
Information Systems 2

Information Systems 2

3. Distributed Information Systems I: CORBA

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)

Institute for Business Economics and Information Systems

& Institute for Computer Science

University of Hildesheim

http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 1/28

Information Systems 2

1. Introduction

2. Offering and Using Remote Objects

3. Publishing and Requesting Objects by Names

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 1/28

Information Systems 2 / 1. Introduction

Example Scenario

Assume, you have to set up an information system that

informs business customers about products you offer and

the prices you charge.

A later stage of the system should allow

– product managers to add, edit and remove products,

– marketing staff to set prices,

– customers to place orders and

– sales staff to mark orders as shipped

– etc.

To accomplish this, many different persons have to

collaborate on different aspects of the data and the

process.

Thus, the whole system has to be distributed.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 1/28

Information Systems 2 / 1. Introduction

Paradigms of Distributed Systems

In general, one distinguishes two types of distributed

systems:

Client/Server Applications:

A central server hosts the shared part of

the data and offers services to different

clients, e.g., access to the data as well

as communication between the clients.

Peer-to-Peer Applications:

There is no central server, but the data

is distributed over a network of clients

(called peers). Peers may communicate

directly with each other as well as

indirectly by routing throught the peer

network.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 2/28

Information Systems 2 / 1. Introduction

CORBA

The Common Object Request Broker Architecture (CORBA)

allows programs

– on different computers,

– written in different languages

to communicate.

Communication is mediated by so called Object Request Brokers

(ORBs).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 3/28

Information Systems 2 / 1. Introduction

CORBA Standard

CORBA is an open standard developed by the Object Management

Group (OMG):

– CORBA 1.0 / Oct. 1991 (Object model, IDL, core DII; C language

binding)

– CORBA 2.0 / Aug. 1996 (GIOP, IIOP; C++ and Smalltalk language

bindings)

– CORBA 2.2 / Feb. 1998 (POA; Java language binding)

– CORBA 3.0 / Jul. 2002

– CORBA 3.1 / Jan. 2008

CORBA is widespread. E.g., an implementation ships with every

Oracle JDK release.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 4/28

Information Systems 2 / 1. Introduction

Benefits of CORBA [McH07]

• Maturity:

CORBA is developed since 1991.

• Open Standard:

CORBA is standardized by the Object Management Group (OMG).

• Wide platform support:

CORBA is available for mainframes (e.g., IBM OS/390s), Unix & Linux,

Windows, AS/400, Open VMS, OS X and several embedded operating systems.

• Wide language support:

CORBA has language bindings for C, C++, Java, Smalltalk, Ada, COBOL, PL/I,

LISP, Python and IDLScript.

• Efficiency:

CORBA marshals data, i.e., converts data from programming-language types

into binary representations that can be transmitted efficiently.

• Scalability:

CORBA servers can handle huge server-side data as well as high

communication loads from thousands of client applications.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 5/28

Information Systems 2

1. Introduction

2. Offering and Using Remote Objects

3. Publishing and Requesting Objects by Names

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 6/28

Information Systems 2 / 2. Offering and Using Remote Objects

General Procedure

The implementation of a distributed system with CORBA requires

the following four steps:

1. Interface: create the interface description.

2. Implementation: implement the interface.

3. Server: implement a server application offering remote

access to objects.

4. Client: implement a client application using the remote

objects.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 6/28

Information Systems 2 / 2. Offering and Using Remote Objects

Step 1: Interface / IDL Description

To specify the interface there is a programming language neutral

Interface Definition Language (IDL):

• Interfaces are grouped in modules (≡ Java packages).

• Each interface consists of a set of methods with

– arguments,

– return type and

– exceptions.

• Arguments and return values can have

– the usual elementary datatypes or

– an interface type themselves.

• The grammar is very close to Java.

• Interfaces are mapped to specific programming language

interfaces by the use of a tool (e.g., idlj).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 7/28

Information Systems 2 / 2. Offering and Using Remote Objects

Step 1: Interface / IDL Description

1 module ismll_commerce {

2 interface Offer {

3 string name();

4 double price();

5 };

6 };

Figure 4: Offer.idl: Interface description for offers.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 8/28

Information Systems 2 / 2. Offering and Using Remote Objects

Step 1: Interface / IDL to Java/C++ Binding

IDL Java C++

module package namespace

interface interface abstract class

operation method member function

attribute pair of methods pair of functions

exception exception exception

IDL type Java type

boolean boolean

char / wchar char

octet byte

short / unsigned short short

long / unsigned long int

long long / unsigned long long long

float float

double double

string / wstring String

To create the Java base class Offer.java and other

derived classes (see below):

idlj -fall -emitAll Offer.idl

Creates class Offer.java in package ismll_commerce.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 9/28

Information Systems 2 / 2. Offering and Using Remote Objects

Step 1: Interface / Derived Java Interface

1 module ismll_commerce {

2 interface Offer {

3 string name();

4 double price();

5 };

6 };

Figure 5: Offer.idl: Interface description for

offers.

1 package ismll_commerce;

2

3

4 /**

5 * ismll_commerce/OfferOperations.java .

6 * Generated by the IDL-to-Java compiler (portable), version "3.2"

7 * from Offer.idl

8 * Monday, May 26, 2008 11:48:56 AM CEST

9 */

10

11 public interface OfferOperations

12 {

13 String name ();

14 double price ();

15 } // interface OfferOperations

Figure 6: OfferOperations.java: derived Java

interface.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 10/28

Information Systems 2 / 2. Offering and Using Remote Objects

Step 2: Implementation

The implementation has to be derived from the abstract server

skeleton or servant class,

in the Oracle JDK: OfferPOA.

The implementation may not contain any CORBA specific code.

The servant is generated automatically from the IDL spec.

The servant implements the programming language specific

interface.

In Oracle JDK: Offer.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 11/28

Information Systems 2 / 2. Offering and Using Remote Objects

Step 2: Implementation

1 package ismll_commerce;

2

3 public class OfferImpl extends OfferPOA {

4 public OfferImpl(String name, double price) {

5 this.name = name; this.price = price;

6 }

7 public String name() { return name; }

8 public double price() { return price; }

9

10 protected String name;

11 protected double price;

12 }

Figure 7: OfferImpl.java: implementation of the interface methods.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 12/28

Information Systems 2 / 2. Offering and Using Remote Objects

Step 3: Server

The server application has to

1. connect to the ORB infrastructure,

(a) create an ORB with a specific hostname and port,
(b) retrieve a reference to the root Portable Object Adapter

(POA) and
(c) activate it.

2. create application objects,

(a) using the implementation / servant class from step 2.

3. output references to them,

(a) by looking up string representations of references of the

servants,

in the simplest case Interoperable Object References

(IORs).

4. wait for connections to the application objects.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 13/28

Information Systems 2 / 2. Offering and Using Remote Objects

Step 3: Server

1 package ismll_commerce;

2 import org.omg.CORBA.ORB;

3 import org.omg.PortableServer.*; // POA, POAHelper

4

5 public class OfferServer {

6 public static void main(String args[]) {

7 try{

8 // a. connect to ORB infrastructure:

9 String[] argsOrb = new String[] { "-ORBInitialPort", "9090", "-ORBInitialHost", "localhost"};

10 ORB orb = ORB.init(argsOrb, null);

11 POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

12 rootpoa.the_POAManager().activate();

13

14 // b. create application objects:

15 OfferImpl offer_PC = new OfferImpl("PC Core 2 Quad 6600", 899.90);

16

17 // c. create references to them:

18 org.omg.CORBA.Object ref = rootpoa.servant_to_reference(offer_PC);

19 System.out.println(orb.object_to_string(ref));

20

21 // d. wait for connections to the application objects:

22 orb.run();

23 } catch (Exception e) { System.err.println("ERROR: " + e); e.printStackTrace(System.out); }

24 }

25 }

Figure 8: OfferServer.java: Simple server.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 14/28

Information Systems 2 / 2. Offering and Using Remote Objects

Step 4: Client

The client application has to

1. connect to the ORB infrastructure,

(a) create an ORB with a specific hostname and port,

2. retrieve references to the application objects,

(a) by looking up CORBA objects (represented by client stubs)

by their IOR and
(b) casting them to the interfaces from step 1 using helper

classes.

3. do something with the application object references,

(a) using the interface from step 1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 15/28

Information Systems 2 / 2. Offering and Using Remote Objects

Step 4: Client

1 package ismll_commerce;

2 import org.omg.CORBA.ORB;

3

4 public class OfferClient {

5 public static void main(String args[]) {

6 try{

7 // a. connect to the ORB infrastructure:

8 String[] argsOrb = new String[] { "-ORBInitialPort", "9090", "-ORBInitialHost", "localhost"};

9 ORB orb = ORB.init(argsOrb, null);

10

11 // b. retrieve application object by reference (here: args[0] command line):

12 String refString = args[0];

13 org.omg.CORBA.Object ref = orb.string_to_object(refString);

14 Offer offer_pc = OfferHelper.narrow(ref);

15

16 // c. do something with them:

17 System.out.println("Obtained a handle on server object: " + offer_pc);

18 System.out.println("name: " + offer_pc.name());

19 System.out.println("price: " + offer_pc.price());

20 } catch (Exception e) { System.out.println("ERROR : " + e); e.printStackTrace(System.out); }

21 }

22 }

Figure 9: OfferClient.java: Simple client.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 16/28

Information Systems 2 / 2. Offering and Using Remote Objects

General Procedure

Example: offers.

1. Interface: create the interface description Offer.idl and derive the

(a) Java interface Offer.java,
(b) Java implementation base class OfferPOA.java and
(c) Java helper class OfferHelper.java

by running idlj on it.

2. Implementation: derive the implementation class OfferImpl.java from

OfferPOA.java implementing the specified interface methods.

3. Server: implement a server application OfferServer.java that

(a) connects to the ORB infrastructure,
(b) creates application objects,
(c) outputs references to them and
(d) wait for connections to the application objects.

4. Client: implement a client application OfferClient.java that

(a) connects to the ORB infrastructure,
(b) retrieves application objects by references, and
(c) does something with them.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 17/28

Information Systems 2 / 2. Offering and Using Remote Objects

Running the example

To run the server:

orbd -ORBInitialPort 9090 -ORBInitialHost localhost

java ismll_commerce.OfferServer

The offer server writes the reference to the PC offer

object to the console, something like

IOR:000000000000001d49444c3a69736d6c6c5f636f6d6d657263652f4f666665723a312e3000000000000000010000000000000086000102000000000d313

To run the client:

java ismll_commerce.OfferClient IOR:000000000000001d49444c3a69736d6c6c5f636f6d6d657263652f4f666665723a312e30000000000000000100000

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 18/28

Information Systems 2 / 2. Offering and Using Remote Objects

Required Files

file function derived server client

Offer.idl interface – – –

OfferOperations.java interface + + +

Offer.java interface + + +

OfferHelper.java helper + + +

_OfferStub.java client stub + + +

OfferPOA.java server skeleton + + –

OfferImpl.java implementation – + –

OfferServer.java server – + –

OfferClient.java client – – +

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 19/28

Information Systems 2 / 2. Offering and Using Remote Objects

Class Hierarchy

I OfferOperations

I Offer

I Object
 org.omg.CORBA.portable org.omg.CORBA

A ObjectImpl
 org.omg.CORBA.portable

C _OfferStub

I IDLEntity A Servant
 org.omg.CORBA.PortableServer

I InvokeHandler
 org.omg.CORBA.portable

C OfferImpl

A OfferPOA

Figure 10: Class hierarchy for the offer example.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 20/28

Information Systems 2 / 2. Offering and Using Remote Objects

Get/Setter Methods

A pair of Get/Setter methods can be specified more easily by an attribute.

1 module test {

2 interface AttributeTest {

3 readonly attribute string name;

4 attribute double price;

5 };

6 };

Figure 11: attributes.idl: Alternative interface

description for offers.

1 package test;

2

3

4 /**

5 * test/AttributeTestOperations.java .

6 * Generated by the IDL-to-Java compiler (portable), version "3.2"

7 * from attributes.idl

8 * Tuesday, June 3, 2008 8:02:59 AM CEST

9 */

10

11 public interface AttributeTestOperations

12 {

13 String name ();

14 double price ();

15 void price (double newPrice);

16 } // interface AttributeTestOperations

Figure 12: AttributeTestOperations.java: derived

Java interface.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 21/28

Information Systems 2

1. Introduction

2. Offering and Using Remote Objects

3. Publishing and Requesting Objects by Names

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 22/28

Information Systems 2 / 3. Publishing and Requesting Objects by Names

Name Services

In practice, using IORs may be too inflexible.

Name Services can be used instead:

• Each ORB allows access to a name service, an object

of class NamingContextExt by the initial reference

NameService.

• The name service object allows to

1. bind names to object references (bind, rebind)

and
2. resolve names to object references (resolve)
3. names are represented as sequences of

NameComponents – for us: strings; “paths”.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 22/28

Information Systems 2 / 3. Publishing and Requesting Objects by Names

1 package ismll_commerce;

2 import org.omg.CORBA.ORB;

3 import org.omg.PortableServer.*; // POA, POAHelper

4 import org.omg.CosNaming.*;

5

6 public class OfferServer_NS {

7 public static void main(String args[]) {

8 try{

9 // a. connect to ORB infrastructure:

10 String[] argsOrb = new String[] { "-ORBInitialPort", "9090", "-ORBInitialHost", "localhost"};

11 ORB orb = ORB.init(argsOrb, null);

12 POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

13 rootpoa.the_POAManager().activate();

14 org.omg.CORBA.Object nsObj = orb.resolve_initial_references("NameService");

15 NamingContextExt ns = NamingContextExtHelper.narrow(nsObj);

16

17 // b. create application objects:

18 OfferImpl offer_PC = new OfferImpl("PC Core 2 Quad 6600", 899.90);

19

20 // c. bind application objects to names:

21 org.omg.CORBA.Object refObj = rootpoa.servant_to_reference(offer_PC);

22 Offer ref = OfferHelper.narrow(refObj);

23 NameComponent path[] = ns.to_name(offer_PC.name());

24 ns.rebind(path, ref);

25

26 // d. wait for connections to the application objects:

27 orb.run();

28 } catch (Exception e) { System.err.println("ERROR: " + e); e.printStackTrace(System.out); }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 23/28

Information Systems 2 / 3. Publishing and Requesting Objects by Names

29 }

30 }

Figure 13: Simple server with name service.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 24/28

Information Systems 2 / 3. Publishing and Requesting Objects by Names

Client with Name Service

1 package ismll_commerce;

2 import org.omg.CORBA.ORB;

3 import org.omg.CosNaming.*;

4

5 public class OfferClient_NS {

6 public static void main(String args[]) {

7 try{

8 // a. connect to the ORB infrastructure:

9 String[] argsOrb = new String[] { "-ORBInitialPort", "9090", "-ORBInitialHost", "localhost"};

10 ORB orb = ORB.init(argsOrb, null);

11 org.omg.CORBA.Object nsObj = orb.resolve_initial_references("NameService");

12 NamingContextExt ns = NamingContextExtHelper.narrow(nsObj);

13

14 // b. retrieve application object by name:

15 String name = args[0];

16 org.omg.CORBA.Object ref = ns.resolve_str(name);

17 Offer offer_pc = OfferHelper.narrow(ref);

18

19 // c. do something with them:

20 System.out.println("Obtained a handle on server object: " + offer_pc);

21 System.out.println("name: " + offer_pc.name());

22 System.out.println("price: " + offer_pc.price());

23 } catch (Exception e) { System.out.println("ERROR : " + e); e.printStackTrace(System.out); }

24 }

25 }

Figure 14: Simple client with name service.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 25/28

Information Systems 2 / 3. Publishing and Requesting Objects by Names

Running the example

To run the server:

orbd -ORBInitialPort 9090 -ORBInitialHost localhost

java ismll_commerce.OfferServer_NS

To run the client:

java ismll_commerce.OfferClient_NS "PC Core 2 Quad 6600"

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 26/28

Information Systems 2 / 3. Publishing and Requesting Objects by Names

Browsing the Name Service
1 import org.omg.CORBA.*;

2 import org.omg.CosNaming.*;

3

4 public class NamespaceBrowser {

5 public static void main(String args[]) {

6 try {

7 // a. connect to the ORB infrastructure:

8 String[] argsOrb = new String[] { "-ORBInitialPort", "9090", "-ORBInitialHost", "localhost"};

9 ORB orb = ORB.init(argsOrb, null);

10 NamingContextExt ns = NamingContextExtHelper.narrow(

11 orb.resolve_initial_references("NameService"));

12 // b. get bindings and print them:

13 BindingListHolder bl = new BindingListHolder();

14 BindingIteratorHolder blIt = new BindingIteratorHolder();

15 ns.list(1000, bl, blIt);

16 Binding[] bindings = bl.value;

17 for (int i = 0; i < bindings.length; i++) {

18 System.out.print(bindings[i].binding_type == BindingType.ncontext ? "Context: " : "Object: ");

19 System.out.print(bindings[i].binding_name[0].id);

20 for (int j = 1; j < bindings[i].binding_name.length; j++)

21 System.out.print(" / " + bindings[i].binding_name[j].id);

22 System.out.println();

23 }

24 } catch (Exception e) { System.out.println("ERROR : " + e); e.printStackTrace(System.out); }

25 }

26 }

Figure 15: Simple nameservice browser.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 27/28

Information Systems 2 / 3. Publishing and Requesting Objects by Names

Summary

• CORBA allows programs on different computers, written in

different languages to communicate.

• Services are described by interface description in a specific

language, the interface description language IDL.

• Programming language-specific interfaces are derived from

the IDL descriptions automatically.

• Implementations based on generated servant base classes

may contain no CORBA specific code.

• To allow clients to locate objects, name services are available.

• The name service itself is a CORBA object; for bootstrapping,

initial references by standard names (“NameService”) are

available.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 28/28

Information Systems 2 / 3. Publishing and Requesting Objects by Names

References

[AKS05] Markus Aleksy, Axel Korthaus, and Martin Schader. Implementing Distributed Sys-

tems with Java and CORBA. Springer, 2005.

[McH07] Ciaran McHale. CORBA Explained Simply. http://www.ciaranmchale.com/corba-

explained-simply/, 2007.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), Institute BW/WI & Institute for Computer Science, University of Hildesheim

Course on Information Systems 2, summer term 2012 28/28

