a given

attribute (partial key).

Weak entities always participate

completely in their identifying relation.

AuftragKunde
1 n

erteilt

BestellwertName

BestelldatumKundennr

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 14/44

Information Systems 2 / 2. Entity Relationship Models

Weak Entities

Weak entities can be converted to

regular entities by introducing a key.

AuftragKunde
1 n

erteilt

BestellwertName

BestelldatumKundennr

AuftragKunde
1 n

erteilt

BestellwertName

BestelldatumKundennr

Auftragsnr

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 15/44

Information Systems 2 / 2. Entity Relationship Models

An Example

Kunde

Name

Bestellung

Produkt

Bezeichnung

Stückkosten

Rechnungsdatum

Rechnungsbetrag

Stückzahl

1 n
bestellt

m

n

enthält

Aktion

n

m

bezieht sich auf

Aktionskosten

Aktionsdatum

Kundennr

Bezeichnung

Rechnungsnr

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 16/44

Information Systems 2

1. What is a database?

2. Entity Relationship Models

3. The Relational Model

4. Basics of SQL

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 17/44

Information Systems 2 / 3. The Relational Model

Basic Concepts

The Relational model organizes data in

tables.

Relational model common sense table

attribute column

attribute domain value domain of a column

tuple row

relation table

null value cells without entry (missing

values, unappropriate

attributes)

key set of columns which

values uniquely identify a

row

primary key key usually used for

identifying rows

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 17/44

Information Systems 2 / 3. The Relational Model

Basic Concepts / Foreign Keys

Foreign Key:

an attribute (or set of attributes) that

contains the key value of another

relation.

The value domain of the foreign key

must be the same as the value domain

of the key of the referenced relation.

For each tuple of the referencing

relation the value of the foreign keys

must occur among the values of the key

attribute of the referenced relation or be

null (referential integrity).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 18/44

Information Systems 2 / 3. The Relational Model

Mapping an ER Model to a Relational Model / Regular Entity

Regular entity with −→relation (entity relation) with

simple attributes −→ attribute

complex attributes−→ one attribute for each component (neglect structure)

key −→ primary key (select one)

keys −→ secondary keys (all other)

Multi-valued attributes are mapped to an own relation that contains

• the foreign key of the entity relation and

• the value of the attribute.

Together they define the primary key of the new relation.

Kunde

Name

Adresse

Postleitzahl

Hausnummer

StrasseVorname

AnredeGeschlecht

Kundennr

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 19/44

Information Systems 2 / 3. The Relational Model

Mapping an ER Model to a Relational Model / Binary Relation 1:n

Binary relation 1:n−→add a foreign key

−→ referencing the entity relationship on the 1-side

−→ to the entity relationship on the n-side.

All attributes of the relation are added to the entity relationship on the n-side.

AuftragKunde
1 n

erteilt

BestellwertName

BestelldatumKundennr

Auftragsnr

variant:

AuftragKunde
1 n

erteilt

BestellwertName

BestelldatumKundennr

Auftragsnr

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 20/44

Information Systems 2 / 3. The Relational Model

Mapping an ER Model to a Relational Model / Binary Relation n:m

Binary relation n:m−→relation (relationship relation) with

−→ foreign key to the entity relation on the n-side and

−→ foreign key to the entity relation on the m-side

−→ (jointly defining the primary key)

All attributes of the relation are mapped to attributes of the relationship relation.

Bestellung Produkt

Bezeichnung

Stückkosten

Rechnungsdatum

Rechnungsbetrag
Stückzahl

m n
enthält

Rechnungsnr

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 21/44

Information Systems 2 / 3. The Relational Model

Mapping an ER Model to a Relational Model / Binary Relation n:m

Weak entity−→relation (entity relation) with

−→ foreign key to the identifying entity relation

−→ (jointly with the partial key defining the primary key)

All attributes are mapped as for regular entities.

AuftragKunde
1 n

erteilt

BestellwertName

BestelldatumKundennr

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 22/44

Information Systems 2 / 3. The Relational Model

Mapping an ER Model to a Relational Model / Summary

ER model Relational model

entity relation (entity relation)

relation, binary, 1:1 add foreign key to one of the participating entity relations

relation, binary, 1:n add foreign key to the participating entity relation on the

n-side

relation, binary, n:m relation (relationship relation) with 2 foreign keys

relation, n-ary relation (relationship relation) with n foreign keys

attribute, simple add attribute to relation

attribute, complex add attributes to relation, one for each component

attribute, multi-valued relation with foreign key

key primary or secondary key

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 23/44

Information Systems 2 / 3. The Relational Model

Mapping an ER Model to a Relational Model / Example

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 24/44

Information Systems 2

1. What is a database?

2. Entity Relationship Models

3. The Relational Model

4. Basics of SQL

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 25/44

Information Systems 2 / 4. Basics of SQL

SQL

SQL (Structured Query Language) is the industrial standard for

• the defintition of relation schemata

(schema definition language, DDL),

• the manipulation of the contents of a relational database

(data manipulation language, DML) and

• the manipulation of access rights to a relational database

(data control language, DCL)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 25/44

Information Systems 2 / 4. Basics of SQL

History

SQL is an ISO/ANSI standard:

• based on SEQUEL (Structured English Query Language) by

Donald D. Chamberlin and Raymond F. Boyce (IBM) in the

early 1970s

• 1986 standardized by ISO/ANSI (SQL/1, SQL-86)

• 1992 update to SQL/2, SQL-92; 1999 update to SQL/3,

SQL:1999

• 2003 update to SQL:2003; 2006 update to SQL:2006 (XML

features)

• 2008 update to SQL:2008.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 26/44

Information Systems 2 / 4. Basics of SQL

DBMS Implementations

SQL is supported by nearly all relational database management

systems:

• Many simpler DBMS (such as mysql) do not implement parts

of the standard.

• Most DBMS provide (mutually incompatible) non-standard

extensions.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 27/44

Information Systems 2 / 4. Basics of SQL

Queries and Result Sets

SQL defines a text format for database queries.

Every SQL query returns

• an error code or

• a result set.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 28/44

Information Systems 2 / 4. Basics of SQL

Creating a Database

DBMS can manage several databases at the same time.

One can create a new database via:

create database 〈database-name〉;
use 〈database-name〉;

All following operations will be applied to this database.

One can destroy a database via:

drop database 〈database-name〉;

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 29/44

Information Systems 2 / 4. Basics of SQL

Creating a Table

One can create a table via

create table 〈table-name〉 (〈table-spec〉) ;

where 〈table-spec〉 is a comma-separated list of table

specifications, i.e., of

• columns:

〈column-name〉 〈column-type〉 [not null] [primary key]
[references 〈table-name〉 [(〈column-commalist〉)]]

• primary keys:

primary key (〈column-commalist〉)

• foreign keys:

foreign key (〈column-commalist〉)
references 〈table-name〉 [(〈column-commalist〉)]

One can destroy a table via:

drop table 〈table-name〉;
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 30/44

Information Systems 2 / 4. Basics of SQL

Types (SQL:99)

type description

int integer (4 byte)

smallint integer (2 byte)

float(p) floating point number (accuracy p: number of valid digits)

decimal(p,q) formatted floating point number (accuracy p: number of valid

digits; scale q: number of post-comma digits)

char(n) string of fixed length n

varchar(n) string of maximal length n

bit(n) bit sequence of fixed length n

varbit(n) bit sequence of maximal length n

date date

time time

timestamp combination of date and time

blob binary large object

clob, nclob character large object (of variable or fixed length)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 31/44

Information Systems 2 / 4. Basics of SQL

Creating a Table / Example

create table kunde (kundennr integer not null primary key,

name varchar(30)) ;

create table bestellung (rechnungsnr integer not null primary key,

rechnungsdatum date,

rechnungsbetrag integer,

kundennr integer references kunde);

create table produkt (bezeichnung varchar(30) not null primary key,

stueckkosten integer);

create table posten (rechnungsnr integer not null references bestellung,

produktbezeichnung varchar(30) not null

references produkt (bezeichnung),

stueckzahl integer,

primary key (rechnungsnr, produktbezeichnung));

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 32/44

Information Systems 2 / 4. Basics of SQL

Modifying the Contents of a Table / Insert

Insert rows into a table:

insert into 〈table-name〉 [〈column-commalist〉] 〈table-expr〉 ;

where 〈table-expr〉 in the simplest case is as

values (〈scalar-expr-commalist〉)

Example:

insert into kunde values (1, "Frank Mueller");
insert into produkt values ("Spark II", 400);
insert into bestellung values (2001, "2000-06-31", 2000, 1);
insert into posten values (2001, "Spark II", 1);

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 33/44

Information Systems 2 / 4. Basics of SQL

Modifying the Contents of a Table / Delete

Delete rows in a table:

delete from 〈table-name〉 [where 〈cond-expr〉];

where 〈cond-expr〉 in the simplest case is as

〈column-name〉 〈comparision-operator〉 〈value〉

or a combination of such expressions with the boolean operators

“and,” “or” and “not”.

Example:

delete from kunde where kundennr = 2000;
delete from bestellung where rechnungsdatum < "2000-07-01";

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 34/44

Information Systems 2 / 4. Basics of SQL

Modifying the Contents of a Table / Update

Update rows in a table:

update 〈table-name〉 set 〈column-name〉 = 〈scalar-expr〉
[where 〈cond-expr〉];

Example:

update produkt set stueckkosten = 1.2 * stueckkosten ;

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 35/44

Information Systems 2 / 4. Basics of SQL

SQL Queries

select 〈select-item-commalist〉
from 〈table-ref-commalist〉
[where 〈cond-expr〉]
[group by 〈column-ref-commalist〉]
[having 〈cond-expr〉]

where 〈select-item〉 is as

〈scalar-expr〉 [as 〈column-name〉] | [range-variable .] *

and 〈table-ref〉 is as

〈table-name〉 [AS 〈range-variable〉 [(column-commalist)]]
| 〈table-expr〉 [AS 〈range-variable〉 [(column-commalist)]]
| 〈join-table-expr〉

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 36/44

Information Systems 2 / 4. Basics of SQL

SQL Queries / Examples

Examples:

select * from bestellung;

rechnungsnr rechnungsdatum rechnungsbetrag kundennr

2001 2000-06-31 2000 1

2002 2000-07-01 6000 3

2003 2000-07-04 1600 1

select kundennr as knr, rechnungsbetrag from bestellung;

knr rechnungsbetrag

1 2000

3 6000

1 1600

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 37/44

Information Systems 2 / 4. Basics of SQL

SQL Queries / Joins

More complex queries combine several tables.

The join operator (represented as comma or by “join”) builds the

cartesian product of two tables.

Usually, one is not interested in all combinations of the rows of

two tables, but just the ones that are joined by a foreign key. This

can be accomplished by:

• filtering by a “where” clause,

• a “left join” or “right join” operator with “on” clause or

• a “natural left join” or “natural right join” operator

(join on all attributes with the same name).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 38/44

Information Systems 2 / 4. Basics of SQL

SQL Queries / Joins / Example

select name,rechnungsbetrag from kunde,bestellung
where kunde.kundennr = bestellung.kundennr;

select name,rechnungsbetrag from bestellung left join kunde
on kunde.kundennr = bestellung.kundennr;

select name,rechnungsbetrag from bestellung natural left join kunde;

name rechnungsbetrag

Frank Mueller 2000

Heribert Mayer 6000

Frank Mueller 1600

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 39/44

Information Systems 2 / 4. Basics of SQL

SQL Queries / Aggregation

One can aggregate the values of a column groupwise by

• defining groups of rows by a “group by” clause and

• use an aggregation function such as

sum, count, max, min, avg

in the “select-expr”.

Example:

select name,sum(rechnungsbetrag)
from bestellung natural left join kunde
group by name;

name sum(rechnungsbetrag)

Frank Mueller 3600

Heribert Mayer 6000

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 40/44

Information Systems 2 / 4. Basics of SQL

SQL Queries / Aggregation

With the “having” clause one can filter those aggregated rows

that meet some specified criteria.

Example:

select name,sum(rechnungsbetrag)
from bestellung natural left join kunde
group by name
having count(*) > 1;

name sum(rechnungsbetrag)

Frank Mueller 3600

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 41/44

Information Systems 2 / 4. Basics of SQL

SQL Queries / Sorting

With the “order by” clause one can sort the rows of the result set.

One has to provide

• the name of the columns to sort by and

• “asc” for ascending or “desc” for descending sorting.

Example:

select kundennr,rechnungsbetrag
from bestellung
order by rechnungsbetrag desc;

kundennr rechnungsbetrag

3 6000

1 2000

1 1600

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 42/44

Information Systems 2 / 4. Basics of SQL

SQL Queries / Nested Queries

One can use “select” expressions in “where” clauses.

Example:

select name
from posten natural left join bestellung natural left join kunde
where produktbezeichnung in

(select produktbezeichnung
from posten natural left join bestellung natural left join kunde
where name="Frank Mueller");

name

Frank Müller

Heribert Mayer

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 43/44

Information Systems 2 / 4. Basics of SQL

Further SQL Concepts

• transactions

• views

• access rights

• trigger

• cursor

• stored procedures

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2011 44/44

