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Abstract: Multi-label network classification is a well-known task that is being used in a wide variety of web-based
and non-web-based domains. It can be formalized as a multi-relational learning task for predicting nodes
labels based on their relations within the network. In sparse networks, this prediction task can be very chal-
lenging when only implicit feedback information is available such as in predicting user interests in social
networks. Current approaches rely on learning per-node latent representations by utilizing the network struc-
ture, however, implicit feedback relations are naturally sparse and contain only positive observed feedbacks
which mean that these approaches will treat all observed relations as equally important. This is not necessarily
the case in real-world scenarios as implicit relations might have semantic weights which reflect the strength
of those relations. If those weights can be approximated, the models can be trained to differentiate between
strong and weak relations. In this paper, we propose a weighted personalized two-stage multi-relational matrix
factorization model with Bayesian personalized ranking loss for network classification that utilizes basic tran-
sitive node similarity function for weighting implicit feedback relations. Experiments show that the proposed
model significantly outperforms the state-of-art models on three different real-world web-based datasets and a
biology-based dataset.

1 INTRODUCTION

The classification of multi-label networks is one of
the widely used tasks in network analysis such as
in predicting or ranking user interests in social net-
works (Grover and Leskovec, 2016; Perozzi et al.,
2014; Krohn-Grimberghe et al., 2012), classifying
documents (Tang et al., 2015) in citation networks,
predicting web-page categories in large network of
websites and also in some biological domains such as
predicting protein labels in protein-protein interaction
networks (Grover and Leskovec, 2016).

The typical approach to predict node labels is by
extracting a set of informative features from each
node and train a classification model on them. This
typical way of feature processing has two main sig-
nificant drawbacks. First, to extract such informative
features, one needs a prior expert domain knowledge
to develop the features engineering process required
to preprocess the raw data. Second, to extract useful
features, a decent amount of raw information should
be embedded with each node such as user profile de-
tails in social networks or document contents in cita-

tion networks. This kind of node embedded informa-
tion might not always be available or accessible due
to privacy settings.

Alternatively, current approaches rely on learning
latent features for each node by analyzing the net-
work structure and optimizing an objective function
that will increase the accuracy of predicting node la-
bels (Cai et al., 2018). Multi-relation matrix factor-
ization (Krohn-Grimberghe et al., 2012; Jamali and
Ester, 2010; Singh and Gordon, 2008) is one famous
example that follows this approach. This model rep-
resents network relations as matrices, and it factor-
izes the target relation matrix into two smaller matri-
ces that represent the latent features of the interacting
nodes. The main advantage of these alternative ap-
proaches is that they can be better generalized to al-
most all network classification tasks without any need
for feature engineering or expert domain knowledge.
However, they face significant challenges with very
sparse networks and especially if these networks have
implicit feedback relations. These implicit relations
are dominantly very sparse, and relation edges are ei-
ther observed or unobserved without explicit weights.



In various real-world scenarios, those implicit rela-
tions have hidden semantic weights (Lerche and Jan-
nach, 2014) which are not directly quantifiable but
can be approximated using different weighting func-
tions such as similarity measures. Current approaches
that utilize the network structure to learn latent node
representations fail to realize these hidden weights
of implicit relations. A famous example of such re-
lations is the friendship relation in social networks.
This relation is a type of implicit feedback relations
that models the interaction between nodes that have
same types, and it is expressed as sparsely observed
edges connecting those nodes. This kind of friendship
relations frequently occurs in multi-relational settings
and it is not only for representing a relation between
users, but it can also represent a relation between any
same type nodes. In networks data, all of the friend-
ship observed edges would have the same importance
weight while in real-life, some friendship relations are
stronger than others. The real-life weights of such re-
lations can be approximated by measuring the similar-
ity between each two interacting nodes. The main ad-
vantage of using similarity is that it can be calculated
using simple information from network structure such
as nodes degrees without any need of complex auxil-
iary information which might not be available such as
frequency interaction or timestamps.

In this work, we introduce a similarity based per-
sonalized two-stage multi-relation matrix factoriza-
tion model(Two-Stage-MR-BPR) for multi-label net-
work classification and ranking. It utilizes the ba-
sic transitive node similarity for weighting implicit
friendship relations and a two-stage training protocol
to optimize the Bayesian personalized ranking loss.
By optimizing the BPR loss, the model will output a
ranked list of labels instead of only one label for any
target node which means it will be suitable for rec-
ommender system problems and node classification
problems if we just assume the top label as the pre-
dicted class.

The weighted Two-Stage-MR-BPR overcomes the
drawbacks of MR-BPR and outperforms it in all of
our experiments as it can distinguish between ob-
served and unobserved relations along with learning
the different strength weights of the observed rela-
tions.

Our contributions can be summarized as follows :

• We utilize the transitive node similarity to approxi-
mate the semantic weights of all implicit relations
that have interacting nodes of the same type to al-
low the Two-Stage-MR-BPR model to learn the
strength weights of relations.

• We propose a generalized two-stage learning al-
gorithm that utilizes all available implicit and

weighted relations for training the MR-BPR
model.

• We conduct multiple experiments on four real-
world datasets. The results show that the pro-
posed weighted Two-Stage-MR-BPR outperform
the MR-BPR and current state-of-art models in
multi-label and single-label classification prob-
lems.

The rest of the paper is organized as follows. In
Section 2, we summarize the related work. We dis-
cuss the problem formulation of the multi-label clas-
sification task in section 3. In section 4, we present
and discuss the technical details of the Two-Stage-
MR-BPR model. We present the experiential results
in section 5. Finally, we conclude with discussing
possible future work in section 6.

2 RELATED WORK

Current approaches for multi-label node classifica-
tion automate the process of features extraction and
engineering by directly learning latent features for
each node. These latent features are mainly generated
based on the global network structure and the connec-
tivity layout of each node. In earlier approaches such
as (Tang and Liu, 2009a; Tang and Liu, 2009b), they
produce k latent features for each node by utilizing
either the first k eigenvectors of a generated modular-
ity matrix for the friendship relation (Tang and Liu,
2009a) or a sparse k-means clustering of friendship
edges (Tang and Liu, 2009b). These k features are
fed into an SVM for labels predictions.

Recently, semi-supervised (Thomas and Welling,
2016) and unsupervised approaches (Grover and
Leskovec, 2016; Perozzi et al., 2014; Yang et al.,
2015) have been proposed to extract latent node rep-
resentations in networks data. These models are in-
spired by the novel approaches for learning latent rep-
resentations of words such as the convolutional neural
networks and the Skip-gram models (Mikolov et al.,
2013) in the domain of natural language processing.
They formulate the network classification problem as
discrete words classification problem by representing
the network as a document and all nodes as a sequence
of words. The Skip-gram can then be used to predict
the most likely labels for each node based on the as-
sumption that similar nodes will have same labels.

In (Krohn-Grimberghe et al., 2012), MR-BPR was
proposed as learning to rank approach for tackling the
multi-label classification problem by extending the
BPR (Rendle et al., 2009) model for multi-relational
settings. This approach expresses the problem as a



multi-relational matrix factorization trained to opti-
mize the AUC measure using BPR loss. Each net-
work relation is represented by a sparse matrix and
the relation between nodes and labels will be the
target being predicted. Because of the BPR loss,
this model is considered suitable for sparse networks
with implicit feedback relations; however, since all
implicit feedback connections are only observed or
unobserved, the MR-BPR fail to realize that some
implicit links are stronger than others in real-life.
To solve this drawback in the original single rela-
tion BPR model, (Lerche and Jannach, 2014) pro-
posed BPR++ an extended version of the BPR model
for user-item rating prediction. They utilized mul-
tiple weighting functions to approximate the logical
weights between users and items. Those functions re-
lied on the frequency of interaction and timestamps
to weight each edge. In the training phase, they ran-
domly alternate between learning to distinguish ob-
served and unobserved relations and learning to rank
weighted observed relations. This learning approach
expands the BPR capacity to differentiate between
strong and weak connections.

Finally, our proposed Two-Stage-MR-BPR model
follow a similar intuition to that of BPR++ and it
considers the more general multi-relational settings
which allow it to be used for any multi-label and
single-label network classification problems. The
proposed model utilizes the basic transitive node sim-
ilarity for approximating the weights of implicit rela-
tions that have interacting nodes of the same type. In
this work, we also propose MR-BPR++ an extended
version of BPR++ for multi-relational settings. The
learning algorithm for Two-stage-MR-BPR is differ-
ent from MR-BPR++; it relies on two consecutive
non-overlapping learning stages instead of random al-
ternation. In the first stage, it allows the model to
sufficiently learns to differentiate between strong and
weak relations and in the second stage, it allows it
to learns to differentiate between observed and unob-
served relations.

3 PROBLEM DEFINITION

The problem can be formulated similarly to (Krohn-
Grimberghe et al., 2012) as a relational learning set-
ting on network data. Let G = (V,E) be a network
where V is a set of heterogeneous nodes, and E is the
set of edges. Each node can be seen as an entity and
each edge represents a relation between two entities.
Let N := {N1,N2, ...,N|N |} be a set of node types
and each type has a set of nodes as instances Ni :=
{n(1)i ,n(2)i , ...,n(|Ni|)

i }. Let R := {R1,R2, ...,R|R |} be

a set of relations and each relation represents inter-
actions between two specific node types N1R and N2R
such that R⊆ N1R×N2R.

Our primary task in this paper is to predict miss-
ing edges in a primary target relation Y , and all other
relations will be considered auxiliary relations that
can be used to improve the prediction accuracy. In
multi-label network classification, the relation Y rep-
resents the relation between a set of nodes and la-
bels Y ⊆ NTarget ×NLabel , such as the relationship be-
tween multiple interests and users in social networks
or document-labels and documents in citation net-
works. Examples of auxiliary relations are the friend-
ship relation in social networks or citation links in ci-
tation networks.

The task of predicting missing edges in the tar-
get relation can be formulated as a ranking problem
where we try to drive a ranked list of labels that rep-
resent the likelihood that a specific node belongs to
each of them.

In case of sparse auxiliary relations with implicit
edges, the current multi-relational matrix factoriza-
tion model with BPR loss (Krohn-Grimberghe et al.,
2012) does not exploit the full potential of the BPR
loss because it only distinguishes between observed
and unobserved edges without considering the edges
weights (Lerche and Jannach, 2014).

Our proposed approach addresses the shortcom-
ings of the current multi-relational matrix factoriza-
tion model by firstly using transitive node similar-
ity for weighting the implicit auxiliary relations and
using a Two-Stage-MR-BPR learning algorithm that
can rank observed edges and distinguish between ob-
served and unobserved edges. The proposed approach
is also suitable for cold-start scenarios where only the
auxiliary relations information are available for the
target nodes.

4 PROPOSED MODEL

The proposed model can be formulated as a two-
stage multi-relational matrix factorization using basic
transitive node similarity for weighting implicit rela-
tions. Initially, the transitive node similarity is used to
weight all observed edges in any implicit auxiliary re-
lations that has interacting nodes of the same type. In
the first stage of learning, the model is trained to rank
edges based on their weights. In the second stage, the
model is trained to differentiate between observed and
unobserved edges. Figure 1 illustrates the workflow
of the Two-Stage-MR-BPR model and each step will
be discussed in details in the following subsections.
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Figure 1: Two-Stage-MR-BPR workflow. Initially, the transitive node similarity is used to weight all implicit relations with
same type interacting nodes followed by learning a two stage multi-relational matrix factorization on all relations using the
BPR loss to rank all labels with respect to each test node.

4.1 Basic Transitive Node Similarity for
Implicit Feedback Relations

In the relational learning setting, in order to apply
the two-stage MR-BPR learning technique we need
first to convert all possible implicit feedback relations
into weighted relations. To convert implicit relations
into weighted relations, one needs a suitable weight-
ing function that approximate relation weights by uti-
lizing the available embedded information in each re-
lation such as frequency or timestamps of interac-
tions in user-item relations, or similarity measures in
friendship relations. In the most basic case where
there is no available embedded information, an im-
plicit relation can be considered a relation that was
weighted by a constant weighting function which out-
puts only one value if it encounters an observed edge.

Friendship relations are one of the prominent
types of implicit relations in networks data. It can
represent any relation between nodes of the same
type such as users friendships in social networks or
web links between web pages or citation links be-
tween documents. For weighting edges in general
friendship relations, the similarity measures such as
Adamic/Adar, common neighbors, Jaccard index and
friend transitive node similarity FriendTNS (Syme-
onidis et al., 2010) are considered the best candidates
to act as weighting functions (Symeonidis et al., 2010;
Liben-Nowell and Kleinberg, 2007). In our proposed
approach we used the FriendTNS function because
it provided superior accuracy over other similarity
functions (Symeonidis et al., 2010; Ahmed et al.,
2016) in link prediction tasks and it requires mini-
mum auxiliary information from the network struc-
ture. FriendTNS was used for weighting all the ob-
served edges in all available implicit friendship rela-
tions and it was calculated only for observed edges
because it is computationally expensive to calculate
weights for all possible node pairs in very sparse net-
works. The FriendTNS similarity between two nodes

is calculated using equation (1).

FT NS(ni,n j) :=

{
1

deg(ni)+deg(n j)−1 , if (ni,n j) ∈ R

0, if (ni,n j) /∈ R
(1)

where deg(ni) and deg(n j) is the degree of nodes ni
and n j respectively. In case of directed graphs, we
used the summation of the node’s in-degree and out-
degree as the total degree.

4.2 Multi-Relational Matrix
Factorization With Basic Transitive
Node Similarity

To formulate the problem as a multi-relational matrix
factorization, each node type Ni can be represented by
a matrix Ei ∈R|Ni|×k where the rows are the latent fea-
ture vectors for all instances in the node type, and k
represents the number of latent factors defined in the
model. Similarly, each implicit relation R can be rep-
resented by a matrix R ∈ R|N1R|×|N2R| where N1R and
N2R are the two types of the interacting nodes inside
relation R. Each entry in the relation matrix is given
by

R(n(i)1R,n
( j)
2R ) :=


Weight(n(i)1R,n

( j)
2R ), if(n(i)1R,n

( j)
2R ) ∈ R

unobserved, if(n(i)1R,n
( j)
2R ) /∈ R

(2)
where Weight(n(i)1R,n

( j)
2R ) is the weighting function

used to approximate the weights of implicit relation
between any two nodes such as similarity functions
in case of friendship relations or frequency of interac-
tion in case of user-item relations. If no available em-
bedded information can be used to weight relations, a
constant weighting function is assumed.

Finally, each relation R can be approximated by
multiplying the latent matrices of the two relation
node types E1R and E2R such that R≈ E1R×ET

2R. For



simplicity, we define a set of all the model parameters
Θ := {E1,E2, ...,E|N |} which contain the matrices of
all nodes types and our general objective will be to
find the set of matrices Θ that minimize the sum of
losses over all relations.

4.3 Two-Stage MR-BPR

The original BPR model (Rendle et al., 2009) as-
sumes that for a given user u, any item i this user in-
teracted with should be ranked higher than any item
j he did not interact with. In order to do so, the BPR
model learns to maximize the difference x̂R

u,i, j between
the predicted rating r̂(u, i) for an observed item i and
the rating r̂(u, j) for an unobserved item j.

To follow the same notation in a multi-relational
setting, for any given relation R, the user u will repre-
sent a node of type N1R, while i and j will represents
two nodes of type N2R. For each relation R the base-
line MR-BPR model samples a set of triples DR which
is defined as follows:

DR := {(u, i, j)|(u, i) ∈ R∧ (u, j) /∈ R}

The sampling is done using bootstrap sampling
with replacement. The model is then trained to max-
imize the difference between the predicted ratings of
the observed edges and unobserved edges for all rela-
tion using equations (2) and (3).

BPR-Opt(R,E1RE2R
T ) = ∑

(u,i, j)∈R
lnσ(x̂R

u,i, j) (3)

MR-BPR(R,Θ) = ∑
R∈R

αRBPR-Opt(R,E1RE2R
T )

+ ∑
E∈Θ

λE ||E||2

(4)
where σ is the sigmoid logistic function and αR is the
loss weight for relation R. By following this learning
approach, the MR-BPR model learns to distinguish
between observed edges and unobserved edges over
iterations. This approach is not optimal as it fails to
realize the different semantic weights of the implicit
relations. In (Lerche and Jannach, 2014) they pro-
posed a new learning technique for the original BPR
model called BPR++ which extend the BPR to learn
weighted relations. There proposed extension allow
the BPR model to provide better rankings for item
ratings by utilizing the timestamps and frequency of
user interactions to weight user-item edges. BPR++
is randomly alternating between learning to rank ob-
served weighted edges and learning to distinguish be-
tween observed and unobserved edges. Instead of us-
ing such random alternation between the two learning

tasks for multi-relational settings, we propose a two-
stage learning approach that decouple the two learn-
ing tasks and learn them sequentially to avoid infor-
mation overwrites across iterations. When applied
to multi-relational settings, the proposed two-stage
learning protocol and BPR++ will utilize a separate
set of triples D++

R beside the original set DR. This
new set contains observed weighted edges sampled
using bootstrap sampling with replacement for each
available weighted relation as follows:

D++
R := {(u, i, j)|Weight(u, i)>Weight(u, j)∧

(u, i) ∈ R∧ (u, j) ∈ R}

The main difference between the proposed two-
stage learning protocol and BPR++ is that the later
will rely on random alternating sampling from DR
and D++

R which introduce the risk of having informa-
tion loss as some iterations might overwrite the pre-
viously learned information, e.g. if an node was se-
lected first as an observed item from DR and in the
next iteration it was selected as the lower weighted
item from D++

R , the second iteration will overwrite the
information gained in the first iteration as it will de-
crease the score of the item after it has been increased.
On the other hand, Two-Stage-MR-BPR overcome
such problem by learning to rank all weighted edges
first then it learns to distinguish observed and unob-
served edges afterward with no overlap between the
two stages in each epoch. This means that the sec-
ond stage will shift the learned scores of the observed
edges away from the unobserved ones while main-
taining the learned rankings between the weighted ob-
served edges.

In our experiments, we applied both learning pro-
tocols on the MR-BPR model for performance com-
parison and we used the basic FriendTNS similarity
as weighting function for all implicit relations where
the participating nodes have the same type. In each
learning epoch during the training phase, the num-
ber of sampling steps for D++

R and DR is equal to the
number of observed edges ObsEdgesR in R, similar to
the original BPR (Rendle et al., 2009) and MR-BPR
(Krohn-Grimberghe et al., 2012) models. The gen-
eralized algorithms for training the Two-Stage-MR-
BPR and MR-BPR++ are described in Figures 2 and
3.

In the experiments section, we compared the two
models against each other and the original MR-
BPR model. The results showed that the proposed
two-stage model provides better accuracy for multi-
relational settings where we have multiple sparse rela-
tions without timestamps or frequency of interactions
that can be used to weight relations.



Table 1: Datasets Statistics

Type Nodes Labels Edges Features Sparsity

BlogCatalog Undirected 10312 39 667966 - 99.37%
PPI Undirected 3890 50 76584 - 99.49%

Wiki Directed 2405 19 17981 - 99.68%
Cora Directed 2708 7 5429 1433 99.92%

1: procedure TWO-STAGE-MR-BPR(D,R ,Θ)
2: Initialize All E ∈Θ

3: repeat
4: for R ∈ R do
5: // (Stage One)
6: if D++

R \DR 6= φ then
7: for ObsEdgesR times do
8: draw (u,i,j) from D++

R

9: Θ←Θ+µ ∂(MR-BPR(R,Θ))
∂Θ

10: end for
11: end if
12: // (Stage Two)
13: for ObsEdgesR times do
14: draw (u,i,j) from DR

15: Θ←Θ+µ ∂(MR-BPR(R,Θ))
∂Θ

16: end for
17: end for
18: until convergence
19: return Θ

20: end procedure
Figure 2: Two-Stage-MR-BPR algorithm with learning rate
µ and L2 regularization λΘ

1: procedure MR-BPR++(D,R ,Θ)
2: Initialize All E ∈Θ

3: repeat
4: for R ∈ R do
5: r = random(0,1)
6: if r ≤ β∧D++

R \DR 6= φ then
7: draw (u,i,j) from D++

R
8: else
9: draw (u,i,j) from DR

10: end if
11: Θ←Θ+µ ∂(MR-BPR(R,Θ))

∂Θ

12: end for
13: until convergence
14: return Θ

15: end procedure
Figure 3: MR-BPR++ algorithm with learning rate µ, prob-
ability threshold β and L2 regularization λΘ

5 EXPERIMENTS

5.1 Datasets

We applied the Two-Stage MR-BPR and MR-BPR++
on four network classification datasets from four dif-

ferent domains. The first three datasets contain two
relations while the fourth dataset is a citation network
where nodes have an embedded feature vector that
can be considered as third relations.

• BlogCatalog (Zafarani and Liu, 2009) : This
dataset represents a large social network from the
BlogCatalog website. It has two relations, a tar-
get relation which represents the relation between
groups and users, and an auxiliary relation repre-
senting the friendship between users.

• Wiki (Tu et al., 2016) : This dataset represents a
network of Wikipedia web pages. It also has two
relations, a target relation which represents the
categories of the web pages, and an auxiliary rela-
tion that represents links between the web pages.

• Protein-Protein Interactions (PPI) (Breitkreutz
et al., 2007) : This dataset is a network of protein-
protein interactions for homo sapiens. It has two
relations, a target one which represents the rela-
tion between protein-labels and proteins, and an
auxiliary relation that represents the interactions
between proteins and other proteins. This dataset
was used to check how well our proposed model
performs in non-web-based domains.

• Cora (Sen et al., 2008) : This dataset represents a
citation network where each document has 1433
binary feature vector representing words occur-
rence. This dataset can be considered as having
three relations, a target relation which represents
the class label of a document, an auxiliary relation
that represents citation links between documents
and a final auxiliary relation that represents a re-
lation between a document and words that exist in
this document.

Table 1 shows the detailed statistics of the datasets.

5.2 Baselines

• MR-BPR (Krohn-Grimberghe et al., 2012) : The
original MR-BPR model that utilizes implicit aux-
iliary relations for ranking node labels. This
model does not utilize transitive node similarities.

• DeepWalk (Perozzi et al., 2014) : One of the well-
known models for multi-label network classifica-



tion. This model learns node latent representa-
tions by utilizing uniform random walks in the
network.

• Node2Vec (Grover and Leskovec, 2016) : This is
one of the state-of-art models for multi-label net-
work classification and can be seen as a general-
ized version of DeepWalk with two guiding pa-
rameters p and q for the random walks.

• GCN (Thomas and Welling, 2016) : This model is
one of the state-of-art models for document clas-
sification in citation networks. It relies on multi-
layered graph convolutional neural network for
learning network representation with text features.

• TADW (Yang et al., 2015) :This model is also one
of the state-of-art models for document classifica-
tion in citation networks. It is an extended version
of the original Deep Walk model for learning net-
work representation with text features.

On Cora dataset, our proposed model was compared
only against GCN and TADW because they require
nodes with embedded textual features which is miss-
ing in the first three datasets. On the other hand Deep-
Walk and Node2Vec where not used on Cora dataset
because they can’t represent nodes with embedded
features.

5.3 Experimental Protocol and
Evaluation

We followed the same experimental protocol in
(Krohn-Grimberghe et al., 2012; Perozzi et al., 2014;
Grover and Leskovec, 2016). We used 10-fold cross-
validation experiments on each target relation. These
experiments were applied using different percentages
of labeled nodes ranging from 10% to 90%. In each
experiment, we only used the defined percentage of
labeled nodes for training along with all the auxil-
iary relations, while the remaining percent of nodes
were used for testing. We used Micro-F1 and Macro-
F1 measures for performance evaluation on Blog Cat-
alog, PPI and Wiki Dataset, and Accuracy on Cora
Dataset.

We used the same hyper-parameters that were
used in the original baselines’ papers, and grid-search
was used to find the best hyper-parameters if none
were mentioned for the target dataset.

5.4 Results

The experimental results on the four datasets are
shown in Tables 2, 3, 4, 5, and Figure 4. The re-
sults shows that Two-Stage-MR-BPR with transitive
node similarity outperformed the original MR-BRP

model in all train-splits. In comparison with other
well-known models for multi-label network classifi-
cation, the Two-Stage-MR-BPR model outperformed
the state-of-art Node2Vec over all trains-splits on
BlogCatalog, PPI and Wiki datasets. It is worthy to
note that all improvements over Node2Vec are statis-
tically significant with a p-value less than 0.01 us-
ing paired t-test. Two-Stage-MR-BPR also outper-
formed DeepWalk over all trains-splits on BlogCata-
log and PPI, while on Wiki, DeepWalk only achieved
better Macro-F1 scores on the 20%, 30%, and 40%
trains-splits. The results also show that Two-Stage-
MR-BPR outperformed all other models in terms of
Micro-F1 with 40% less data using the 50% train-split
on the BlogCatalog dataset. On PPI, It outperformed
all other models in terms of Micro-F1 and Macro-
F1 with 30% less data using the 60% train-split. On
the other hand, the document classification results on
the Cora datasets show that Two-Stage-MR-BPR out-
performed the state-of-art models on 10% and 90%
splits, while it achieves comparable results on the
50% train-splits.

In comparison with Two-Stage-MR-BPR, MR-
BRP++ also outperformed MR-BRP on BlogCatalog
over most of the train splits, but it had minimal per-
formance gains in some train-splits on PPI, Wiki and
Cora. These results demonstrate the importance of
using transitive node similarity to weight implicit re-
lations, and they show that using two sequential non-
overlapping stages to train the BPR loss is better than
randomly alternating between ranking observed edges
and distinguishing them from unobserved edges.

5.5 Reproducibility of the Experiments

For each model we used the following hyper-
parameters during in experiments.

• MR-BPR: The hyper-parameters are k = 500, µ =
0.02, λuser = 0.0125, λitem = 0.0005, 300 iter-
ations and α = 0.5 for BlogCatalog; k = 500,
µ = 0.01, λprotein = 0.0125, λlabel = 0.0005, 400
iterations and α = 0.5 for PPI; k = 600, µ =
0.02, λpage = 0.0125, λlabel = 0.0005, 1000 iter-
ations and α = 0.5 for Wiki; and k = 900, µ =
0.03, λdocument = 0.005, λlabel = 0.0001, λwords =
0.0001, 1400 iterations and α = 0.33 for Cora.

• MR-BPR++: The hyper-parameters are β = 0.75,
k = 500, µ= 0.02, λuser = 0.0125, λitem = 0.0005,
300 iterations and α = 0.5 for BlogCatalog; β =
0.75, k= 500, µ= 0.01, λprotein = 0.0125, λlabel =
0.0005, 400 iterations and α = 0.5 for PPI; β =
0.75, k = 600, µ = 0.02, λpage = 0.0125, λlabel =
0.0005, 1000 iterations and α = 0.5 for Wiki; and
k = 900, µ = 0.03, λdocument = 0.005, λlabel =



Table 2: Mutli-lable classification results on BlogCatalog dataset

%Lable Nodes 10% 30% 50% 70% 90%

Micro-F1(%) DeepWalk 33.71 38.22 39.37 40.64 41.11
Node2Vec 33.72 38.33 39.98 40.75 42.16
MR-BPR 36.16 39.24 40.68 40.39 40.64
MR-BPR++ 35.47 39.49 40.84 40.99 41.14
Two-Stage-MR-BPR 37.27** 40.49** 42.22** 42.03** 42.51*

Macro-F1(%) DeepWalk 18.19 23.61 25.32 27.20 27.84
Node2Vec 19.24 24.70 26.80 27.80 29.15
MR-BPR 22.21 26.20 27.95 28.49 29.13
MR-BPR++ 22.03 26.55 28.19 29.12 29.62
Two-Stage-MR-BPR 23.18** 26.91** 28.69** 29.54** 30.55*

Significantly outperforms MR-BPR at the: ** 0.01 and * 0.05 levels.

Table 3: Mutli-lable classification results on PPI dataset

%Lable Nodes 10% 30% 50% 70% 90%

Micro-F1(%) DeepWalk 15.89 18.68 20.85 22.35 24.11
Node2Vec 15.09 17.52 20.38 22.02 22.65
MR-BPR 17.11 20.87 22.61 23.55 23.44
MR-BPR++ 16.97 20.62 22.46 23.33 23.56
Two-Stage-MR-BPR 18.21** 21.88** 23.31** 24.78** 25.38**

Macro-F1(%) DeepWalk 12.73 15.41 18.50 18.49 19.15
Node2Vec 12.17 14.51 18.01 18.89 18.76
MR-BPR 12.88 16.83 18.81 19.54 19.48
MR-BPR++ 12.71 16.58 18.66 19.54 19.66
Two-Stage-MR-BPR 13.96** 17.96** 19.43** 20.72** 21.41**

Significantly outperforms MR-BPR at the: ** 0.01 and * 0.05 levels.

Table 4: Mutli-lable classification results on Wiki dataset

%Lable Nodes 10% 30% 50% 70% 90%

Micro-F1(%) DeepWalk 56.04 63.52 65.03 66.73 66.27
Node2Vec 57.24 61.40 62.45 63.76 62.61
MR-BPR 58.10 65.54 68.66 70.24 71.71
MR-BPR++ 59.56 65.61 68.56 69.99 70.34
Two-Stage-MR-BPR 60.40** 66.16 69.21 71.18 72.84

Macro-F1(%) DeepWalk 44.33 57.16 56.21 58.71 61.20
Node2Vec 42.95 51.96 52.25 53.25 55.04
MR-BPR 44.41 53.23 57.50 59.17 63.99
MR-BPR++ 46.58 54.01 57.62 59.29 62.79
Two-Stage-MR-BPR 47.35** 54.41* 58.33 60.32 65.16

Significantly outperforms MR-BPR at the: ** 0.01 and * 0.05 levels.

0.0001, λwords = 0.0001, 1400 iterations and α =
0.33 for Cora.

• Two-Stage-MR-BPR: We used the same hyper-
parameters of MR-BPR

• DeepWalk: The hyper-parameters are d = 128, r =
10, l = 80 and k = 10 for all datasets.

• Node2Vec: The hyper-parameters are d = 128, r =

10, l = 80, k = 10, p = 0.25 and q = 0.25 for
BlogCatalog; d = 128, r = 10, l = 80, k = 10,
p = 4 and q = 1 for PPI and Wiki.

• GCN: We used the same hyper-parameters from the
original paper. Dropout rate = 0.5, L2 regulariza-
tion = 5.10−4 and 16 (number of hidden units)
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Figure 4: Evaluation of the Two-Stage-MR-BPR model against other baseline models. The x axis denotes the percent of
labeled nodes used in the training phase, while the y axis denotes the Micro-F1 and Macro-F1 scores.

Table 5: Document classification results on Cora dataset

%Lable Nodes 10% 50% 90%

Accuracy(%) GCN 78.37 86.53 86.39
TADW 75.24 85.99 85.60
MR-BPR 75.03 78.76 81.66
MR-BPR++ 76.24 78.10 81.10
Two-Stage-MR-BPR 79.30** 84.20 86.86

Significantly outperforms GCN at the: ** 0.01 and * 0.05 levels.

• TADW: We used the same default hyper-
parameters from the original papers which
are k = 80 and λ = 0.2

6 CONCLUSIONS

In this paper, we proposed the similarity based Two-
Stage-MR-BPR model that exploits the full poten-

tial of the Bayesian personalized ranking as a loss
function. Two-Stage-MR-BPR relies on converting
all implicit feedback relations into weighted relations
using basic transitive node similarity to approximate
the semantic weights of relations in the real world.
This conversion step allows the Two-Stage-MR-BPR
to learn ranking edges based on their weights and
to learn to distinguish observed edges from unob-
served ones. Experiments on four real-world datasets



showed that Two-Stage-MR-BPR outperformed the
original MR-BPR and other state-of-art models in the
task of multi-label network classification and docu-
ment classification. In future work, we are planning to
explore and integrate several possible approaches to
further expand the capacity of the BPR models. Two
of those possible approaches for expansion are learn-
ing nonlinear latent representation and using non-
uniform samplers (Rendle and Freudenthaler, 2014).
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