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ABSTRACT
In very sparse recommender data sets, attributes of users such as
age, gender and home location and attributes of items such as, in
the case of movies, genre, release year, and director can improve the
recommendation accuracy, especially for users and items that have
few ratings. While most recommendation models can be extended
to take attributes of users and items into account, their architectures
usually become more complicated. While attributes for items are
often easy to be provided, attributes for users are often scarce for
reasons of privacy or simply because they are not relevant to the
operational process at hand. In this paper, we address these two
problems for attribute-aware recommender systems by proposing
a simple model that co-embeds users and items into a joint latent
space in a similar way as a vanilla matrix factorization, but with
non-linear latent features construction that seamlessly can ingest
user or item attributes or both (GraphRec). To address the second
problem, scarce attributes, the proposed model treats the user-item
relation as a bipartite graph and constructs generic user and item
attributes via the Laplacian of the user-item co-occurrence graph
that requires no further external side information but the mere
rating matrix. In experiments on three recommender datasets, we
show that GraphRec significantly outperforms existing state-of-the-
art attribute-aware and content-aware recommender systems even
without using any side information.
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1 INTRODUCTION
Recommender systems play an essential role in our daily lives and
have been employed in various applications, including, but not
limited to, online market places, search engines, and online media
websites. The goal of recommender systems is to provide users with
a personalized short list of items by filtering the massive amount
of all available items. A widely used approach to generate such a
list is to predict the ratings of all items with respect to a specific
user and provide a ranked list of items.

Recommender systems are usually categorized into content fil-
tering, and collaborative filtering (CF) approaches [8]. Although
CF approaches such as matrix factorization (MF) provide a very
competitive performance, they cannot directly leverage any addi-
tional external side features, and further modifications are required
[6, 8, 18]. Such modifications often lead to overly complicated hy-
brid models that might not generalize again to the simple scenarios
where external side information is scarce.

To tackle this challenge, we propose a simple non-linear co-
embedding model (GraphRec) that extracts item and user latent
features similar to the matrix factorization techniques, however,
with non-linear embedding functions like the neural networks.
Unlike the matrix factorization approaches, GraphRec can leverage
any available side attributes seamlessly by utilizing their numerical
vector representation similar to the factorization machines. To
address the problem of scarce external side attributes, GraphRec
utilizes the Laplacian information of the users-items co-occurrence
graph as generic internal attributes which only require the mere
rating matrix. Once employed to GraphRec, these features allow it
to outperform attribute and content aware models without using
any actual side features.

Our contributions can be summarized as follows :

• We introduce a simple non-linear co-embeddingmodel Graph-
Rec for rating prediction. GraphRec can be applied to diverse
settings and can leverage additional attributes and content
features by seamlessly utilizing their numerical vector rep-
resentations.

• We introduce a set of internal graph-based features that are
extracted from the Laplacian of the user-item co-occurrence
graph to capture users’ and items’ rating profiles. Once in-
tegrated into GraphRec, these features improve the overall
accuracy to the extent of outperforming multiple state-of-
the-art attribute and content aware models.

• We evaluate the proposed model on three real-world rec-
ommender datasets for rating prediction. The results show
that graph-based features can effectively replace the scarce
external side features and they allow the GraphRec model to
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outperform state-of-the-art matrix factorization, attribute-
aware, and content-awaremodels without using any external
side information.

2 RELATEDWORK
Earlier collaborative filtering approaches relied mainly on neighbor-
hood based methodologies [1, 4] and they were succeeded by the
matrix factorization (MF) approaches [5, 7, 10] with their impres-
sive performance [6]. Learning the expressive latent factors plays
an important role in traditional MF techniques, and it is achieved
by factorizing the rating matrix. However, despite their impressive
performance, MF models usually cannot directly support additional
sources of information such as the demographics of user and item
attributes. To address this drawback, Steffen Rendle [11] proposed
the factorization machines(FM) which capture the second order
interaction between features and are able to leverage any additional
information by the simple concatenation of all feature vectors. Sub-
sequently, further hybrid models were introduced that improve
the underlying feature extraction process by merging deep neural
networks and MF techniques. An earlier example of such models is
mSDA-CF [8] which is a combination between MF and marginal-
ized stacked denoising autoencoders. Another more recent hybrid
approach is ConvMF [6] which combines convolutional neural net-
works with MF to extract latent features from the items’ textual
descriptions. Recently, more powerful hybrids have also been in-
troduced such as AutoSVD [18] and the Non-linear factorization
machines (NFM) [3]. AutoSVD relies on contracted autoencoders
for features extraction and an SVD model for rating predictions.
NFM follows a different approach by stacking an FM layer and a
fully connected one to capture the higher order non-linear inter-
actions between features. Although these hybrid models provide
better performance compared to the MF techniques, they tend to be
more complicated and less generalizable across different scenarios
especially when the additional information on which the model
relies on are nonexistent such as the items’ descriptions. Similar
challenges are encountered in the graph embedding domain. To
tackle it, multiple models have utilized the Laplacian information
as internal features for gaining better performance [13, 15]. Using
such information has also been studied in recommender systems
[17], however, they are used as auxiliary features from an available
item-item interaction graph but not for the main user-item graph.

In this paper, we aim to tackle these challenges and drawbacks
simultaneously by proposing a model that is as simple as the MF
models but with the power of non-linearity as neural networks. By
merging those two approaches, the model can extract rich latent
representations through the co-embedding of the item’s and user’s
input features which capture the higher order non-linear inter-
actions between them. To tackle the scarce side information, the
model utilizes the Laplacian information as input features which
significantly improves the performance to the extent of outperform-
ing multiple state-of-the-art matrix factorization, attribute-aware,
and content-aware models.

3 PROBLEM DEFINITION
In explicit rating prediction tasks, there exist a set of users U :=
{u1,u2, ...,uN } with profile attributes Cu ∈ RNxL , a set of items

I := {i1, i2, ..., iM } with attributes and content information Ci ∈

RMx J and a sparse rating matrix R ∈ RNxM that indicate user’s
preferences on items. The main goal of the prediction task is to fill
the missing entries in the rating matrix that indicate the preferences
of users on some items they did not interact with yet. In matrix
factorization models, this is done through factorizing the original
ratingmatrix using two separate latent matrices P ∈ RNxK andQ ∈

RMxK for user and items respectively. After the model is learned,
the rating r̂ui of user u on item i is computed using the dot-product
of their latent feature vectors r̂ui = PTu Qi . In this work we aim
to follow a similar approach to the matrix factorization, however,
we extend it to utilize any available side information through a
dedicated non-linear embedding functions ϕU , ϕI that will extract
a more expressive latent feature vectors Pu and Qi by utilizing any
side information through its numerical vector representation.

4 PROPOSED MODEL

Figure 1: GraphRec Architecture

The proposed GraphRec model is divided into two main compo-
nents. The first component is a non-linear factorization model that
predicts user-item ratings by extracting user and item latent fac-
tors through the non-linear co-embeddings of their input features.
The second component is a set of graph-based features that allow
the model to learn expressive latent features especially when item
and users side attributes are not available. Figure 1 illustrates the
architecture of a one-layer GraphRec model and each component
will be discussed in details in the following subsections.

4.1 Non-linear Co-Embeddings
Given the set of user U := {u1,u2, ...,uN } and the set of items
I := {i1, i2, ..., iM }, we define a latent embedding of the users’
profiles as the function P := ϕU : RN×(N+L) → RN×K , which is
inputted with a concatenation of user-specific features, concretely
the indicator variable of the r id vu ∈ {0, 1}N ,with vu,n = 1, if u =
n, and vu,n = 0 otherwise; and the additional user profile features
Cu ∈ RN×L . Similarly, the latent item embedding is a function
Q := ϕI : RM×(M+J ) → RM×K , that uses the indicator variable
of the item id vi ∈ {0, 1}M ,with vi,m = 1, if i = m, and vi,m =

0 otherwise; and the additional item content features Ci ∈ RM×J .
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Pu = ϕU (xu ;θU ), Qi = ϕI (xi ;θI ) (1)
xu = [vu , cu ], xi = [vi , ci ] (2)

The final output of the embeddings are the latent user features
Pu ∈ RN×K , and the latent item features Qi ∈ RM×K . Notice
that the embedding functions ϕu and ϕi are nonlinear functions
parameterized with θU and θI . Similar to the matrix factorization
techniques, the rating of a specific user-item interaction can then
be predicted by learning the higher order non-linear interaction
between user and item latent features through the inner-product
of the learned vectors

r̂ui = PTu Qi . (3)
An important difference between our model and the standard

matrix factorization is that latent embedding vectors are not di-
rectly expressed as parameters. Instead, they are the activation
values of neural network layers. Therefore, in contrast to the fac-
torization case, our parameters are not P ,Q , but the weights θU ,θI
of the neural networks ϕU ,ϕI that output P ,Q . All the network
model’s parameters are learned by minimizing a sparsely regu-
larized squared error loss on the training set Rtrain of observed
ratings:

L(Θ) =
∑

(u,i)∈Rtrain

(rui − r̂ui )
2 + λu | |Pu | |

2 + λi | |Qi | |
2 (4)

where λu | |Pu | |
2 and λi | |Qi | |

2 are sparse-L2 (activity) regulariza-
tion [2] components applied directly to the output of the embed-
ding functions instead of applying dense L2 regularization to their
weights θU and θI . These sparse L2 regularization components will
induce a similar effect to the inverse of the frequency based regular-
ization [9] such that only the weights that contribute to the output
latent values will get penalized, hence, the more frequent the train-
ing instance, the more penalty it receives. These components are
also suitable for sparse feature vectors since weights multiplied by
zero inputs will receive no penalty. This effect can also be achieved
using dropout, however, sparse-L2 gave a better performance in all
experiments.

In all of our comparative experiments, we used a single-layered
embedding function with CReLu [12] activation and sparse-L2 reg-
ularization because it was found to be the best performing setting.
Comparisons between different settings for the embedding func-
tions are discussed in Section 5.

4.2 Graph-Based Features
In some situations, user and item side information is scarce, hence,
attribute-aware and content-aware models will under-perform. To
address this problem, we need to define a set of internal features
that can approximate the user and item profiles without relying
on any external side information. Recent advances in graph em-
bedding and node classification techniques [13, 15] have shown
that decomposing the Laplacian matrix and using its vectors as
node features, greatly increases the prediction accuracy because
it implicitly encapsulates many useful properties of the interac-
tion graph. Laplacian matrix of an interaction graph can be simply
calculated only once by taking the difference between the degree

and the adjacency square matrices L = D − A. However, to mi-
grate and utilize such features in the recommender systems and
user-item interaction graphs, some changes will be required. The
users-items interaction graph is a weighted bipartite graph with
two node setsU and I , hence, the degree and adjacency matrices
are no longer square matrices. To solve this problem, we define a set
of graph-based features that imitate the users’ and items’ Laplacian
information as follows:

lu = [du ,au ], lu ∈ RM+1, du ∈ R, au ∈ RM (5)

li = [di ,ai ], li ∈ R
N+1, di ∈ R, ai ∈ R

N (6)

where lu is the Laplacian feature vector for user u which is con-
structed by concatenating his weighted items interaction (adja-
cency) vector au and his frequency (degree) of rating du . Similarly
we construct item i’s Laplacian feature vector li by concatenating
ai and di . The frequency of ratings is calculated by counting the
number of interactions instead of summing the interactions weights
for simplicity. The adjacency vectors au and ai are weighted vectors
using the actual rate values of the interactions instead of being a
binary encoded vectors of the implicit feedback.

Since the values of the adjacency vectors and the degrees have
different scales, we scale all values to be between 0 and 1, such that
a 0 value in the adjacency vector will indicate that the user or item
have never been interacted with (missing value), while 1 means
that the user or item have been interacted with and the maximum
rate was given. The normalization of degrees is done by dividing
over the maximum degree in the train set while adjacency vectors
are normalized as follows:

aui =

{
(rui+ϵ )

max_rate+ϵ , if (u, i) ∈ R

0, otherwise
(7)

wheremax_rate is themaximumpossible rate allowed in the dataset,
while ϵ is a constant value for adjusting the rates scale to be > 0,
hence, all missing entries will have 0 value and the whole vector can
be treated as a sparse one. It is worth noting that all user and item
Laplacian features can be computed only once using the training
set.

To utilize the extracted Laplacian features in the proposed non-
linear co-embedding model, we simply concatenate the features to
the rest of the user and item feature vectors defined in Equation (2).

xu = [vu , cu , lu ], xi = [vi , ci , li ] (8)

5 EXPERIMENTS
We conduct multiple experiments that aim to answer the following
research questions:

RQ1 Do non-linear activation functions help in learning rich
latent representations?

RQ2 Which kind of regularization is best suited for the non-
linear co-embeddings?

RQ3 How many hidden layers are needed for GraphRec to
learn expressive latent features?

RQ4 How well does GraphRec perform in comparison with
other state-of-the-art models for rating predictions?

RQ5 What is the impact of adding the graph-based features?
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In the following subsections, we present our experimental set-
tings followed by answering the research questions.

5.1 Datasets
In following sections, we used three publicly available real-world
datasets:

(1) MovieLens 100K1: A well-known movie rating dataset that
has been widely used for rating prediction, This version
contains 100,000 ratings.

(2) MovieLens 1M: This is a bigger version of the MovieLens
100K that contains 1,000,209 ratings.

(3) Amazon Instant Videos (AIV) [6]: This dataset contains
135,188 ratings on Amazon instant videos, and it is extremely
sparse compared with the other two datasets. Each item has
a textual description as its external content-based features.

Detailed statistics of the datasets are shown in Table 1.

5.2 Experimental Protocol
For the MovieLens datasets, we followed the same experimental
protocol employed in [8, 18]. We used 5-fold cross-validation for
hyper-parameters tuning using different percentages (50% and 90%)
of ratings for training. Finally, We used the average root mean
squared error (RMSE) on the test set of 5 different runs as the
evaluation metric.

On the other hand, for the AIV dataset, we employed the same
experimental protocol introduced in the original paper [6]. The
data is split into a training set (80%), a validation set (10%) and a
test set (10%). For evaluation, this process is repeated five times,
and the average test RMSE is reported.

The optimal hyper-parameters have been estimated via grid
search for GraphRec and other models. For GraphRec we tested
the embedding dimensions of [2, 3, 5, 10, 20. 30, 40, 50, 70, 100],
the learning rates of [0.001, 0.0005, 0.0003, 0.0002, 0.0001, 0.00005,
0.00003, 0.00002, 0.00001, 0.000005] and the regularization weights
of [0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01]. We use the
Adam optimizer for training. More details about the selected hyper-
parameters and the experiments reproducibility are discussed in
the last subsection.

5.3 Linear vs Non-linear Co-Embeddings (RQ1)
In this experiment, we compare the performance of four different
activation functions for the co-embedding component using the
MovieLens 100k dataset, 50 latent factors and 90% of ratings for
training.

Figure 2 (a) shows that the recent non-linear activation functions
such as ReLU and CReLU [12], outperform the linear counterpart
as they are able to capture more expressive latent features from the
entities. Results also show that CReLU outperforms the traditional
ReLU and Sigmoid activation functions as it can be activated in
both positive and negative direction while maintaining the same
degree of non-saturated non-linearity similar to ReLU activation.

1https://grouplens.org/datasets/movielens/
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Figure 2: Performance comparison on MovieLens 100K: (a)
Different activation functions; (b) Different dropout rates
and the best Sparse L2 regularization

5.4 Dropout vs Sparse-L2 Regularization (RQ2)
Input vectors of the co-embedding functions are often very sparse,
hence, a suitable regularization technique will be required that
is immune to data sparsity. Two candidate techniques that fulfill
this requirement are Dropout and the sparse-L2 regularization (ac-
tivity regularization). Both techniques can be applied in the case
of sparse input feature vectors, however, they work differently.
Dropout creates an implicit ensemble inside the layers while the
sparse-L2 regularization penalizes the weights of the layers in a
sparse frequency-based fashion. To compare the two techniques, we
applied them on MovieLens 100k using 90% of the ratings for train-
ing. Results in Figure 2(b) show that the sparse-L2 regularization
has a very similar performance to dropout with small ratios (0.05
and 0.1), however, the sparse-L2 is preferable because it has a more
stable performance with less RMSE fluctuations on the validation
sets.

5.5 Impact of Co-Embedding Layers (RQ3)
In order to find the best number of layers for the co-embedding com-
ponent, we compared the performance of different single-layered
and double-layered architectures with varying sizes of hidden units.
This experiment was conducted on the MovieLens 100k dataset
using 90% of ratings for training.

Figure 3 shows that a single-layered architecture is sufficient to
capture the higher order interaction between the input features
and adding a further layer does not provide any lift.

5.6 Performance comparison with
state-of-the-art models for rating
prediction (RQ4)

In this experiment, we compare the performance of GraphRec with
andwithout the graph-features on all three datasets against multiple
state-of-the-art matrix factorization, attribute-aware and content-
aware models.

5.6.1 Baselines.

(1) NMF [5]: Non-negative matrix factorization model for rating
prediction.

(2) PMF [10]: Probabilistic matrix factorization model that only
uses ratings for collaborative filtering.
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Table 1: Datasets Statistics

Dataset Items Users Ratings Density (%) User Features Item Features

MovieLens 100k 1,682 943 100,000 6.30 Age, gender, and occupation Genres and year
MovieLens 1M 3,952 6,040 1,000,209 4.46 Age, gender, and occupation Genres and year
Amazon Instant Video 29,757 15,149 135,188 0.030 - Text Description
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Figure 3: Performance comparison on MovieLens 100K
dataset between different single-layered and double-layered
architectures of the co-embedding component.

(3) SVD [7]: The popular singular value decomposition model
for ratings prediction.

(4) SVD++ [7]: This is the improved version of SVD that utilizes
the user’s implicit feedback information.

(5) FM [11]: The traditional factorization machines model that
utilizes the first and second order interaction between fea-
tures for regression and classification problems.

(6) mSDA-CF [8]: This attribute-aware model is a combination
between traditional matrix factorization with marginalized
stacked denoising auto-encoders.

(7) CTR [14]: Collaborative Topic Regression for rating predic-
tion that combines PMF with LDA for topic modeling. This
model relies mainly on the textual description of items.

(8) CDL [16]: Collaborative Deep Learning model that utilizes
the textual description of items similar to CTR and it relies
on stacked denoising auto-encoders for text analysis.

(9) ConvMF [6]: A state-of-the-art convolutional matrix fac-
torization model for rating prediction using items’ textual
descriptions.

(10) ConvMF++ [6]: A pre-trained version of ConvMF that uses
pre-trained word embeddings.

(11) AutoSVD [18]: A state-of-the-art attribute-aware recom-
mender model that combines SVD with contractive auto
encoders.

(12) AutoSVD++ [18]: Similar to AutoSVD, this version uses
SVD++ instead of SVD to ultilze the implicit feedback infor-
mation.

(13) NFM [3]: State-of-the-art non-linear factorization machines
that capture higher order non-linear interactions between in-
put features by stacking a multi-layered feed-forward neural
network on top of factorization machines.

For all models except NFM and FM, we directly report their
results from [6, 8, 18] for the same experimental protocol and data
splits. While for NFM and FM we used grid-search for parameter
tuning as no results were reported on the same datasets.

On the AIV dataset, we only used CTR, CDL, ConvMF and Con-
vMF++ for comparison as content-aware models because they are
able to leverage the items’ textual descriptions. Hyper-parameter
details of NFM and FM are discussed in the experiments repro-
ducibility section.

Model RMSE
90% 50%

Without External Side Features

NMF [5] 0.958 0.997
PMF [10] 0.952 0.977
SVD [7] 0.911 0.936
SVD++ [7] 0.913 0.938
FM [11] 0.909 0.935
NFM [3] 0.910 0.935

GraphRec (w/o Graph Feat.) 0.898 0.932
GraphRec (w/ Graph Feat.) 0.887 0.918

With External Side Features

FM [11] 0.903 0.925
mSDA-CF [8] - 0.931
AutoSVD [18] 0.901 0.925
AutoSVD++ [18] 0.904 0.926

GraphRec (w/o Graph Feat.) 0.899 0.923
GraphRec (w/ Graph Feat.) 0.883 0.911

Table 2: Average RMSE on MovieLens 100k using 90% and
50% training data percentages.

5.6.2 Results. Results in tables 2, 3, and 4, show that GraphRec
without external or graph features consistently outperforms all
other models that similarly do not utilize any external information.
All of these results are statistically significant compared to NFM
with a p-value less than 0.01 using a paired t-test. Once the graph-
based features are added to GraphRec in MovieLens 100k and 1M,
it outperforms almost all models including multiple state-of-the-
art attribute-based and content-based models even without yet
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Figure 4: Experimental analysis of the graph-based features on theMovieLens 100K: (a) Impact on differentmodels using 90% of
ratings; (b) Impact on different models using 50% of ratings; (c) Impact of different graph features on GraphRec’s performance

Model RMSE
90% 50%

Without External Side Features

NMF [5] 0.915 0.927
PMF [10] 0.883 0.890
SVD [7] 0.876 0.889
SVD++ [7] 0.855 0.884
FM [11] 0.856 0.873
NFM [3] 0.858 0.881

GraphRec (w/o Graph Feat.) 0.845 0.869
GraphRec (w/ Graph Feat.) 0.843 0.862

With External Side Features

FM [11] 0.855 0.870
mSDA-CF [8] - 0.861
ConvMF [6] - 0.890
AutoSVD [18] 0.864 0.877
AutoSVD++ [18] 0.848 0.875

GraphRec (w/o Graph Feat.) 0.845 0.864
GraphRec (w/ Graph Feat.) 0.842 0.860

Table 3: Average RMSE on MovieLens 1M using 90% and 50%
training data percentages.

using the available external features. This shows that graph-based
features can be used as a substitute for the external features when
they are not available. Adding the external features to GraphRec
improves its accuracy even more which also indicates that graph-
based and the external side features capture different aspects of the
user’s and item’s profiles.

On the other hand, results on the AIV dataset show that the
graph-based features did not improve the accuracy of GraphRec,
however, the two versions of GraphRec still outperform all other
models. This negative effect can be contributed to the fact that the
dataset is extremely sparse compared to the other two datasets and
the Laplacian feature vectors will be almost all zeros, hence, it does
not contain much helpful information about the entities.

It is worth noting that we only report the accuracy without using
any external features on the AIV dataset because using the binary
vector of word occurrences did not improve the accuracy.

Model RMSE

Without External Side Features

PMF [10] 1.412
FM [11] 1.236
NFM [3] 1.093

GraphRec (w/o Graph Feat.) 1.037
GraphRec (w/ Graph Feat.) 1.085

With External Side Features

CTR [14] 1.550
CDL [16] 1.359
ConvMF [6] 1.134
ConvMF++ [6] 1.128

Table 4: Average test RMSE on AIV using 80% of the data for
training, 10% for validation and 10% for testing.

5.7 Impact of Graph-Based Features (RQ5)
To analyze the impact of graph-based features, we conducted three
different experiments using MovieLens 100K dataset with 50% and
90% of ratings for training. First, we checked if other models can also
leverage the graph-based features for further improvement gains.
To do so, we added the graph-based features to FM and AutoSVD++
models then we compared their performance with and without such
features. Results in Figures 4 (a) and (b) show that FM, AutoSVD++
and GraphRec can benefit from the graph-based features. However,
the improvements for AutoSVD++ and GraphRec are much higher
than for the FM model that unlike the first two models, uses a joint
latent dimension for all features. These results also show that the
proposed graph-based features are a good substitute for the side
features when they are missing.

In the second experiment, we compared the impact of users
and items graph features separately. Figure 4 (c) shows that item
features have a slightly higher impact on the accuracy, however,
merging both feature types maximize the performance.
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Finally, we analyzed the impact of the different feature combina-
tions over items and users that have different rating frequencies us-
ing the 50% data split. Figure 5 shows that the graph-based features
have a smaller effect on items and users that have too few ratings
(<10) compared to the external side features, however, their impact
increases with increasing the number of available ratings. Merging
both feature types gives the best performance which indicates that
both feature types encapsulate a different kind of information.

Interestingly, results in Figure 5 (a) show that the external side
features are sensitive to noisy users that have many ratings such
as bots and group accounts, while the graph-based features, on
the other hand, are less sensitive to such noisy users because they
capture the users’ implicit preferences and frequencies of rating.
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Figure 5: Impact of graph and external side features on the
model performance across different rating frequencies.

5.8 Reproducibility of the Experiments
The source code of GraphRec is available at our GitHub repository2.
The code for FM is available at the LibFM home page3. The code
for NFM is available at the authors’ GitHub repository4.

Regarding the hyper-parameters we used the followings during
the experiments:

• GraphRec (w/oGraph Feat.): The best found hyper-parameters
are λu = 0.08, λi = 0.06, embedding sizes= [50, 40], learning
rate = 0.0002 and number of iterations = [600, 550] for the
MovieLens 100K 50% and 90% splits respectively; λu = 0.08,
λi = 0.06, embedding size = 40, learning rate = 0.0002 and
number of iterations = [300, 510] for the MovieLens 1M 50%
and 90% splits; and λu = 0.05, λi = 0.05, embedding size = 3,
learning rate = 0.0002 and number of iterations = 100 for
the AIV dataset.

• GraphRec (w/ Graph Feat.): The best hyper-parameters are
λu = 0.05, λi = 0.02, embedding sizes = [10, 50], learning
rate = 0.00003 and number of iterations = [559, 195] for the
MovieLens 100K 50% and 90% splits; λu = 0.05, λi = 0.06,
embedding size = 50, learning rate = 0.000005 and number
of iterations = 545 for the MovieLens 1M 50% and 90% splits;
and λu = 0.05, λi = 0.05, embedding size = 3, learning
rate = 0.00003 and number of iterations = 450 for the AIV
dataset.

2https://github.com/ahmedrashed-ml/GraphRec
3http://www.libfm.org/
4https://github.com/hexiangnan/neural_factorization_machine

• GraphRec (w/ External Feat. & w/o Graph Feat.): The best
found hyper-parameters are λu = 0.08, λi = 0.06, embed-
ding size = 40, learning rate = 0.0002 and number of itera-
tions = [400, 310] for the MovieLens 100K 50% and 90% splits
respectively; and λu = 0.08, λi = 0.06, embedding size = 40,
learning rate = 0.0002 and number of iterations = [320, 330]
for the MovieLens 1M 50% and 90% splits.

• GraphRec (w/ External Feat. & w/ Graph Feat.): The hyper-
parameters are λu = 0.05, λi = 0.02, embedding sizes =
[20, 50], learning rate = 0.00003 and number of iterations
= [321, 195] for the MovieLens 100K 50% and 90% splits;
λu = 0.05, λi = 0.06, embedding size = 50, learning rate
= 0.000005 and number of iterations= 545 for theMovieLens
1M 50% and 90% splits.

• FM (w/o External Feat.): The hyper-parameters are λ = 0.1,
embedding size = 5, learning rate = 0.001 and number of
iterations = 600 for the MovieLens 100K 50% and 90% splits;
λ = 0.05, embedding size = 5, learning rate = 0.001 and
number of iterations = [500, 800] for the MovieLens 1M 50%
and 90% splits; and λ = 0.5, embedding size = 10, learning
rate = 0.005 and number of iterations = 270 for the AIV
dataset.

• FM (w/ External Feat.): The hyper-parameters are λ = 0.2,
embedding size = 4, learning rate = 0.0002 and number of
iterations = 300 for the MovieLens 100K 50% and 90% splits;
and λ = 0.05, embedding size = 5, learning rate = 0.001 and
number of iterations = 270 for the MovieLens 1M 50% and
90% splits

• NFM:The hyper-parameters are hidden factors = [3, 5], layer
sizes=[3, 5], dropout rates of [0.8, 0.5], learn rate = 0.02 and
number of epochs = 400 for the MovieLens 100K 50% and
90% splits; hidden factors = 10, layer size=10, dropout rates
of [0.8, 0.5], learn rate = 0.02 and number of epochs = 250
for the MovieLens 1M 50% and 90% splits; and hidden factors
= 5, layer size=5, dropout rates of [0.8, 0.5], learn rate = 0.02
and number of epochs = 250 for the AIV dataset.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose GraphRec a simple non-linear co-embedd-
ing model for rating prediction that extracts rich latent representa-
tions for users and items. In situations where external attributes
are scarce, GraphRec utilizes the Laplacian of the user-item inter-
action graph to extract generic graph-based attributes. GraphRec
seamlessly leverages any available external attributes without any
further modifications to the model structure. Experimental results
on three real-world recommender datasets show that GraphRec
outperforms state-of-the-art attribute-aware and content-aware
models with the mere graph-based features.

In future works, we plan to extend this model for context and
session-based prediction. We also plan to adapt and evaluate Graph-
Rec for item ranking and implicit feedback relations.
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