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ABSTRACT
The task of classifying multi-relational data spans a wide range

of domains such as document classification in citation networks,

classification of emails, and protein labeling in proteins interaction

graphs. Current state-of-the-art classification models rely on learn-

ing per-entity latent representations by mining the whole structure

of the relations’ graph, however, they still face two major problems.

Firstly, it is very challenging to generate expressive latent represen-

tations in sparse multi-relational settings with implicit feedback

relations as there is very little information per-entity. Secondly, for

entities with structured properties such as titles and abstracts (text)

in documents, models have to be modified ad-hoc. In this paper, we

aim to overcome these two main drawbacks by proposing a flexible

nonlinear latent embedding model (BRNLE) for the classification of

multi-relational data. The proposed model can be applied to entities

with structured properties such as text by utilizing the numerical

vector representations of those properties. To address the sparsity

problem of implicit feedback relations, the model is optimized via a

sparsely-regularized multi-relational pair-wise Bayesian personal-

ized ranking loss (BPR). Experiments on four different real-world

datasets show that the proposed model significantly outperforms

state-of-the-art models for multi-relational classification.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; Learn-
ing latent representations; Multi-task learning; • Information sys-
tems → Data mining.

KEYWORDS
Multi-Relational Classification; Multi-Relational Learning; Docu-

ments Classification; Network Representation

ACM Reference Format:
Ahmed Rashed, Josif Grabocka, and Lars Schmidt-Thieme. 2019. Multi-

Relational Classification via Bayesian Ranked Non-Linear Embeddings. In

The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’19), August 4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3292500.3330863

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00

https://doi.org/10.1145/3292500.3330863

1 INTRODUCTION
Multi-relational classification is a widely studied task in the do-

mains of document classification[17], web-page classification [21],

recommender systems [5, 8, 10], protein-label predictions [5], and

network analysis.

There are multiple approaches for classifying entities within

multi-relational settings. The typical approach is to extract a set

of per-entity engineered features which are then fed directly to

off-the-shelf classifiers. While certain accuracy can be achieved

with engineered features, these approaches suffer from two main

limitations. Firstly, they need expert domain knowledge to extract,

preprocess and engineer features from raw data. Secondly, to ex-

tract expressive features, a fair amount of per-entity information

is needed such as user profiles in social networks, however, this

information might not be available in real-world scenarios.

On the other hand, there exist a set of models that are able to

overcome such limitations by directly learning to extract per-entity

latent features through mining the whole relations graph [2]. A

well-known approach to extract such latent features is the multi-

relational matrix factorization [7, 8, 16] which represents every

relation in the graph as a matrix that can be factorized into two

separate smaller matrices representing the latent features of the

interacting entities. Although these approaches can be general-

ized to most multi-relational settings, they still face two significant

challenges. The first challenge are multi-relational settings with

implicit feedback relations. This kind of relations is usually very

sparse and contains positive-only observed information while the

unobserved information is a mixture of negative feedback (no rela-

tion exists) and missing values (relation might exists but is missing).

Such relations are more common in real-world scenarios as they

are easier to be extracted and tracked automatically such as citation

references in citation networks or monitoring clicks in social net-

works. In such cases, treating the observed and unobserved edges

as binary values will lead to poor latent features per-entity because

the model will assume all unobserved relations to be negative infor-

mation. The second challenge are relations with entities that have

rich structured properties such as text in the case of documents. In

such scenarios, models will need to be modified ad-hoc to utilize

those structured properties while generating the latent features,

otherwise, they risk losing important information that might affect

the expressiveness of the output features.

In this paper, we address both challenges of multi-relational

classification simultaneously by introducing (BRNLE), a flexible

and scalable non-linear embedding model for classifying entities

within diverse multi-relation settings. BRNLE is optimized via a

multi-relational pair-wise Bayesian personalized ranking loss (BPR)
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with sparse regularization updates to overcome the drawbacks of

sparse implicit relations. The proposed model can also be applied

to entities with structured data modalities such as text by utilizing

the numerical vector representations of those properties.

Our contributions can be summarized as follows :

• We introduce a simple, yet effective and flexiblemulti-relational

classification model (BRNLE) that can be applied to diverse

multi-relational settings where entities might have struc-

tured properties such as text and it has the potential to be

extended for other complex structured properties.

• We utilize a sparsely regularized multi-relational Bayesian

ranked loss for training the BRNLE to overcome the chal-

lenges of sparse implicit feedback relations.

• We conduct multiple experiments on four real-world datasets

from diverse domains. The results show that the proposed

BRNLE model outperforms state-of-the-art models in multi-

relational classification and achieves improvements of up

to 18.3% on accuracy and Micro F1. It also outperforms the

best state-of-the-art models on two datasets with 40% less

training data.

The rest of the paper is organized as follows. In Section 2, we

summarize the related work. We discuss the problem formulation of

the multi-relational classification task in Section 3. In Section 4, we

present and discuss the technical details of the BRNLE model. We

present the experimental results in Section 5. Finally, we conclude

with discussing possible future work in Section 6.

2 RELATEDWORK
Current approaches for multi-relational classification rely on learn-

ing per-entity latent features by mining the relations graph struc-

ture and analyzing entity interactions within the graph. An earlier

approach proposed by Džeroski et al. [3] relied on relational deci-

sion trees and it was succeeded by more recent approaches that rely

on learning entities’ latent dimensions [18, 19]. These approaches

produce a K-dimensional latent features for each entity by using

either the first K-eigenvectors of a modularity matrix that was gen-

erated for the friendship relation [18] or a sparse k-means clustering

of friendship edges [19]. After the extraction of the K-dimensional

latent features, they are fed into a supervised SVM classifier for

predicting their labels.

Recently, unsupervised [5, 10, 21, 23, 23] and semi-supervised

[6, 20, 22] approaches have been proposed for multi-relational clas-

sification. Most of these approaches are inspired by the recent

breakthroughs in the domain of natural language processing for

learning word latent representations using convolutional neural

networks and the Skip-gram model [9]. The Skip-gram model was

firstly used in DeepWalk [10] which was extended later to handle

entities with text properties [21, 23] andwas improved by Node2Vec

[5] for better random walk generations. Recently, Qiu et al. pro-

posed a unified matrix factorization approach called NetMF [11].

NetMF incorporates aspects from multiple Skip-gram models and

was able to achieve the current state-of-the-art performance on

graph embeddings, however, it cannot utilize any structured prop-

erties that may be embedded in the graph entities such as text

features. Skip-gram approaches learn the latent features by casting

the multi-relation classification problem as a words classification

problem where relations are treated as documents and entities as

a sequence of words. The Skip-gram model will then classify an

entity based on its similarity to other labeled entities.

On the other hand, semi-supervised approaches such as GCN

[20] and GraphSAGE [6] were proposed to tackle the problem by

relying on customized Graph Convolutional Networks (GCN) and

pooling layers for learning latent entity features by utilizing the

structured properties of their neighboring entities in the relations

graph. Although those two approaches achieve state-of-the-art

performance, they cannot be applied to graphs where entities lack

any structured properties which is their major limitation.

Although, these recent unsupervised and semi-supervised mod-

els achieve competitive accuracy, however, they still suffer from

two major drawbacks, Firstly, they underperform when applied

to sparse multi-relational settings. Secondly, some models cannot

represent entities with structured properties which leads to poor

classification accuracy while others mainly rely on entity properties

which are not always available in real cases. Most graph embedding

models are also naturally limited to two-relational settings (Entity-

to-Entity and Entity-to-Labels) and cannot be extended for an ar-

bitrary number of relations with an exception of multi-relational

factorization models.

To overcome the sparsity problem and the limited number of sup-

ported relations, Krohn-Grimberghe et al. [8] proposed (MR-BPR)

as a learning to rank approach for multi-relational classification by

extending the original BPR model [13] for sparse multi-relational

settings. This approach formulates the problem as a multi-relational

matrix factorization trained to optimize the AUC measure using

BPR loss. Each available relation is represented by a matrix and

the relation between target entities and labels will be the target to

be predicted. Although this model is suitable for any number of

sparse relations, it still cannot represent entities with structured

properties.

In this paper, we aim at addressing those two major drawbacks

simultaneously by proposing the BRNLE model for multi-relational

classification. BRNLE is capable of accommodating any number

of relations by utilizing a separate embedding function for each

available entity type, and a separate scoring function for each avail-

able relation. However, to compare the model performance against

other baselines, we only used two-relations settings in this work.

We also utilized a multi-relational pair-wise Bayesian personalized

ranking loss with controlled sparse regularization updates to over-

come the drawbacks of sparse relations. Regarding the entities with

structured properties such as text, BRNLE can directly utilize the

numerical vector representations of those properties without any

extra ad-hoc modifications.

3 PROBLEM DEFINITION
In multi-relational settings [8], there exists a set of entity types

E := {E1,E2, ...,E |E | }, where each type contains a set of instances

Ek := {e
(1)
k , e

(2)
k , ..., e

( |Ek |)
k }. An entity instance ek is represented

as a one-hot encoding vector of size |Ek | and it might have some

embedded structured properties sek that can be represented as

numerical vectors such as the case of text. There exists also a set

of binary relations R := {R1,R2, ...,R |R | } where each relation Rr



Figure 1: BRNLE architecture for documents citation graphs.
Initially for all document entities edoc , a one-hot encod-
ing vector vedoc and a numerical vector sedoc representing
its structured properties are generated. These two vectors
are concatenated and fed to a per-entity type embedding
function ϕEdoc which is learned to generate latent features
zdoc . Same procedure is applied to the class label entities
elabel but without concatenating any structured properties.
Finally, two scoring functions R̂Y and R̂A are learned jointly
to predict the relations scores for the target relation Y ⊆
Edoc × Elabel and the auxiliary relation A ⊆ Edoc × Edoc by
utilizing the learned entities latent features

represents the interaction between two entity types Er,1 and Er,2
such that Rr ⊆ Er,1 × Er,2.

The primary goal of multi-relational classification tasks is to

predict missing edges in a target relation Y ⊆ Ep × Elabels that

represents the relation between the entities to be classified Ep and

the class labels Elabels . Other relations are considered auxiliary

informationA := R \ {Y } that might be used in the prediction task.

Since each entity might have multi-class labels, we formulate the

classification problem as a ranking problem by deriving a ranked

list of labels for each entity sorted according to the likelihood that

the entity belongs to each one of them. To achieve this, a scoring

function R̂ : Ep × Elabels → R is learned to predict the scores of

all labels with respect to the predictor entities.

4 PROPOSED MODEL
The proposed BRNLE model is composed of two main components.

The first component contains the non-linear embeddings which are

responsible for extracting latent features for every entity based on

all of its observed relations and its embedded structured properties.

The second component is the Bayesian personalized ranking func-

tion which is responsible for utilizing the generated entities latent

features for deriving the ranked list of labels. Figure 1, illustrates

the architecture of the BRNLE model and each component will be

discussed in details in the following subsections.

4.1 Non-Linear Embeddings
Given the set of entity types E, we define a set of latent entities

embeddings Z := {Z1,Z2, ...,Z |E | } and a per-entity type latent

embedding function ϕEk to extract the latent features vectors Zk :=

{z
(1)
k , z

(2)
k , ..., z

( |Ek |)
k } from all instances that belong to the entity

type Ek as follows:

zk = ϕEk (xek ;θϕk ) (1)

xek = [vek , sek ] (2)

where zk are the extracted latent feature vectors for entity instance

ek . ϕEk is a series of non-linear fully connected layers with network

parameters θϕk . xek is a concatenation between a one-hot encoded

vector vek of instance ek and the numerical vector representing

its structured properties sek . sek is a structure-dependent variable

which can be omitted if no structured properties exist for the entity,

e.g. in document classification vek will be the document id and sek
the binary/tf-idf vector representation of the document text. In this

paper’s scope, we address only binary vector representations of

words as structured properties, however, sek can be extended to

other types. We also utilize a single-layer embedding function in

most of our comparative studies because its capacity was found to

be expressive enough for the utilized datasets. Comparison between

different layered architectures for ϕ is discussed in Section 5.2.1.

In order to extract expressive latent features, one needs to care-

fully select the activation functions for ϕ. In case of single-layer

embedding function, the activation function will be applied directly

to the output of that layer. After an experimental study with differ-

ent non-linear activations, we select CReLU [15] activation which is

activated in both positive and negative direction while maintaining

the same degree of non-saturated non-linearity similar to ReLU

activation. Results of this study are discussed in Section 5.1.

4.2 Bayesian Personalized Ranking
For all binary relationsRr ⊆ Er,1×Er,2, we define a scoring function

R̂r → R that utilizes the latent features vectors pairs z
(i )
r,1, z

(j )
r,2 of

all available instances pairs e
(i )
r,1 and e

(j )
r,2 respectively.

R̂r (e
(i )
r,1, e

(j )
r,2) := z

(i )T

r,1 z
(j )
r,2 (3)

R̂r can either be a direct dot product between the latent features

vectors or a parameterized function дR̂r
(z

(i )
r,1, z

(j )
r,2;θдRr ). We only

utilized the dot product version in all comparative experiments of

the BRNLE model because it achieved higher accuracy against mul-

tiple parameterized versions. Experiments with different choices of

R̂r are discussed in Section 5.2.2.

To learn the parameters of the embedding function ϕ and the

scoring function д, we need a suitable loss function that is immune

to the sparsity of implicit feedback relations. To do so, we utilized

the Bayesian personalized ranking loss to train the BRNLE model

which was inspired by [8, 13]. In a single relation setting of user-

item interactions, BPRmakes use of the assumption that, for a given

user u, any item i he interacted with (observed), should be ranked

higher than any item j he didn’t interact with (unobserved). To

achieve this, the BPR loss aims to maximize the difference
ˆdRru,i, j

between the predicted ratings scores R̂r (u, i ) and R̂r (u, j ).



ˆdRru,i, j = R̂r (u, i ) − R̂r (u, j ) (4)

To follow the same notations in multi-relational settings, for any

relation Rr , the user u will represent an entity of type Er,1, while i
and j will represent two entities of type Er,2. During the training
phase, a set of triples DRr := {(u, i, j ) |(u, i ) ∈ Rr ∧ (u, j ) < Rr } will
be sampled using bootstrap sampling with replacement.

BRNLE is then optimized by maximizing the overall objective

function J (Θ) which is the sum of all differences between the pre-

dicted rating scores of the observed and unobserved edges for all

relations R. The maximization is done by applying a stochastic

gradient ascent on Equations (5) and (6).

J (Θ) =
∑
Rr ∈R

∑
(u,i, j )∈Rr

J (Rr ,u, i, j )
(5)

J (Rr ,u, i, j ) = αRr lnσ (
ˆdRru,i, j ) − Reg(Er,1,Er,2,u, i, j ) (6)

where σ is the logistic function, αRr is the weight of relation Rr ,
and Θ is a set of all model parameters. Reg(Er,1,Er,2,u, i, j ) is a
sparse L2 regularization term which will be discussed in details in

Section 4.3.

Finally, in the inference phase, we only use the predicted rating

scores of the target relation Y ⊆ Ep × Elabels as the classification
output. The full pseudocode for BRNLE is described in Figure 2.

1: procedure LearnBRNLE(D,R, E)
2: Initialize Θ := {θϕk ,∀k ∈ {1, ..., |E |}}
3: repeat
4: for Rr ∈ R do
5: draw (u,i,j) from DRr ∈ D

6: z
(u )
r,1 ← ϕEr ,1 (xu ;θϕr ,1 ) ▷ Eq.(1)

7: z
(i )
r,2 ← ϕEr ,2 (xi ;θϕr ,2 )

8: z
(j )
r,2 ← ϕEr ,2 (x j ;θϕr ,2 )

9:
ˆdRru,i, j ← z

(u )T

r,1 z
(i )
r,2 − z

(u )T

r,1 z
(j )
r,2) ▷ Eq.(3&4)

10: θϕr ,1 ← θϕr ,1 + µ
∂ J (Rr ,u,i, j ))

∂θϕr ,1
▷ Eq.(5&6)

11: θϕr ,2 ← θϕr ,2 + µ
∂ J (Rr ,u,i, j ))

∂θϕr ,2
▷ Eq.(5&6)

12: end for
13: until convergence
14: return Θ
15: end procedure

Figure 2: BRNLE pseudocode

4.3 Sparse Regularization Updates
In sparse multi-relation settings with implicit feedback relations,

the input vector xek of the embedding functionϕ will be very sparse

which means most of the first-layer weights will be multiplied by

zeros and they will not contribute to the resulting latent feature

values. If we apply normal L2 regularization on all θϕk weights,

the gradient of the objective function will be zero for all first-layer

weights that were multiplied by zero input. However, the gradient

of the L2 regularization component will always be a positive value,

hence all first-layers weights will be penalized by the gradient

of the L2 regularization component, regardless of whether they

contributed to the resulting latent feature or not. This means that

weights will be repeatedly penalized over all iterations, although,

in reality, they might have been used only a few times. To avoid

such unnecessary regularization gradient updates to the weights

θϕk , we define a sparse L2 regularization term as follows:

Reg(Er,1,Er,2,u, i, j ) =λEr ,1ϕEr ,1 (u)
2 + λEr ,2ϕEr ,2 (i )

2

+ λEr ,2ϕEr ,2 (j )
2

(7)

where Reg(Er,1,Er,2,u, i, j ) is a sparse L2 (activity) regularization
term [4] applied to the latent features output of the embedding

function ϕ instead of applying it on all weights θϕk . λEr ,1 and λEr ,2
represent the sparse regularization weights for entity types Er,1 and
Er,2. This term will allow the regularization gradients to propagate

back only through the weights that were activated by the entity

instance and contributed to the resulting latent feature.

5 EXPERIMENTS
In this section, multiple experiments were conducted to evaluate

and find the best architecture for BRNLE. These experiments aim

to answer the following research questions:

RQ1 Are non-linear activation functions helpful for learning

rich latent representations?

RQ2 How many layers of hidden units are needed for BRNLE

to learn and score entity relations?

RQ3 How well does BRNLE perform in comparison with other

state-of-the-art models for multi-relational settings that

contain rich entity features?

RQ4 How well does BRNLE perform in comparison with other

state-of-the-art models for multi-relational settings that

lack any entity features?

RQ5 What are the effects of BRNLE individual components on

the classification accuracy?

Table 1 shows the detailed statistics of all datasets that were

used in our experiments. In the following subsections, we answer

the research questions by presenting the results of their related

experiments.

5.1 Linear vs Non-linear Activations in Latent
Embeddings (RQ1)

Figure 3 shows a performance comparison on Cora [14] using a 10%

of labeled nodes for training. This comparison was done between

different versions of the single-layer embedding function ϕ using

Linear, CReLU [15] and ReLU activation functions. Results show

that the CReLU and Linear versions have higher accuracies than

ReLU which indicates that truncating the negative values has an

adverse effect on the expensiveness of the output features. The

results also show that the CReLU version has higher accuracy than

its linear counterpart due to its non-linearity which allows it to

extract more expressive features. Finally, in comparison to other

well-known models, BRNLE with CReLU is able to outperform

all of them, while the Linear counterpart is on par with the best



Table 1: Datasets Statistics

Entity Features Relations Dimensions # of observations Sparsity

Email-Eu-core - Target 1005x42 1005 97.61%

Auxiliary 1005x1005 25571 97.46%

PPI - Target 3890x50 6640 96.58%

Auxiliary 3890x3890 76584 99.49%

Cora 1433 Target 2708x7 2708 85.71%

Auxiliary 2708x2708 5429 99.92%

Citeseer 3703 Target 3312x6 3312 83.33%

Auxiliary 3312x3312 4732 99.95%

GraphSAGE variant [6]. The BRNLE hyper-parameters used in this

experiment are discussed in details in Section 5.6.

Figure 3: Performance comparison on the Cora dataset with
10% labeled nodes between Linear, CReLU and ReLU activa-
tions for the embedding function ϕ with a single layer.

5.2 Model Structure and Complexity (RQ2)
In order to find the best architecture for the embedding and scoring

functions, two experiments were conducted on Cora dataset [14]

using 10% labeled nodes for training.

5.2.1 Embedding Function. In order to find the best number of

layers for the embedding function ϕ, we studied the performances

of different combinations of two-layered and three-layered archi-

tectures with different sizes of hidden units per-layer ranging from

100 to 3000 units. Performances of different two-layered versions

are as shown in Figures 4(a) and 4(b). We also compared the train-

ing objective value and accuracy of the best two-layered version

(3000 hidden units per-layer) against the best single-layered ver-

sion (900 hidden units) and three-layered version (2000 hidden units

per-layer) as shown in Figures 5(a) and 5(b).

Figure 4(b) shows that with controlled sparse regularization

updates, increasing the size of the first layer is sufficient to capture

most important information in the given dataset and adding an

extra layer provides no significant lift. On the other hand, Figures

5(a) and 5(b), show that all models are capable of achieving the same

training accuracy with a fixed regularization weights, however, the

(a) Without L2 regularization (b) With L2 regularization

Figure 4: Comparison between several two-layered architec-
tures of the embedding function ϕ. Figure (a) shows the re-
sults without sparse L2 regularization while (b) show results
with sparse L2 regularization

two-layered and three-layered versions start overfitting after 50 and

25 iterations. The results also show that the single-layered version

has sufficient capacity to express the entities in the given dataset

and no further layers are required.

According to those findings, we employed a single-layered em-

bedding function ϕ in all of our comparative experiments.

(a) Train Objective (b) Train and Test Accuracy

Figure 5: Performance comparison between the best two-
layered and three-layered versions of the embedding func-
tion ϕ against the best single-layered one.

5.2.2 Scoring Function. To select the best scoring function R̂r for
the BRNLE model, we compared the performance of the dot prod-

uct version against two parametric versions as shown in Table 2.



The first version relies on concatenating the entity features be-

fore feeding them to two fully connected layers that predict the

final relation score. The second version relies on multiplying the

entity features element-wise to maintain their spatial alignment

before feeding them to the fully connected layers. Best results were

achieved by using 900-dimensional latent embeddings for the dot

product versions, 400 for the multiplication version and 1000 for the

concatenation version. We also tried different sizes for the first fully

connected layer of the scoring function. The final fully connected

layer has only one output linear unit to predict the relation score.

Table 2 shows that the dot product version outperforms various

parametric versions with different settings.

Table 2: Comparison between different choices for the scor-
ing function on Cora dataset with a 10% labeled nodes for
training. There are two ways to align the entities features
which are either by concatenating them or multiplying
them element-wise before they are fed to the scoring func-
tion.

Function Type Feature Alignment Layer Size Accuracy

Dot Product - - 83.79 %

Parametric Concatenated 1000 64.52 %

800 66.32 %

200 65.66 %

Parametric Multiplied 1000 71.41 %

800 70.79 %

200 70.01 %

5.3 Comparison with state-of-the-art models
for multi-relational classification with
entity features (RQ3)

5.3.1 Datasets. In order to compare the performance of BRNLE

against other state-of-the-art models that utilize entity features,

it was applied on the following two well-known multi-relational

classification datasets that contain entity features.

(1) Cora [14]: A citation network where each document has

1433 binary features representing word occurrences. It has

two relations, a target relation which represents the class

label of a document, and an auxiliary relation that represents

citation links between documents.

(2) Citeseer [14]: Another citation network where each doc-

ument has 3703 binary features representing word occur-

rences. It has two relations, a target relationwhich represents

the class label of a document, and an auxiliary relation that

represents citation links between documents.

5.3.2 Baselines.

(1) MR-BPR [8]: A multi-relational matrix factorization model

optimized using the BPR loss for sparse multi-relational clas-

sification. This model is considered equivalent to a basic

version of BRNLE without the non-linearity and the support

for entity features.

(2) MMDW [21]: State-of-art model for multi-relational classifi-

cation. It is also considered an extended version of DeepWalk

using max-margin SVM classifier for entities with text struc-

tured properties.

(3) TADW [23]: Well-known model for document classification

in citation networks. It is considered an extended version of

DeepWalk using low-rank matrix factorization for entities

with text structured properties.

(4) GCN [20]: State-of-art model for document classification by

learning graph representations. It utilizes a multi-layered

graph convolutional neural network for learning vertex rep-

resentations with text features.

(5) GraphSAGE [6]: Current state-of-the-art for graph embed-

ding that leverages node feature information (e.g., text at-

tributes) to efficiently generate node embeddings. We used

the GCN and mean aggregated variants of GraphSAGE for

comparison with BRNLE.

In order to measure the performance of MR-BPR on datasets

with text features, we had to use a workaround by defining the

relation between documents and their binary words vectors as a

separate third relation.

5.3.3 Experimental Protocol. For our experimental protocol, we

followed a similar scale-up evaluation approach as [5, 8, 10]. We

applied a 5-fold cross-validation using different percentages of

labeled nodes for training which are 10%, 50% and 90% respectively.

In each experiment, we only utilized the defined percentage of

labeled nodes for training along with all the auxiliary relations,

while the remaining percent of nodes were used for testing. To

follow the same evaluation metrics as the original papers, we used

the accuracy measure for Cora and Citeseer.

We used the same hyper-parameters that were used in the orig-

inal baselines’ papers, and grid-search was used to find the best

hyper-parameters if none were mentioned. The optimal hyper-

parameters for BRNLE have been estimated via grid search on the

10% split of each respective dataset. Hyper-parameter details for all

baselines and BRNLE are discussed in Section 5.6.

Table 3: Accuracy(%) of document classification on Cora.

%Labeled Nodes 10% 50% 90%

MR-BPR [8] 75.03 78.76 81.66

MMDW [21] 74.94 84.71 88.19

TADW [23] 75.24 85.99 85.60

GCN [20] 78.37 86.53 86.39

GraphSAGE-GCN [6] 83.31 86.79 86.93

GraphSAGE-mean [6] 82.23 86.98 87.89

BRNLE (Our model) 83.79 87.35 90.54

5.3.4 Results. Tables 3 and 4 show the single-label classification

accuracies with different training split ratios on Cora and Citeseer

datasets.

Results show that BRNLE consistently and significantly out-

performs state-of-the-art models that rely on entity features for

multi-relational classification. All BRNLE improvements over the



Table 4: Accuracy(%) of document classification on Citeseer.

%Labeled Nodes 10% 50% 90%

MR-BPR [8] 43.91 45.36 48.70

MMDW [21] 55.60 66.93 70.95

TADW [23] 67.48 72.90 70.80

GCN [20] 71.59 76.14 77.42

GraphSAGE-GCN [6] 70.66 71.59 75.34

GraphSAGE-mean [6] 71.82 73.87 76.61

BRNLE (Our model) 73.58 77.53 80.01

baseline models are statistically significant with a p-value less than

0.01 using a paired t-test except only for the gain of BRNLE over

the GraphSAGE variants on the 10% and 50% splits of the Cora

dataset where the p values are between 0.3 and 0.1. BRNLE achieves

around 2.5%, 3.5% improvements over the best baseline on Citeseer

when ratios are 10% and 90%; It is worth to note that BRNLE out-

performs the best baseline with 40% less data on Citeseer. On Cora,

GraphSAGE had a close competitive performance to BRNLE but

the proposed model significantly outperformed it after increasing

the number of training instances to 90%.

5.4 Comparison with state-of-the-art models
for multi-relational classification without
entity features (RQ4)

5.4.1 Datasets. In order to compare the performance of BRNLE

against other state-of-the-art models that don’t utilize any entity

features, it was applied on the following two well-known multi-

relational classification datasets from two different domains.

(1) Email-Eu-core [24]: A network of emails from a large Euro-

pean research institution. It has two relations, a target one

which represents the relation between persons and the de-

partments of the research institute, and an auxiliary relation

that represents email communications between institution

members. Entities in this dataset have no structured proper-

ties.

(2) Protein-Protein Interactions (PPI) [1]: Protein-protein inter-

actions graph for homo sapiens. It has two relations, a target

one which represents the relation between protein-labels

and proteins, and an auxiliary relation that represents the

interactions between proteins. This dataset has no structured

properties.

5.4.2 Baselines.

(1) MR-BPR [8]: A multi-relational matrix factorization model

optimized by using BPR loss for sparse multi-relational clas-

sification. This model was also used in Section 5.3.

(2) DeepWalk [10]: Well-known model for multi-relational clas-

sification and learning network representations. It utilizes

random walks and Skip-Gram models to learn the vertex

latent features.

(3) Node2Vec [5]: Well-known unsupervised graph embedding

model for multi-relational classification and usually consid-

ered as an improved version of DeepWalk with two guiding

directional parameters p and q.

(4) SDNE [22]: Well-known model for multi-relational classifi-

cation that utilizes deep networks to extract nonlinear entity

information from the graph structure.

(5) NetMF [11]: Current state-of-the-art unified matrix factor-

ization approach for multi-relational classification.

5.4.3 Experimental Protocol. We followed the same experimental

protocol discussed in Section 5.3. To follow the same evaluation

metrics as the original papers, we used Micro-F1 and Macro-F1

measures for performance evaluation on PPI as it has multi-labeled

entities and we used the accuracy measure for Email-Eu-core.

Table 5: Accuracy(%) of multi-relational classification on
Email-Eu-core.

%Labeled Nodes 10% 50% 90%

MR-BPR [8] 60.15 74.93 74.80

DeepWalk [10] 57.31 71.53 73.27

Node2Vec [5] 57.81 72.49 77.22

SDNE [22] 51.56 64.53 70.70

NetMF [11] 45.59 60.00 63.17

BRNLE (Our model) 65.76 76.94 82.20

Table 6: Micro and Macro F1 scores of multi-relational clas-
sification on PPI.

%Lable Nodes 10% 50% 90%

Micro-F1(%) MR-BPR [8] 17.11 22.61 23.44

DeepWalk [10] 15.89 20.85 24.11

Node2Vec [5] 15.09 20.38 22.65

SDNE [22] 16.11 20.56 23.23

NetMF [11] 17.93 23.23 23.26

BRNLE (Our model) 19.63 25.20 28.51

Macro-F1(%) MR-BPR [8] 12.88 18.81 19.48

DeepWalk [10] 12.73 18.50 19.15

Node2Vec [5] 12.17 18.01 18.76

SDNE [22] 12.67 16.88 19.20

NetMF [11] 13.97 20.21 19.98

BRNLE (Our model) 15.27 21.22 23.86

5.4.4 Results. Tables 5 and 6 show the single-label and multi-label

classification accuracy using different training split ratios on Email-

Eu-core and PPI datasets.

Results show that BRNLE significantly outperforms state-of-the-

art models that don’t rely on entity features for multi-relational

classification. All BRNLE improvements over the baseline models

are also statistically significant with a p-value less than 0.01 using

a paired t-test. BRNLE achieves around 9.4%, 6.5% improvements

on Email-Eu-core when ratios are 10% and 90%; and around 9.6%,

8.5%, and 18.3% improvements over the best baseline on PPI when

ratios are 10%, 50% and 90%. It is worth to note that BRNLE also

outperforms the best baseline with 40% less data on PPI similar to

the Citeseer dataset.



Another interesting finding was that the MR-BPR model intro-

duced in 2012, has a very competitive performance with the most

recent baselines on PPI and Email-Eu-core. However, it was never

mentioned in the more recent papers.

5.5 Ablation Study (RQ5)
In this section, different configurations of BRNLE were compared to

study the effects of each individual model component on the classi-

fication accuracy. This experiment was applied on Citeseer dataset

using 10% of labeled nodes. The following BRNLE configurations

were tested:

(1) With linear activation

(2) With linear activation and sparse L2 regularization

(3) With linear activation and entity features

(4) With linear activation, sparse L2 regularization and entity

features

(5) With CRelu activation

(6) With CRelu activation and sparse L2 regularization

(7) With CRelu activation and entity features

(8) With CRelu activation, sparse L2 regularization and entity

features

It is worth mentioning that BRNLE configuration (1) is equivalent

to the basic version of matrix factorization model MR-BPR [8].

Table 7: Accuracy(%) of different BRNLE configuration on
Citeseer.

%Labeled Nodes 10%

(1) Linear Act. 43.72

(2) Linear Act. + L2 Reg. 46.30

(3) Linear Act. + Entity Features 70.70

(4) Linear Act. + L2 Reg. + Entity Features 72.30

(5) CRelu Act. 47.18

(6) CRelu Act. + L2 Reg. 48.45

(7) CRelu Act. + Entity Features 71.51

(8) CRelu Act. + L2 Reg. + Entity Features 73.58

The results in Tables 7 show that the L2 component alone im-

proves the accuracy by 1% to 2.5% regardless of the activation

function. The improvements induced by the non-linearity alone

are ranging from 1% to 3% without any regularization. Combin-

ing the non-linear activation function and L2 regularization in

configuration (6) achieves an improvement of 4.7% over the basic

configuration (1). Entity features on the other hand, have the high-

est effect on the accuracy which was an expected finding and the

achieved improvements ranging from 51% to 65% Finally, the best

configuration (8) was found to achieve an improvement of 68% over

the basic configuration (1).

5.6 Reproducibility of the Experiments
For BRNLE, we tested the embedding dimensions ranging from 100

to 1000, the learning rate of [0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001,

0.0005], the regularization weights of [0.1, 0.05, 0.015, 0.0125, 0.01,

0.005, 0.0005, 0.0001] and the number of iterations ranging from

100 to 1000. We fixed the relations’ weight α to 0.5 for all datasets

Table 8: BRNLE hyper-parameters settings

Dataset

Embedding

size

µ λentity λlabel Iterations

Email 700 0.05 0.005 0.0005 1000

PPI 500 0.02 0.0125 0.0005 500

Cora 900 0.005 0.05 0.005 200

Citeseer 1000 0.005 0.005 0.0005 100

to allow equal contribution. The best BRNLE hyper-parameters are

shown in Table 8 and the following hyper-parameter settings were

used for the baseline models.

• MR-BPR [8]: We tested embedding dimensions ranging from

100 to 1000, learn rate of [0.1, 0.05, 0.04, 0.03, 0.02, 0.01,

0.005, 0.001] and regularization weights of [0.1, 0.05, 0.015,

0.0125, 0.01, 0.005, 0.0005, 0.0001, 0.00005]. The best hyper-

parameters were k = 500, µ = 0.01, λprotein = 0.0125,

λlabel = 0.0005, 400 iterations and α = 0.5 for PPI; k = 300,

µ = 0.05, λuser = 0.005, λlabel = 0.0005, 400 iterations and

α = 0.5 for Email-Eu-core; k = 900, µ = 0.03, λdocument =

0.005, λlabel = 0.0001, λwords = 0.0001, 1400 iterations

andα = 0.33 for Cora; andk = 1000, µ = 0.05, λdocument =

0.05, λlabel = 0.005, λwords = 0.005, 1000 iterations and

α = 0.33 for Citeseer.

• DeepWalk [10]: The used hyper-parameters are d = 128, r =
10, l = 80 and k = 10 for PPI and Email-Eu-core similar to

the original paper.

• Node2Vec [5]: For p and q, we tested different values of [0.25,

1, 2, 4], while for the rest of the hyper-parameters, we used

the original paper values. The best found parameters were

d = 128, r = 10, l = 80, k = 10, p = 4 and q = 1 for PPI and

Email-Eu-core.

• SDNE [22]: We tested layer sizes of [32, 64, 128, 256, 512, 1024]

and learn rate of [0.1, 0.05, 0.01, 0.005, 0.001]. The best

hyper-parameters we found were layer sizes = [256, 256]

and the learn rate = 0.005 for PPI; layer sizes= [128, 128]

and the learn rate = 0.01 for Email-Eu-core.

• NetMF [11]: We used the original paper hyber-parameters for

PPI which are h = 256 and embedding dimension of size

128. For Email-Eu-core, we select 128 embedding dimension

and h = 256 as well after testing different dimensions of

[32, 64, 128, 256, 512].

• MMDW [21]: In this paper, we directly report the original

paper results on Cora and Citeseer using their best version

(η = 10
−2
).

• TADW [23]:The same hyper-parameters from the original

paper were used which are k = 80 and λ = 0.2 for Cora and

Citeseer.

• GCN [20]: Same default hyper-parameters from the original

paper were used which are dropout rate = 0.5, L2 regular-

ization = 5.10−4, 16 (number of hidden units), 200 epochs

for Cora and Citeseer.

• GraphSAGE [6]: Hyper-parameterswhere set using grid search

as follows, S1 = 5, S2 = 5, learn rate= 0.7, and embedding



size = 128 for Cora and Citeseer. We tested S1 and S2 values
of [1, 5, 10, 15], Learn rate of [0.9, 0.7, 0.5, 0.2, 0.005] and

embedding sizes of [64, 128, 256, 512].

The code for MR-BPR is available at the author’s home page
1
.

The code for DeepWalk, Node2Vec, SDNE, GCN, TADW is available

at the open source toolkit for network embedding (OpenNE)
2
. The

code for NetMF is available at the authors’ GitHub repository
3
. The

code for GraphSAGE-GCN and GraphSAGE-mean is available at

the authors’ GitHub repository
4
.

6 CONCLUSION
In this paper, we propose Bayesian ranked non-linear embeddings

(BRNLE), a salable multi-relational classification model that can uti-

lize entities’ structured properties such as text. BRNLE is optimized

via a multi-relational pair-wise Bayesian personalized ranking loss

(BPR) with sparse regularization updates to extract rich latent fea-

tures that are capable of capturing entities’ interactions within

sparse relations graph. Experimental results on four real-world

datasets show that BRNLE outperforms state-of-the-art models in

multi-relational classification with or without the existence of text

structured properties.

In future works, we plan to explore further architectures for the

parametric scoring and embedding functions, especially in the case

of more complex structured properties such as images. We also plan

to explore different approaches to improve the BRNLE model such

as by using non-uniform samplers for the learning procedure [12]

and adaptive sparse regularization.
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