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Summary. Classification of time series is an important task with many challeng-
ing applications like brain wave (EEG) analysis, signature verification or speech
recognition. In this paper we show how characteristic local patterns (motifs) can
improve the classification accuracy. We introduce a new motif class, generalized
semi-continuous motifs. To allow flexibility and noise robustness, these motifs may
include gaps of various lengths, generic and more specific wildcards. We propose an
efficient algorithm for mining generalized sequential motifs. In experiments on real
medical data, we show how generalized semi-continuous motifs improve the accuracy
of SVMs and Bayesian Networks for time series classificiation.
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1 Introduction

Many phenomena are quantitatively changing continuously in time, like blood
pressure or body temperature of a person, exchange rates of currencies, speed
of a car, etc. Making observations regularly results in a sequence of measured
values (usually real numbers). We call such a sequence a time series.

We illustrate classification of time series on an example. Suppose we are
trading with currencies, and we know the past exchange rates for some cur-
rencies.

We are interested in the exchange rates in the future. Now we can group
currencies into three classes based on how the exchange rate changes in the
near future (next month): 4) the exchange rate increases at least by 5 %, ii)
the exchange rate decreases at least by 5 %, iii) the exchange rate does not
change significantly. Based on the times series representing exchange rates
in the past, we would like to predict exchange rates for the next month, i.e.
we want to classify time series of currencies in one of the previously defined
classes.

In general, classification of time series is an important task related to
many challenging practical problems like indexing of handwritten documents
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[24, 19], speech recognition [27], signature verification [11], analysis of brain
wave (EEG) signals [20] or medical diagnosis [16].

In this paper we focus on the classification of time series based on recur-
rent patterns, called motifs. We show that time series classification models
based on SVMs and Bayesian Networks can be improved using motifs. As the
main contribution we introduce a new motif class: a common generalization
of continuous and non-continuous sequential mofits, called generalized semi-
continuous motifs. We propose an efficient algorithm for mining generalized
sequential motifs. We compare generalized semi-continuous motifs to existing
motif classes, and show that generalized semi-continuous motifs outperform
other classes of motifs in the time series classification task.

2 Related Work

Motif Discovery. The task of motif (or pattern) discovery in time series
is understood in slightly different ways in the literature. Yankov at al. [31]
and Patel at al. [21] define the task of motif discovery regarding one “long”
time series: the target of their work is to identify recurrent patterns, i.e. ap-
proximately repeated parts of the given time series. In contrast, Futschik and
Carlisle [9] are concerned with a set of time series. They apply global patterns:
they cluster times series, and calculate the “compromise” time series for each
cluster. Such a “compromise” time series is regarded as a representative pat-
tern of the time series in the cluster. Jensen at al. [13] and Ferreira at al. [7]
also use clustering, however in a more local fashion: they do not cluster the
whole sequences, but subsequences of them.

Predefining a (minimal) length L for motifs, scanning the database, and
enumerating (almost) all the subsequences of the given lenght L is common in
the biological domain [31, 7, 13, 21]. However this may not be efficient enough,
especially if complex motifs with gaps and/or taxonomical wildcards are to be
discovered (see Fig. 1). For noise-robust motif detection (without wildcards)
Buhler and Tompa use random projections [5]. A more sophisticated solution
is based on the antimonotonicity originally observed in the frequent itemset
mining community [1], namely, that subpatterns of a frequent pattern are
also frequent. State of the art frequent sequence mining algorithms are based
on antimonotonicity [10, 2]. It suggests, roughly speaking, that one discovers
“short” motifs first and somehow “grows” them step by step together to longer
ones. Approaches based on the antimonotonicity avoid processing of many re-
dundant (i.e. non-motif) subsequences. They have intensively been researched
resulting in highly efficient implementations [3, 4]. For databases of different
character there are special algorithms: for example in case if many short mo-
tifs are expected, they can efficiently be discovered (“grown together”) in a
breadth-first search manner like in [2], if long motifs are expected, approaches
of a depth-first search fashion are preferable, like PrefixSpan [22].
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Fig. 1. Specific and generic wildcards build a taxonomy of symbols

In this work, we mean by motifs approximately repeated local patterns. We
propose an approach based on pattern mining techniques in order to discover
motifs regarding a set of time series.

As usual in time series motif detection [16, 17, 21], as preprocessing step,
we turn time series into a sequence of discrete symbols using Symbolic Aggre-
gate Approximation [18]. In our experiments we use 10 (exp. 1) and 7 (exp.
2) different symbols, we aggregate on an interval of length 4.

According to this representation, different classes of motifs can be defined
regarding generality and character. Regarding generality, we distinguish )
flat patterns (without wildcards), and i) patterns with taxonomical wildcards
(see Fig. 1), called generalized patterns. Regarding character we distinguish
between i) Set Motifs (the order of symbols is omitted), i) Sequential Motifs
(continuous and non-continuous ones), and i) Semi-continuous Sequential
Motifs, which is a common generalization of continuous and non-continuous
motifs: in semi-continuous motifs maximal n gaps of each of a maximal length
d is allowed. (For d = n = 0 semi-continuous motifs are ident to continuous
motifs; for d = n = oo they are the same as non-continuous motifs.) Table 1
provides a systematic overview of selected works on pattern mining.

For the task of discovering flat patterns optimization techniques (recur-
sive counting and recursion pruning) were introduced in [3, 4]. To the best of
our knowledge they have not been generalized for patterns with taxonomic
wildcards yet. Ferreira and Azevedo [8] have already allowed gaps in motifs,
however without taxonomical wildcards. They discovered motifs by enumer-
ating all subsequences (of a given length), they have not used an algorithm
exploiting pattern mining techniques.

Motif-based Classification. Motifs have been used for sequence classifica-
tion in biological domain [6, 15, 8]. This is usually done in two steps: i) first
motifs are extracted, then i) each time series is represented as an attribute
vector using motifs so that a classifier like SVM [15], Naive Bayes [8], Decision
Tree [6], etc. can be applied. Some possible ways of construction of attributes
are: 1) there is a binary attribute for each motif, which indicates if the motif
is contained in the time series or not [16, 6, 15] (see Fig. 2), ii) aggregat-
ing attributes may indicate the total count and/or average length of motifs
occurring in a time series[8].

Time Series Classification. As a baseline in our experiments we have cho-
sen the Nearest Neighbour approach with DTW as distance measure. DTW is
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Fig. 2. Representation of time series as an attribute vector using motif features.

Table 1. Systematic Overview of Selected Pattern Mining Related Work

Flat Patterns = With taxonomy

Set Motifs (item sets) [1, 3, 4] [12, 23, 29, 30]
Sequential Motifs (continuous, non-cont.) [2] (10, 28]
Semi-continuous Sequential Motifs 8] this work

basically an edit distance, allowing stretching of time series. It was introduced
in [27]. There are recent works on DTW, to make it more accurate [24], and
speed up to data mining applications [14]. It has recently been studied from a
theoretical-empirical point of view [25]. Furthermore there is some recent work
that suggests that DTW is the best solution for some time series classification
problems [26]. Thus, DTW is state of the art.

3 Discovery of Generalized Semi-Continuous Motifs

To solve the time series classification task, first we search for motifs in the
time series. In this section we describe our motif discovery approach in detail.
We suppose that time series are converted to a sequence of discrete symbols.
Motif discovery means finding frequent subsequences in the dataset consisting
of time series sequences.

Definitions. Given a database of time series D, a set of symbols X and a
taxonomic relation T's; over X', the maximal number of gaps n, the maximal
length of gaps d, and a minimum support threshold s. A symbol x € X
matches an other symbol y € X if either # = y or y is a descendant of
x according to T, x is matching symbol, y is called matched symbol. A
sequence of symbols m semi-continuously matches a times seriest € D,
if all symbols of m match at least one symbol in ¢ so that ) the order of
matched symbols are the same as the order of matching symbols, and i) the
matched symbols in ¢ build a basically continuous sequence but maximal n
gaps with maximal length d are allowed. A sequence of symbols m is called
semi-continuous motif, if it matches at least s time series in 7. The number
of matched time series is called support of m.

Checking the support of all possible sequences whether they are motifs or
not, is not feasible as it features an inherent unaffordable high computational
cost due to the large number of possible sequences. Thus, we need to prune
the search space in order to reduce the number of sequences to be checked and
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need an efficient implementation for checking supports. We adapt and combine
constraints in [1] and in [29, 30] for semi-continuous generalized motifs, and
we extend optimization ideas in [3, 4] for generalized semi-continuous motifs.
The basic intuition behind the constraints on generalized semi-continuous
motifs is the use of the antimonotonous property of the support function: )
if a sequence p includes another sequence p’, the support of p is less than or
equal to the support of p’, ii) if a sequence p is less general than some other
sequence p’, the support of p is less than or equal to the support of p'.
These conditions hold as the number of time series matching p can not
be higher than the number of time series matching p’, as every time series ¢
matching p also matches p’. The following formalization of these constraints
define how inclusion and generalization are exactly meant. Both constraints
are consequences of the definition of the support (and semi-continuous match-
ing). Let p be a sequence over X' (eventually including taxonomic wildcards):
p=(wi,ws,...,wk_1,wg), each w; € X, 0 < i < k.

Constraint 1. Let p’ be subsequence of p: p' = (w;, w;q1,Wwjt2,... Wjt1),
0 <j <j+1<k. In this case support(p) < support(p').

Constraint 2. Denote the transitive closure of the taxonomic relation T’
with 75 (i.e. (z,y) € T% means z is a descendant of y in the taxonomy).
Suppose p’ is a more general sequence than p: p’ = (wi,ws, ..., w)_,,w})
with Vi : (w;, w}) € T5,0 < i < k. In this case support(p) < support(p’).

These constraints suggest to check the shorter and more general sequences
first for being motifs or not. For example, if we are given the taxonomy in
Fig. 3, pattern (G, H) would be checked before (G, w) and (G, H, H).

For motif mining we use a significantly extended version of the algorithm
Apriori [1]. The Apriori algorithm essentially iterates over three steps: i) Can-
didate generation: Based on motifs found in the previous iterations, some new
sequences will be chosen in order to be checked for support. They are candi-
dates. ii) Support counting: The support of each candidate will be determined.
i1) Filter infrequent candidates: The candidates with less support than the
given threshold s are deleted. The other ones are motifs.

The computational cost of Apriori highly depends on the applied data
structure. Tries have been shown to be efficient (see [3]). In a trie a path from
the root to a node encodes a sequence. A simplified view of our datastruc-
ture is shown in Fig. 3. For example the path (root, G, J, H,w) encodes the
sequence (J,w). There are two different types of edges in this path: there are
taxonomical and sequential edges (straight lines and straight arrows). Sequen-
tial edges are (root,G) and (J,H). Each sequential edge denotes a new symbol
of the sequence. The taxonomical edges in the path specialize the symbols. In
this path G was specialized to J, and H was specialized to w.

There are also “cross-pointers” in the data structure, pointing from a se-
quence prefix (wy, wa, . .., wy) to the sequence prefix (wa, w3, . .., wg). To keep
the example simple, only one cross pointer is depicted (dashed arrow). These
“cross-pointers” allow quick candidate generation.
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Fig. 3. a) An example taxonomy with two roots. b) A simplified overview of the
data-structure for counting candidates and storing motifs. Straight arrows denote
sequential children, lines denote taxonomic children. One of the cross-pointers is
depicted with dotted arrow. Curved arrows show the recursion steps in the double
recursive search scheme.

Candidate generation: Let ¢, denote the count of roots in the taxonomy
Ts;. At the beginning of the first iteration, there are ¢, candidates, one for
each root. These are the most general and shortest sequences (they con-
sist of one item). After counting the support, the candidates for the next
iteration are always calculated based on the motifs already found. As ap-
plication of Constraint 2, a motif p of length 1 may have any concretizing
extensions p’ conform to the given taxonomy. For longer motifs: knowing

that the sequence p = (wq,we, ..., wk_1,wy) is a motif, its concretizing ex-
tension p’ = (w1, ws, ..., Wk—1,w},), (W), wg) € T5 may only be a motif if
pi = (Wa,. .., wE_1,w},) is a motif.

As application of Constraint 1, a motif p of length 1 may sequentially be ex-
tended by any other motif p;; of length 1. Thus the new candidate p” is gener-
ated. For longer motifs: knowing that the sequence p = (w1, wa, ..., wk—1, Wk )
is motif, its sequential extension p” = (wy, wa, . . ., Wk, Wg+1), may only be mo-
tif if p;; = (wa, ..., Wg—1, Wk, Wg+1) is motif. When generating candidates, we
always apply all possible sequential and concretizing extensions. This has the
advantage that we always know in advance whether the sequences p; and p;;
are motifs. Furthermore, the cross-pointers have to be updated as well.
Support count: The dataset of time series is processed sequentially, one
sequence at a time. For each node the trie contains a counter. For each time
series, the counters of the matched candidates are incremented.

Matched candidates can be found efficiently using a double recursive search
scheme. The doubly recursive search scheme is shown in Fig. 3 and Fig. 4.

When processing a time series, the function for counting is first invoked
for the root. (The current node is the root.) Then, this function is recursively
invoked with the tail of the current time series for i) such a sequential child
of the current node which match the first item of the time series, and for
i1) all matching taxonomic descendants of the matching sequential child i)
for the current node as well. Note that this step is a generalization of the
corresponding step in [3].
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support_count () {
for each time series (denoted by s) of input
support_count_1(candidates.root, s, max_dist);
if (s did not support any node) delete s from input;
}
support_count_1(TrieNode n, TimeSeries s, int allowed_dist_to_next_match) {
item first_symbol = s.first();
TailTimeSeries tail_sequece = s.tailTimeSeries();
TrieNode nl = sequential child node of n such that
the incoming edge to nl matches first_symbol;
if (exists nl) && (exists a candidate reachable over nl)
(*) N = set of nl and all of the taxonomic descendants of nl matched by first_symbol
for each node (denoted by n0) of N
if (n0 candidate) && (n0 has not been supported by this input sequence before)
n0.incrementSupport () ;
support_count_1(n0,tail_sequence, max_dist);
(*)if check(allowed_dist_to_next_matching)
support_count_l(n, tail_sequence,new_allowed_dist_to_next_matching);

Fig. 4. Pseudo-code of one of the main steps of our algorithm: support counting,
lines marked with (*) contain generalization compared to the case of flat motifs

In contrast to [3], in our case we need some additional administration.
During this double recursive search, we have to take into account (and even-
tually not invoke some of the recursion steps because of) i) the number of
“gaps” that the (d,n) semi-continuous candidate has already had in the input
sequence till the current position, and iz) (if there is currently a “gap” in the
matched time series) the length of the current “gap” till the current position.
We also have to take care of not incrementing the counter of a node twice
while processing a time series. (Note that it is possible to arrive several times
at the same node as a candidate may be matched by several parts of a time
series.) To further increase the efficiency, we use a pruning technique similar
to the one described in [4], i.e. pruning those subtrees which do not contain
candidates.

4 Experimental Evaluation

Data set. The data used in our experiments was collected at the Fresenius
Clinics. It contains recordings of dialysis sessions for 725 patients. The pa-
tients have to consult the doctor for treatment regularly, some data (like
blood pressure, body temperature. . .) is recorded every time, this leads to a
sequence of observations. We have about 40 time series per patients. Some
pieces of master data of the patients (like age, sex, body mass index,...) are
also available. There are two groups of patients: “normal” (53%) and “risky”
(47%). We use the same dataset as in [16, 17]. We refer to [17] for a more
detailed description.

Experimental Settings, Motif Selection. We discover motifs on different
time series separately (i.e. separately on the time series of blood pressure,
body temperature, ...). Minimum support threshold was set to 0.06 (exp. 1)
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and 0.05 (exp 2). Similar to [16] we select the best predictive motifs for each
class: we choose motifs that predict the “normal” class with a probability of
90% (exp. 1c), 85% (exp. la,b), 80% (exp. 2) and the motifs that predict the
“risky” class with a probability of 85% (exp. 1c¢), 80% (exp. 1la,b), 756% (exp.
2). Furthermore we only select motifs that are statistically significant for a
class (x? test, @ = 0.05) and limit the total number of apriori-iterations to
10 (exp. 1) and 20 (exp. 2) in order to get local motifs. In exp. 1 we limit the
minimum length of motifs as well to 3 symbols. Among the motifs fulfilling
these criteria, in exp. 1. we only select 5 motifs for each of the 40 different
kind of time series the following way: first we select the motif mg, which is
supported by the most of the time series. Then we perform 4 iterations and
always select the motif my, (k= 1,2,3,4), which is supported by the most of
such time series, which do not support mg, ..., mi_1.

As central classifier we use the WEKA-implementation of SVM-s (with
RBF kernel) and Bayesian Networks. The parameters of the SVM-s (com-
plexity constant and exponent) are learned in 2710 ...23 and 2710, 2! us-
ing a hold-out subset of training data in 5-fold-crossvalidation protocol. We
perform 10-fold-crossvalidation (i.e. the full dataset is split into test and train
set 10 times). Motifs are discovered on the training set. Then time series of
the test set are checked whether they contain the motifs discovered on the
training set. Note that our experimental protocol differs from the one used in
[16], thus our results are not directly comparable.

To calculate the baseline, in exp. 1. we use time series aggregates data

(min., max., avg.) as input of the central classifier. We extend it with CPMs
attributes (CPM = Count of Predictive Motifs for each class). In exp. 2. we
use both master data and time series aggregates (baseline). We extend it
with features indicating the containment of each motif like in Fig. 2 and with
CPMs attributes as well. We also compare to an SVM classifier integrating
ENN-DTW predictions and master data (MD).
Results. In exp. 1. we compare different subclasses of semi-continuous gen-
eralized motifs [ 4) continuous, i) semi-continuous with max. 2 gaps of max.
length 1, i41) motifs with taxonomical wildcards using a simple taxonomy like
in Fig. 1 but without * ]. The results (Table 2.) show that both gaps and tax-
onomical wildcards are beneficial for classification accuracy. Exp. 2. (Table
3.) shows, that motifs are beneficial in a realistic scenario (where master data
is also available) as well.

Table 2. Impact of different generalized semi-continuous motif subclasses (exp. 1)

without a) continuous b) (1,2) semi-cont. ¢) motifs with tax.

motifs motifs (counts) motifs (counts) wildchards (counts)
SVM 66,52 65,07 68,24 68,13
SVM (logistic) 65,97 66,28 67,00 68,39

Bayesian Network 70,11 70,51 71,04 69,37
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Table 3. Impact of motifs if master data (MD) is available (exp. 2)

Baseline motifs motifs
(without motifs) (counts) (counts + indicators)

SVM 72,40 72,12 75,61
SVM (logistic) 72,38 73,35 76,43
Bayesian Network 73,84 74,76 74,76

SVM on kNN-DTW + MD 73,7 [17]

5 Conclusion

We introduced a new class of motifs, generalized semi-continuous motifs. We
proposed an efficient algorithm to discover them, and we showed that these
motifs improve the accuracy of time series classification. As future work we
would like to compare different subclasses of generalized semi-continuous mo-
tifs in more detail and deal with parameter learning.
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