
Comparison of Bayesian Move Prediction Systems for Computer Go

Martin Wistuba, Lars Schaefers, and Marco Platzner

Abstract—Since the early days of research on Computer Go,
move prediction systems are an important building block for Go
playing programs. Only recently, with the rise of Monte Carlo
Tree Search (MCTS) algorithms, the strength of Computer Go
programs increased immensely while move prediction remains to
be an integral part of state of the art programs. In this paper we
review three Bayesian move prediction systems that have been
published in recent years and empirically compare them under
equal conditions. Our experiments reveal that, given identical
input data, the three systems can achieve almost identical
prediction rates while differing substantially in their needs for
computational and memory resources. From the analysis of our
results, we are able to further improve the prediction rates for
all three systems.

I. INTRODUCTION

From the early days of research on Computer Go in the
late sixties [1][2] until today, move prediction systems have
been an integral part of strong Go programs. With the recent
emergence of Monte Carlo Tree Search (MCTS) algorithms,
the strength of Go programs increased dramatically to a level
that appeared to be unreachable only seven years ago. MCTS is
a simulation-based search method that learns a value function
for game states by consecutive simulation of complete games
of self-play using semi-randomized policies to select moves
for either player. The design of these policies is key for the
strength of MCTS Go programs and has been investigated by
several authors in recent years [3][4][5][6][7]. Move prediction
systems can serve as an important building block for the
definition of MCTS policies as has been shown in, e.g., [5]
and [8]. Several such systems have been developed especially
for the use with Computer Go and prediction rates between
33.9% [4] and 34.9% [5] have been reported. However, these
prediction rates have been produced under pretty unequal
conditions using, e.g., different sizes of training data sets
(ranging from 652 [5] to 181,000 [9] games) or different kinds
and numbers of patterns (ranging from about 17,000 [5] to
12M [9]). Additionally, apart from the prediction rate, one
might be interested in the technique’s needs for computation
and memory resources.

The contribution of this paper is the review of three pre-
diction systems presented in the literature, namely those of
Stern, Herbrich and Graepel [9], Weng and Lin [10] and
Coulom [5], and their comparison under equal conditions for
move prediction in the game of Go. Here, equal means that we
use the same training and test data sets as well as the same set
of shape and feature patterns to represent board configurations
and move decisions.

All authors are with the University of Paderborn, Germany (email: mwis-
tuba@mail.upb.de, {slars,platzner}@uni-paderborn.de)

The purpose of our work is the search for a time and
memory efficient online algorithm for continuous adaptation
of a move prediction system to actual observations which, as
we believe, is a promising approach to further increase the
strength of Go programs. In a larger context, the goal is to
migrate knowledge gathered during MCTS search in certain
subtrees into a prediction model that itself is used all over the
search space to provide prior action value estimates and to
guide playouts. This might help to reduce the horizon effect
and to understand more complex positions.

Obviously, the two filtering methods will be amenable to
continuous adaptation. Additionally, we included Coulom’s
method in our study as a reference point as the best prediction
rates have been reported for this method and it is the most used
approach in state of the art Go programs.

Section II gives a brief summary of related work on move
prediction systems and provides background information about
move prediction models and pattern recognition with a special
focus on the game of Go. We present the algorithms used
for the comparison in Section III. Section IV describes our
experimental setup and the comparison results. Finally, Section
V concludes our work and gives an outlook to future work.

II. BACKGROUND AND RELATED WORK

This section gives a brief introduction to the game of Go and
the abstraction of moves with patterns, and reviews methods
for move ranking presented in the literature.

A. Game of Go

The game of Go is an ancient Asian two-player board game
that is known to exist for more than 2,000 years. The board
is made up of N horizontal and N vertical lines that build a
grid with N2 crossings. N is typically 19 but also 9 and 13 is
commonly used. We have a black and a white player where
each one is equipped with a large number of black resp. white
pieces. The players alternate in placing one of their pieces on
one of the empty crossings. Once a piece is placed on the
board, it is never moved again. A player has the opportunity
to pass, i.e. not to place a piece. At the start of the game, the
board is empty and the black player makes the first move. If
one player manages to surround a group of opponent stones,
those opponent stones become prisoners and are removed from
the board. The game ends after two consecutive pass moves.
The goal for each player is to occupy or surround the largest
part of the board with stones of their color.1 Go games played
by professionals are said to have an average length of about
150 moves with an average number of about 250 possible

1see http://gobase.org for more information

978-1-4673-1194-6/12/$31.00 ©2012 IEEE 91



choices per move. The number of legal positions in 19x19 Go
is about 2 × 10170 [11]. In more than 40 years of research
no static evaluation function for intermediate game positions
was found good enough to achieve strong performance with
traditional depth limited alpha-beta search [12] or conspiracy
number search [13]. The vast amount of positions paired
with the absence of strong evaluation functions makes Go
extremely challenging and made it a popular testbed for AI
research in recent years. A great deal of information on current
developments in Computer Go and the most often used MCTS
algorithms can be found in [14] resp. [15].

B. Bayes Theorem

As we consider three Bayesian move prediction systems
in this paper, the Bayes theorem takes a central role so we
will briefly introduce it here. From the Bayesian viewpoint,
probabilities can be used to express degrees of belief. Given a
proposition A, a prior belief in A of P (A) and a probability
model P (A|B) that expresses the likelihood of A observ-
ing supporting data B, Bayes Theorem relates the posterior
probability P (B|A) of observing data B given A in future
experiments as follows:

P (B|A) =
P (A|B)P (B)

P (A)
. (1)

Hence, having a probability model p(D|θ) for a move decision
D given some model parameters θ, one might infer the pos-
terior probability of the model parameters p(θ|D) observing
some move decisions D using Bayes Theorem. Inference is
a basic element of the prediction systems considered in this
paper. A challenging point in this inferences is the possible
emergence of difficult to handle integrals in the computation
of p(D) when considering continuous distributions: p(D) =∫
p(D|θ)p(θ)dθ.

C. Terminology

We formalize a game as a tuple G := (S,A,Γ, δ), with S
being the set of all possible states (i.e. game positions), A the
set of actions (i.e. moves) that lead from one state to the next,
a function Γ : S → P(A) determining the subset of available
actions at a state and the transition function δ : S×A→ {S, ∅}
specifying the follow-up state for a state-action pair where
δ(s, a) = ∅ iff a /∈ Γ(s).

In the remainder of this paper, state-action pairs (s, a) will
be abstracted with a team of patterns with assigned strength
values. We write the vector of pattern strength values as θ.

D. Modeling

In this paper, we consider parameterizable, distributive move
prediction models M that, given a game state s ∈ S and a
parameter vector θ, yield a probability distribution over all
available actions a ∈ Γ(s), hence, we search for models M :
S × A → P (a|s,θ) with ∀a/∈Γ(s) : P (a|s) = 0, ∀a∈Γ(s) :
P (a|s) ≥ 0 and

∑
a∈Γ(s) P (a|s ∈ S) = 1.

A common technique for the modeling of games is the ab-
straction of the state-action space with patterns that represent

certain move properties. Shape patterns that describe the local
board configuration around possible moves and thus around
yet empty intersections were already used in the early time of
research on Go [16]. Stern et al. [9] describe diamond shaped
pattern templates of different sizes around empty intersections
to abstract the state-action space as shown in Fig. 1. In
a separate harvesting step, they process the training data
consisting of move decisions to build a database of frequently
appearing shape patterns. Here, shape patterns are regarded to
be invariant to rotation, translation and mirroring.

Fig. 1: Shape-Pattern templates of sizes 1 to 14 (Source: [9])

In addition to shape patterns, so called feature patterns, that
represent non-shape properties of state-action pairs are used.
A list of the patterns used in our experiments is given later on
in Section IV.

Using the pattern system a move decision can be represented
in form of a list of patterns (representing the possible moves)
among one is marked as the final choice. Without loss of
generality, we will assume that the final choice is always
the first element in this list. A move decision can now be
regarded as a competition between patterns that is won by the
pattern representing the final move choice. By observing such
competitions we can assign strength values θi to each of the
patterns. Hence, a move decision yields a strength parameter
vector D = (θ1, θ2, . . . , θk) where θ1 is the strength of the
winning pattern.

Given the strength values θi and θj of two competitors,
several probability models were developed to estimate the
outcome of competitions between i and j. We will briefly
describe two of them that are used by the prediction systems
considered in this paper.

The Thurstone-Mosteller Model (TM) is used by Stern,
Herbrich and Graepel [9] and models the players strength to
be Gaussian distributed with N (θi, β

2
i ). Thus, in addition to

the strength θi each player is also assigned a variance β2
i that

models the uncertainty about the players actual performance.
The probability that player i beats player j is than estimated

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 92



by

P (i beats j) = Φ

 θi − θj√
β2
i + β2

j

 ,

where Φ denotes the cumulative distribution function of the
standard normal distribution.

Coulom [5] uses the Bradley-Terry Model (BT) [17] that
is based on a logistic distribution to predict the outcome of
games between two individuals with given strength values θi
resp. θj . It estimates the probability that i beats j by

P (i beats j) =
eθi

eθi + eθj

The BT Model is also the base for the well known Elo rating
system [18] that is used e.g. to rate human chess players.

Hunter [19] derived several generalizations of the BT model
among one allows the prediction of the outcome of games
between an arbitrary number of teams of individuals with the
simplifying assumption that the strength of a team equals the
sum of the strength of its members:

P (1-2 beats 4-2 and 1-3-5) =
eθ1+θ2

eθ1+θ2 + eθ4+θ2 + eθ1+θ3+θ5

(2)
The use of this generalization to teams allowed Coulom to
characterize each possible move at a given board position with
a team of patterns.

Weng and Lin [10] support both prediction models, TM and
BT. In this paper we concentrate on their BT based variant.

E. Ranking

We will now review three methods for the learning of
model parameters from a given set of move decisions. As
the main objective of this paper is the comparison of these
approaches under equal conditions, we had to modify some
of the algorithms in a straight forward manner to make them
applicable to the same training data. The modifications are
detailed in section III.

1) Bayesian Full Ranking: The probability model for game
decisions in this approach developed by Stern et al. [9] is
based on the TM model. In addition to the pattern strength
that is modeled as a Gaussian, they account for varying
performances or playing styles of players that produced the
training set by adding a fixed variance β2 to a pattern’s
strength distribution. Hence, the performance of a pattern i
with strength θi = N (µi, σ

2
i ) is given by xi = N (θi, β

2).
Then, given a board position with k possible moves and cor-

responding strength values θ1, . . . , θk, they give the following
joint distribution for the probability that the pattern indexed
with 1 is the best performing move:

p(i∗ = 1,x,θ) =
k∏
i=1

si(θi)
k∏
j=1

gj(xj , θj)
k∏

m=2

hm(x1, xm),

(3)

where

si = N (θi;µi, σ
2
i ),

gj = N (xj ; θj , β
2) and

hm = I(x1 > xm).

Here, I(cond.) is the indicator function that equals 1 in case
the given condition holds and 0 otherwise. The distribution is a
product of small factors and can be represented as a graphical
model, the so called factor graph. Fig. 3 in Section III shows
an example of such a graph. For tree like factor graphs,
there exist message passing algorithms that allow for efficient
Bayesian inference in the graph by exploiting the graphical
structure of the underlying distribution2. Except of the hm, all
factors yield Gaussian densities. In order to keep computations
simple, emerging non-Gaussian distributions are approximated
with Gaussians. The resulting inference algorithm is called
Expectation Propagation [21].

As a result, we can infer new values for the pattern strength
distribution θ by incorporating observations from one move
decision. This new values can now act as the prior for
incorporating the next observation. This makes the method
a filtering algorithm also called assumed density filtering.

A drawback of the initial model presented was the integra-
tion of binary non-shape move properties (so called features)
in form of an additional feature vector into the shape-patterns.
This entailed an exponential dependency of the number of
features on the total number of patterns to evaluate, and
accordingly limited the number of usable features.

2) Bayesian Approximation for Online Ranking: Weng and
Lin [10] present a more general Bayesian approximation
framework for online ranking of players from games with mul-
tiple teams and multiple players and compare their method to
the online ranking system TrueSkillTM [22] that was developed
and is used in commercial products by Microsoft. TrueSkill
has a lot of similarities to the Bayesian Full Ranking Model
described above. The presented framework can be used with
the Bradley-Terry as well as the Thurstone-Mosteller and other
ranking models. Like the Bayesian Full Ranking system of
Stern et al., the players’ strength values θi are updated after
each new observation and are assumed to be normal distributed
with mean µi and variance σ2

i , i.e. θi = N (µi, σ
2
i ). As a main

achievement they were able to construct computationally light
weight approximated Bayesian update formulas for the mean
and variances of the θi by approximating the integrals that
naturally show up in Bayesian inference analytically through
an application of Woodroofe-Stein’s identity.

In this paper we applied the algorithm based on the Bradley-
Terry model to the game of Go in order to compare it to the
approaches of Stern et al. and Coulom.

3) Minorization-Maximization: In contrast to the filtering
algorithms of Stern et al. and Weng et al., Coulom pro-
posed a whole-history rating concept that iterates several
times over the training data with the objective to find the

2See [20] for more information on message passing in factor graphs.

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 93



pattern strength values that maximize the probability of the
given move decisions from the training set according to the
generalized Bradley-Terry model (Equation 2). Following the
work of Hunter [19], Coulom iteratively applied the concept
of Minorization-Maximization (MM) on

L =
N∏
j=1

P (Dj |θ), (4)

where N is the number of move decisions in the training set
and P (Dj |θ) is the generalized Bradley-Terry model. L can be
written as a function of each of the single strength parameters
γi = eθi . As illustrated in Fig. 2, MM is an optimization
algorithm where, starting from an initial guess γ0, a minorizing
function m(·) for L(·) is build in γ0 (i.e. m(γ0) = L(γ0) and
∀γ : m(γ) ≤ L(γ)) so that its maximum can be given in
closed form. Finally the maximum γ1 of m is choosen as an
improvement over γ0.

(a) Initial guess (b) Minorization (c) Maximization

Fig. 2: Minorization-Maximization (Source: [5])

By using the generalized Bradley-Terry model, Coulom
benefits from the ability to abstract each move with a group
of patterns and thus, to use apart of shape patterns a larger
number of additional feature patterns like e.g. the distance to
the move played just before.

III. ALGORITHMS

In this section, we give a more detailed presentation of
the algorithms used in our experiments. These are not always
the original algorithms as they were presented in the before
mentioned literature, but might contain adaptations with the
objective to support the core learning procedures of the differ-
ent algorithms with the same amount and quality of data and
thus, to create equal conditions for a head-to-head comparison.
We give a detailed description in each case adaptations were
made.

The input for all presented algorithms is identical: A number
of game positions each annotated with the single move that
is regarded to be the best. Once a new position is seen, each
move is characterized with a team of patterns. Hence, after
this preprocessing step, the input for all presented algorithms
is a number of competitions between pattern teams among one
team is marked as the winning team. For the remainder of this
paper we define all variables related to the winning team to
be indexed with 1.

Another common element of all considered methods is the
definition of a ranking model, that results in a single function
L that represents the likelihood of the observed data in the

face of given pattern strength parameter values. Using Bayes-
Theorem in the one or other way, this function is used to
update strength parameters with the objective to maximize L.

A. Bayesian Full Ranking
The probability model used for inference in the Bayesian

Full Ranking method of Stern et al. [9] is given by Equation
3. This distribution can be represented with a factor graph
where each variable and each factor is represented by a node.
The edges connect each factor node with the nodes of those
variables the factor depends on. Stern et al. proposed a model
that abstracts each move with exactly one shape-pattern with
some binary non-shape properties encoded in it. We extended
the model by introducing pattern teams as they were used
in Coulom [5] by adding another level to the graph. This
allows for the use of more non-shape patterns and makes a
head-to-head comparison with Couloms approach possible. As
some patterns can be member of more than one team, the
graph might contain several cycles. Fig. 3 shows the factor
graph of this model with the extension to pattern teams. In
this figure, θi now represents a team of patterns instead of
a single pattern and θij a member of team i. In order to
cope with the introduced cycles we used so called loopy-
belief propagation for message passing. The possibility to do
this was already mentioned by Stern himself in [23]. As the
message passing algorithm is rather involved we cannot give
the complete algorithm here but refer to [23] for a description
of message passing in this particular setting with a derivation
of all the update equations.

In the remainder of the paper we call the modified, pattern
teams related approach Loopy-Bayesian Ranking.

B. Bayesian Approximation for Online Ranking
As for the Bayesian Full Ranking model, Weng and Lin use

a probability model for the outcome of a competition between
k teams that can be written as a product of factors that each
involve only a small number of variables:

L =
k∏
i=1

k∏
q=i+1

P (outcome between team i and team q),

where P is given by the Bradley-Terry model.
For their system they consider a complete ranking of the

teams whereas in case of a move decision in Go we have
exactly one winning team and all the others ranked second.
Hence, in addition to the aforementioned function L, we made
experiments with a simplified function

LGo =
k∏
i=2

P (team 1 beats team i).

Recall that in this paper the winning team has always index
1. In all our preliminary experiments we achieved significantly
better prediction rates using LGo instead of L3. Hence, in
section IV all experiments were made using LGo.

3In a recent discussion, Weng pointed out, that the use of LGo might
introduce some undesired bias in the parameter updates, as the variance of
the winning team gets reduced much faster than for the losing teams.

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 94



Fig. 3: Factor graph of Bayesian Full Ranking Model (as seen in [23]) extended to pattern teams

The actual complete algorithm for the update of the pattern
strength parameter vectors µ,σ2 on the observation of a
new competition result towards maximizing LGo is shown
in Algorithm 1. These slightly modified algorithm is termed
Bayesian Approximation Ranking in the remainder of the
paper.

Algorithm 1: Bayesian Approximation Ranking

input : (θ1, σ
2
1), . . . , (θk, σ

2
k), with (θ1, σ

2
1) winning

output: Updated values µ and σ2

β2 := 13

for i = 1, . . . , k do
µi =

∑ni
j=1 µij

σ2
i =

∑ni
j=1 σ

2
ij

end
/* Update team strength */

for i = 1, . . . , k do
for q = 1, . . . , k, rank(i) 6= rank(q) do

ciq =
√
σ2
i + σ2

q + 2β2

p̂iq = e
µi/ciq

e
µi/ciq+e

µq/ciq

if i = 1 then
Ω1 ← Ω1 + σ2

1
p̂q1
c1q

∆1 ← ∆1 + σ1
c1q

σ2
1

c21q
p̂1q p̂q1

end
end

if i > 1 then
Ωi ← −σ2

i
p̂i1
ci1

∆i ← σi
ci1

σ2
i

c2i1
p̂i1p̂1i

end
/* Update pattern strength */

for j = 1, . . . , ki do
µij ← µij +

σ2
ij

σ2
i

Ωi

σ2
ij ← σ2

ij ·max

{
1− σ2

ij

σ2
i

∆i, ε

}
end

end

C. Minorization-Maximization

As described in II-E3, Coulom [5] uses the Minorization
Maximization algorithm (MM) to obtain pattern strength pa-
rameter values that maximize function L as given in Equation
4. Given a number of N competitions, i.e. move decisions,
MM requires us to iterate a number of times over the complete
training set to update the strength values γi = eθi of all
patterns until convergence. Coulom derived the following
update formula for the individual pattern strength parameters:

γi ←
Wi∑N
j=1

Cij
Ej

, (5)

where N is the number of competitions in the training set,
Wi is the number of times pattern i was a member of the
winning team in all N competitions, Cij is the strength of
the team-mates of pattern i in competition j and Ej is the
sum of the strength of all teams competing in j. For more
details on the derivation of the update formula 5 we refer
to Coulom’s paper [5]. We applied this approach following
an implementation example published by Coulom on his
homepage. Here, after a first update with Eqn. 5 for all gamma
values, he selects the feature group that lead to the biggest
improvement towards minimizing L during its last update also
for the next update, until the last change of the logarithm of
L was smaller than some threshold for each feature group. In
this comparison we set the threshold to 0.001.

D. Probabilistic Ranking

In our comparison we also include the extremely simple and
straight forward approach of just taking the relative winning
rates of each pattern in the training set directly as their strength
values. Thus, for each pattern i we have θi = Wi/Ai, where
Wi is again the number of competitions in which pattern i was
a member of the winning team and Ai is the number of times
pattern i was a member of any team. If a move is represented
by a pattern team F , we define its strength by θF =

∑
i∈F θi.

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 95



IV. EXPERIMENTS

We made a series of experiments with the four algorithms
presented in section III. The main focus was on the comparison
of the core learning routines of all approaches under equal
conditions, with respect to the achievable prediction perfor-
mance as well as the time needed to learn model parameters.
For all approaches, the procedure to produce predictions, ones
the model parameters were trained, is rather equal and simple,
so we did not investigate computational requirements for this
step. We will first give the experimental setup to show and
discuss the results afterwards.

A. Setup

All experiment computations were performed on a single
core of a Intel X5650 CPU running at 2.67 GHz. The machine
was equipped with 36 GB main memory. The prediction
systems were trained with up to 20,000 records of Go games
played on the KGS-Go-Server4 by strong amateur players
on the 19x19 board size. The games were obtained from
u-go.net5. The test set contained 1,000 game records from
the same source, however, the test set was disjoint from the
training set. We made a single harvesting run for each of
three differently sized training sets (5,000, 10,000 and 20,000
game records) to produce the sets of shape patterns that were
considered by the learning systems afterwards. These sets
were built from all shape patterns that were seen at least
10 times during harvesting. Apart from this, a subset of 13
feature patterns from the set of feature patterns presented in
Coulom [5] was used.

B. Results

We will first give some insights into the kind of shape
patterns that were harvested on the training set of 20,000 game
records. Fig. 4 shows the percentage of occurrences of patterns
of different sizes at different phases of the games. A phase lasts
for 30 moves. One can see that, in early game phases with only
a few pieces on the board mostly large patterns are matched.
Naturally, as the positions get more complex the more pieces
are placed on the board, mostly small patterns are matched
more than 10 times in later game stages.

Fig. 5 shows the cumulative distribution of finding the
expert move within the first n ranked moves for the four pre-
diction systems with a training set size of 10,000 games. The
rate of ranking the expert move first is, for each system, larger
as in the experimental results presented in the corresponding
original papers. This might be the case because of a larger
training set for MM and the use of pattern teams for the Loopy-
Bayesian Ranking system. Even further, the curves are pretty
similar for all systems except for the very simple probabilistic
ranking.

Fig. 6 gives a closer look to the differences between the
Bayesian systems by showing the distance of the cumulative
distributions to the one of the probabilistic ranking system.

4http://www.gokgs.com/
5http://u-go.net/gamerecords/

Fig. 4: Percentage of shapes of varying sizes that have been
rediscovered more than 10 times in different game phases over
20,000 games.

Fig. 5: Cumulative distribution of finding the expert move
within the first n ranked moves.

Here we can see a small but significant better performance of
the Loopy-Bayesian Ranking system and MM over Bayesian
Approximation Ranking in ranking the expert move first.
However, for finding the expert move in the first n ranked
moves for n ≥ 3 all systems perform almost equal.

Fig. 6: Difference of cumulative prediction rank distribution
to probabilistic ranking distribution. (95% conf. intervals)

Table I shows the development of prediction rates for
different training set sizes. It can be seen that all systems
benefit from increasing training set sizes. We could not make
experiments with MM for 20.000 training games due to
memory limitations.

Regarding the distributions given in Fig. 5 and 6, we should

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 96



TABLE I: Prediction rates for different training set sizes

5,000 10,000 20,000
Minorization-Maximization 37.00% 37.86% -
Loopy Bayesian Ranking 36.36% 37.35% 38.04%
Bayesian Approximation Ranking 34.24% 35.33% 36.19%
Probabilistic Ranking 29.16% 30.17% 30.92%

note that there are a lot more possible moves in early game
stages than in the end games, when the board is almost full of
pieces. Therefore we measured the rank errors of the systems
at different game phases. The rank error is the fraction of the
expert move rank assigned by the system over the number of
available moves. Fig. 7 shows these ranking errors in a box
plot. The boxes range from the lower to the upper quartile
of the data and contain the median line. The whiskers cover
95% of the data. Data points outside the whiskers range are
explicitly shown by single data points.

Another interesting point is the dependency of the prediction
rate of expert moves to the size of the shape pattern that
was matched for the particular move. The larger the pattern,
the more information about the actual board configuration is
encoded in the pattern, so we expect to get better prediction
rates, the larger the matched patterns are. Fig. 8 shows the
achieved average prediction rates for the different pattern sizes.
In addition the figure gives the distribution over all matched
patterns of different sizes.

Fig. 8: Average prediction rates in relation to the size of the
pattern that was matched at the expert move.

It can be seen that most of the patterns that are matched
during a game are of size 3 to 5 while at the same time, pattern
sizes of 3 and 4 show the significantly worst prediction rates.
In order to improve here, we added a small feature vector
to shape patterns of size 2 to 4. Here we took exactly the
same features as done by Stern et al. [9]. Fig. 9 shows the
achieved improvements for the different ranking systems at
different game phases. Following Fig. 4, small shape patterns
are mostly matched in later game phases, which explains the
increasing impact of this modifications for later game phases.

Fig. 10 shows the average time needed by the systems

Fig. 9: Relative strength improvements from adding a small
feature vector to shape patterns of size 2 to 4 at different game
phases.

per game during parameter training. Not surprisingly, Loopy
Bayesian Ranking required a lot more time than Bayesian
Approximation Ranking. MM was iterated until convergence
to a certain level, leading to varying time consumption for
different training set sizes.

Fig. 10: Time needed per game on different training set sizes

V. CONCLUSION AND FUTURE WORK

In this paper we compared three Bayesian systems for
move prediction under fair conditions and investigated their
performance by using them for move prediction with the
game of Go. We observed that all prediction systems have a
comparable performance concerning their prediction accuracy
but differ significantly in the amount of time needed for
model parameter training. Additionally we presented some
insight into the use of shape patterns that are prominent for
modeling in the game of Go. Following our observation, we
were able to improve our pattern system further and gained
some improvement in terms of prediction rate.

The outcome of the investigations presented in this paper
should serve as a base for further improving the performance
of state-of-the-art MCTS based Go programs by online adap-
tation of Monte-Carlo playouts. Recent strength improvement
of Go playing programs, especially on large board sizes,
were made by adding more and more domain knowledge to
the playout policies that made them smarter and capable to
understand more difficult situations that require selective and

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 97



(a) Loopy Bayesian Ranking (b) Bayesian Approximation Ranking (c) Minorization-Maximization

Fig. 7: Ranking errors at different stages of the game

well focused play. In order to further improve these policies
we (among others) try to adapt playout policies to the actual
board position using insights gathered by MC sampling. As a
conclusion from the results presented in this paper, Bayesian
Approximation Ranking appears to be a promising candidate
for the use with online model adaptation in such time critical
environments.

Short before submission deadline, Rémi Coulom drew our
attention to a ranking system proposed by Łukasz Lew in his
PhD Thesis [24], that partly builds on his approach but allows
for online learning. Unfortunately, we weren’t able to include
this promising approach in our comparison.

ACKNOWLEDGMENTS

The authors would like to thank Rémi Coulom and Ruby
Chiu-Hsing Weng for their kind feedback as well as the
anonymous reviewers who helped to further improve the
quality of this paper with their comments.

REFERENCES

[1] A. L. Zobrist, “A New Hashing Method with Application for Game
Playing,” Computer Sciences Department, University of Wisconsin,
Tech. Rep. 88, 1969.

[2] ——, “Feature Extraction and Representation for Pattern Recognition
and the Game of Go,” Ph.D. dissertation, University of Wisconsin, Aug.
1970.

[3] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modifications of
UCT with Patterns in Monte-Carlo Go,” INRIA, Tech. Rep. 6062,
2006. [Online]. Available: http://hal.inria.fr/docs/00/12/15/16/PDF/RR-
6062.pdf

[4] N. Araki, K. Yoshida, Y. Tsuruoka, and J. Tsujii, “Move Prediction
in Go with the Maximum Entropy Method,” in IEEE Symposium on
Computational Intelligence and Games, Apr. 2007, pp. 189–195.

[5] R. Coulom, “Computing Elo Ratings of Move Patterns in the Game of
Go,” in ICGA Journal, vol. 30, no. 4, 2007, pp. 198–208. [Online]. Avail-
able: http://remi.coulom.free.fr/Amsterdam2007/MMGoPatterns.pdf

[6] D. Silver and G. Tesauro, “Monte-Carlo Simulation Balancing,” in
International Conference on Machine Learning, 2009, pp. 945–952.
[Online]. Available: www.cs.mcgill.ca/ icml2009/papers/500.pdf

[7] S.-C. Huang, R. Coulom, and S.-S. Lin, “Monte-Carlo Simulation
Balancing in Practice,” in Conference on Computers and Games, 2010,
pp. 81–92. [Online]. Available: /home/slars/projects/paper/Hu10.pdf

[8] S. Gelly and D. Silver, “Combining Online and Offline Knowledge in
UCT,” in International Conference on Machine Learning, 2007, pp.
273–280.

[9] D. Stern, R. Herbrich, and T. Graepel, “Bayesian Pattern Ranking
for Move Prediction in the Game of Go,” in Proceedings of the
International Conference of Machine Learning, Jan. 2006. [Online].
Available: http://research.microsoft.com/pubs/67955/p873-stern.pdf

[10] R. C. Weng and C.-J. Lin, “A Bayesian Approximation Method for
Online Ranking,” Journal of Machine Learning Research, vol. 12, pp.
267–300, Jan. 2011.

[11] J. Tromp and G. Farnebäck, “Combinatorics of Go,” in
Proc. on the Int. Conf. on Computers and Games. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 84–99. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1777826.1777834

[12] C. Donninger and U. Lorenz, “The Chess Monster Hydra,” in Proc. of
Int. Conf. on Field-Programmable Logic and Applications (FPL), ser.
LNCS, vol. 3203, 2004, pp. 927–932.

[13] U. Lorenz, “Parallel Controlled Conspiracy Number Search,” in Proc.
of Int. Euro-Par Conf. (Euro-Par), ser. LNCS, vol. 2400, 2002, pp. 420–
430.

[14] A. Rimmel, O. Teytaud, C.-S. Lee, S.-J. Yen, M.-H. Wang, and S.-R.
Tsai, “Current Frontiers in Computer Go,” in IEEE Transactions on
Computational Intelligence and AI in Games, vol. 2, no. 4, Dec. 2010,
pp. 229–238.

[15] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
Mar. 2012.

[16] D. Stoutamire, “Machine learning, game play, and Go,” Case Western
Reserve University, Tech. Rep. 91-128, 1991.

[17] R. A. Bradley and M. E. Terry, “Rank Analysis of Incomplete
Block Designs: I. The Method of Paired Comparisons,” Biometrika,
vol. 39, no. 3/4, pp. 324–345, Dec. 1952. [Online]. Available:
http://www.jstor.org/stable/2334029

[18] A. E. Elo, The Rating of Chessplayers, Past and Present. New York:
Arco Publishing, 1986.

[19] D. R. Hunter, “MM algorithms for generalized Bradley Terry models,”
The Annals of Statistics, vol. 32, no. 1, pp. 384–406, 2004.

[20] D. J. C. MacKay, Information Theroy, Inference, and Learning Algo-
rithms. Cambridge University Press, 2003, ch. IV-26: Exact Marginal-
ization in Graphs.

[21] T. Minka, “A family of algorithms for approximate Bayesian inference,”
Ph.D. dissertation, Massachusettes Institute of Technology, 2001.

[22] R. Herbrich, T. Minka, and T. Graepel, “TrueSkill(TM): A Bayesian skill
rating system,” in Advances in Neural Information Processing Systems
20. MIT Press, 2007, pp. 569–576.

[23] D. Stern, “Modelling Uncertainty in the Game of Go,” Ph.D. dissertation,
University of Cambridge, Feb. 2008.

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 98



[24] L. Lew, “Modeling Go Game as a Large Decomposable Decision
Process,” Ph.D. dissertation, Warsaw University, June 2011.

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 99


