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Abstract Estimating the error of classification and regression models is one of the
most crucial tasks in machine learning. While the global error is capable to measure
the quality of a model, local error estimates are even more interesting: on the one
hand they contribute to better understanding of predictionmodels (where does and
where does not work the model well), on the other hand they mayprovide powerful
means to build successful ensembles that select for each region the most appropri-
ate model(s). In this paper we introduce an extremely localized error estimation,
calledindividualized error estimation (IEE), that estimates the error of a prediction
modelM for each instancex individually. To solve the problem of individualized
error estimation, we apply a meta modelM∗. We systematically investigate various
combinations of elementary modelsM and meta modelsM∗ on publicly available
real-world data sets. Further, we illustrate the power of IEE in the context of time se-
ries classification: on 35 publicly available real-world time series data sets, we show
that IEE is capable to enhance state-of-the art time series classification methods.

1 Introduction

Error estimation is one of the most crucial tasks in machine learning. For measuring
the overall quality of a model, global error estimations areused, while for the task
of analyzing the behavior of a model in different regions of the input space, local
error estimations can be performed. This may be interestingon its own, as it con-
tributes to the better understanding of prediction models.Furthermore, by allowing
for the selection of the most appropriate model(s) for each region of the input space,
local error estimation provides powerful means to build ensembles of classifiers or
regressors.
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Fig. 1 A two-dimensional
binary classification task.
Assuming test instance ‘1’ to
be a triangle, and ‘2’ to be
a circle (ground-truth), we
observe that 1-NN classifies
‘2’ correctly, but misclassifies
‘1’, while 6-NN outputs the
appropriate class for ‘1’, and
misclassifies ‘2’.

In this paper we focus on local error estimation techniques.We introduce the
notion of an extremely localized error estimation, calledindividualized error esti-
mation (IEE), that estimates the error of a prediction modelM for each instance
x individually. To solve the problem of individualized errorestimation, we apply a
meta modelM∗. We systematically investigate different combinations ofelementary
modelsM and meta modelsM∗ on publicly available real-world data sets.

Furthermore, we show how to exploit IEE’s power in the context of time series
classification in order to enhance state-of-the art models.We evaluate our approach
on 35 publicly available real-world time series data sets. The results show that our
approach outperforms state-of-the art time series classification methods.

The paper is organized as follows. In section 2 we introduce individualized error
estimation. In section 3 we systematically investigate IEEfor various combinations
of elementary models and meta models. In section 4 we describe an application
of IEE to time series classification, we also present our experimental results. After
summarizing related work in section 5, we conclude in section 6.

2 Individualized Error Estimation

We illustrate IEE in context of a simple binary classification task of a 2-dimensional
data set. Figure 1 depicts a set of labeled instances from twoclasses that are denoted
by triangles and circles. The density in the class of triangles (upper region) is larger
than in the class of circles (lower region). We consider two test instances, denoted as
‘1’ and ‘2’, that have to be classified. We also assume that theground-truth considers
test instance ‘1’ as a triangle, and ‘2’ as a circle. Suppose,we use nearest neighbor
(NN) models to classify the test instances.

Both for ‘1’ and ‘2’, the first nearest neighbor is a circle. Thus, the 1-NN clas-
sifies ‘1’ incorrectly, while ‘2’ is classified correctly. However, using e.g. a 6-NN
classifier, due to the lower density in the circles’ class, weobserve ‘2’ to be misclas-
sified (see the large dashed circle around ‘2’), while ‘1’ is classified correctly.
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Table 1 Classification of test instances in the example

Instance Ground-truth Classification with 1-NN Classification with 6-NN
M1 M∗

1 M2 M∗
2

1 triangle circle incorrect triangle correct
2 circle circle correct triangle incorrect

In this example we are concerned with two models:M1: 1-NN andM2: 6-NN.
The perfect meta-model forM1, denoted asM∗

1, would output thatM1 classifies the
first test instance incorrectly, while it classifies the second test instance correctly (see
4th column of Tab. 1). Similarly,M∗

2 (the perfect meta-model forM2) would output
that M2 classifies the first test instance correctly, while it classifies the second test
instance incorrectly (see the last column of Tab. 1).

In this simple example, the output of meta-modelsM∗
1 andM∗

2 consists of bi-
nary decisions whether the classifications by the elementary modelsM1 andM2 are
correct or not. Please note, that one can develop more advanced meta-models, that
output e.g. the likelihood (probability) of the correct decision, or, if we use a re-
gression model at the elementary level, the meta-model could output the residuals
(difference between predicted and true label).

Problem formulation Given a modelM and a set of instancesS (M predicts the
labels ofS), the task of Individualized Error Estimation (IEE) is to develop a meta-
modelM∗ that is able to estimate the error ofM for each instance ofS individually.

Various versions of this task can be formulated (both in the context of classi-
fication and regression), and this defines the exact meaning of error in the above
definition. Some of these possible versions include:

1. M is a classification model, and (as in the example above) the meta-modelM∗

takes binary decisions whether the classification byM is correct or not,
2. M is a classification model, and the meta-modelM∗ estimates for each instance

the likelihood (probability) of the classification being correct,
3. M is a regression model, andM∗ estimates the residuals (difference between

predicted and true label) for each instance.

This generic definition allows for various classification and regression models, in
this paper we are going to explore just a discrete set of models.

Our approach for IEE Fig. 2 summarizes the training procedure of our approach.
Here, we describe the approach in the context of residual estimation, but it can
simply be adapted for other versions of the task. The major steps are:

1. Split the labeled training data into two subsetsDA andDB.
2. Train the elementary modelM onDA.
3. LetM predict the labels ofDB.
4. As the true labels ofDB are known, we can calculate the error of the predicted

labels. In the case of residual estimation, when the labels are continuous, the
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Fig. 2 Training procedure of our approach.

Fig. 3 Evaluation of IEE

calculated errore(i) of an instancei ∈ DB is: e(i) = M(i)− l(i), whereM(i)
denotes the prediction of the elementary modelM andl(i) is the true label ofi.

5. TrainM∗ on DB using the calculated errors as labels.

When an unlabeled instancei′ is processed, the elementary modelM predicts its
label, while the meta-modelM∗ estimates the error. In the case of residual estima-
tion, the final predicted label ofi′ is: l(i′) f inal =M(i′)+M∗(i′), whereM(i′) denotes
the prediction of the elementary modelM, andM∗(i′) denotes the residual estimated
by M∗ for instancei′.

3 IEE with various models

Our approach (section 2), is generic as it allows to apply various classification and
regression models both at the elementary level (asM) and at the meta-level (asM∗).
Whenever a particular choice ofM andM∗ is made, we would like to evaluate how
successfullyM∗ could predict the errors ofM. As this evaluation procedure is non-
trivial, we continue by describing our evaluation protocol.

In order to evaluate our approach (see Fig. 3), we first train both M, andM∗

on training data as described in Section 2. Then, usingM∗, we estimate the error
for each instance of the disjoint test dataDTest . We also predict the labels ofDTest

usingM. Comparing the predicted labels to the ground-truth of the test data, we can
calculate the true errors of the predicted labels. Finally,we compare the estimated
errors to the true errors. When doing so, we calculate RMSE (root mean squared
error) between the vector of true errors and the vector of estimated errors.
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Fig. 4 Results: IEE with various combinations of models and meta-models (data: Communities).
We used the same model types at the elementary and meta levels. A detailed description of the
models can be found in the WEKA software package (Hall et al, 2009).

In our first experiment, we investigated various combinations of elementary mod-
elsM and meta modelsM∗ in the residual estimation setting as described above. We
used the following publicly available real-world data setsfrom the UCI repository
(Frank and Asuncion, 2010): i) Communities, ii) WineQuality (both red wines and
white wines) and iii) Parkinson (both targets: motoric abilities and total abilities).
As we observed very similar trends on all data sets, we only report the results on
the Communities data set. As a simple baseline we used the meta-modelM∗

bl that
estimates that the prediction of the elementary modelM was always correct.

We performed 10-fold-cross-validation: in each round the entire data is divided
into 10 splits, out of which 1 serves as test data (DTest ), the other 9 splits are used as
training data. Out of the 9 training splits, 5 splits constitutedDA and the remaining
4 splits belonged toDB (see section 2 forDA, DB and the training procedure).

Fig. 4 summarizes our results: it shows for all the examined combinations of
models and meta-models, in how many folds our approach was better than the base-
line. The applied models are listed on the right of the figure,we used the imple-
mentations from the WEKA software package (Hall et al, 2009). In the matrix, the
horizontal dimension corresponds to the applied meta-model M∗, while the elemen-
tary models are listed along the vertical dimension. For example, the 4th column
position in the 2nd row corresponds to the combination wherethe model isk-NN
and the meta-model is LWL. The color of the cell shows how manytimes (in how
many rounds of the 10-fold-cross-validation) our trained meta-modelM∗ was better
than the baselineM∗

bl . Black cells mean thatM∗ is better thanM∗
bl (almost) always

(10 or 9 times); dark gray cells indicate thatM∗ is better thanM∗
bl 8 or 7 times, while

light gray cells denoteM∗ being better thanM∗
bl 6 or 5 times.

As a general observation, we see that for (almost) all of the elementary models,
there are meta-models that are capable to deliver (relatively) good error estimations,
although the particular choice of the meta-model is important: some of the meta-
models deliver very poor estimations. As further observation, we see, that RBF-
Networks and SVMs seem to work generally well as meta-models.
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Fig. 5 IEE for time series classification

4 Time series classification using IEE

In our second experiment, we aimed at improving the accuracyof time series clas-
sification with IEE. In the time series domain, according to recent works, e.g. (Xi
et al, 2006; Ding et al, 2008), simple nearest neighbor classifiers (using Dynamic
Time Warping as distance measure) are generally very difficult to outperform (if it
is possible at all). On the other hand, the ideal number of nearest neighbors,k, is
non-trivial to be chosen and it may vary from region to region, just like in the exam-
ple in section 2. Therefore, as elementary modelsMi, we implemented DTW-based
nearest neighbor classifiers for time series with oddk values between 1 and 10, i.e.
M1: 1-NN-DTW,M2: 3-NN-DTW, ...,M5: 9-NN-DTW. For each of them, we imple-
mented a meta-modelM∗

i , that aimed at estimating the likelihood of the error ofMi,
1≤ i ≤ 5. This schema is depicted in Fig. 5. We trained the elementary classifiers
Mi and the corresponding meta-modelsM∗

i as described in section 2.
Note, that in contrast to the previous experiment, where residuals were estimated,

here, we apply IEE to estimate the error likelihood (see 2nd version of the IEE-
problem in section 2). Therefore the training procedure is slightly different: when
calculating the individual error of each predicted label instep 4 of our approach, as
described in section 2, the error is considered as 0, if the classification produced by
M was correct, otherwise the error is considered as 1. These calculated errors serve
as meta-level labels. At the meta-level, we use nearest neighbor regression models,
that simply average the meta level labels of the nearest neighbors. While the number
of nearest neighbors at the elementary level is non-trivialto be selected, we observed
that the meta-model for error likelihood estimation is muchless sensitive to the
number of nearest neighbors,k′, andk′ = 5 (almost) always leads to appropriate
error likelihood estimation, therefore we fixedk′ = 5 for all the meta-modelsM∗

i .
When classifying a test time seriest, the meta-models estimated the error like-

lihood for each elementary modelM1: 1-NN-DTW, ...,M5: 9-NN-DTW. Then we
selected the elementary model with minimal estimated errorlikelihood and used it
to classifyt. (In this final step of predicting the class label of a test time seriest, all
the training data,DA ∪DB, is used by the selected nearest neighbor model.)

In our experiments we used 35 publicly available time seriesdata sets from the
collection used in (Ding et al, 2008). We omitted 3 data sets due to their tiny sizes:
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Table 2 Summary of our results for time series classification: number of cases where our approach
wins / looses (significantly wins / looses in parenthesis) against the baselines.

p = 1% p = 5% p = 10% total

Wins against 1-NN-DTW 30 (20) 34 (29) 34 (31) 98 (80)
Looses against 1-NN-DTW 5 (1) 1 (0) 1 (0) 7 (1)

Wins againstk-NN-DTW 30 (15) 30 (9) 28 (14) 88 (38)
Looses againstk-NN-DTW 5 (1) 5 (1) 7 (1) 17 (3)

each of them contained less than 100 observations. We performed 10-fold-cross-
validation. As baselines we used 1-NN-DTW andk-NN-DTW with globally bestk
selected on a hold-out subset of the training data (after selecting the globally opti-
mal k, all the training data is used to classify test time series).We tested statistical
significance using t-test at level 0.05. For the original data sets, in the majority of the
cases, we did not observe significant differences (often allapproaches, ours and both
baselines performed very well). As recent research showed,bad hubs1 are respon-
sible for a surprisingly high portion of the error (Radovanovic et al, 2010). Thus, in
order to make the task more challenging, we artificially introduced some bad hubs:
we changed the best hubs to bad ones (set the class labels to anartificial ’noise’
class) by infecting in totalp % of the entire data set. Tab. 2 summarizes our results
for 3 different levels ofp. In the table we report in how many cases our approach
wins/looses against the baselines, in parenthesis we report in how many cases the
wins/looses are statistically significant.

5 Related work

Error-prediction methods are usually applied globally in order to estimate the over-
all performance of a classification model (Molinaro et al, 2005; Jain et al, 1987).
Closely related to ours is the work of Tsuda et al. (Tsuda et al, 2001), who proposed
an individualized approach for predicting the leave-one-out error of vector classi-
fication with support vector machines (SVM) and linear programming machines
(LPM). Compared to this work, our proposed approach is more generic, as i) we
did not only focus on the overall leave one out error, ii) we did not only focus on
vector classification (but also allow for more complex structures like time series),
and, most importantly, iii) in the current work we have shownhow to exploit IEE to
enhance classification.

IEE is also related to boosting, where residuals are estimated in order to enhance
classification like in (Duffy and Helmbold, 2002). However,IEE is not limited to the

1 Hubs are time series that appear most frequently as nearest neighbors of other time series. Denote
the set of time series for whicht is the nearest neighbor asNt . A hubt is a bad hub if its class label
is different from the class labels ofmany time series inNt . See also (Radovanovic et al, 2010).
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estimation of residuals and in this sort of sense IEE is more generic than boosting.
Moreover, in the case of boosting a (long) series of (usuallyweak) models of the
same type is used, whereas in IEE we use a pair of models: an elementary model
and a meta model, and the models may belong to different (strong) model types.

The presented application of IEE (estimation of thek for time series classifica-
tion usingk-NN-DTW) is related to locally adaptive models (Hastie and Tibshirani,
1996; Domeniconi and Gunopulos, 2001; Domeniconi et al, 2002). In contrast to
these works, our approach adapts by selecting the proper value ofk and not by de-
termining a localized distance function.

6 Conclusion

In this paper we introduced the notion of individualized error estimation (IEE) and
defined three versions of the IEE-problem. We systematically investigated IEE in
context of various prediction models. We observed RBF-Networks and SVMs to
deliver good error estimations compared to the other examined models. We have
also shown that IEE is capable to enhance state-of-the art time series classification
models. As future work, we aim at exploring new IEE-problem and applications.
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