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Abstract Estimating the error of classification and regression nowebne of the
most crucial tasks in machine learning. While the globadeig capable to measure
the quality of a model, local error estimates are even mdsgeasting: on the one
hand they contribute to better understanding of prediatimdels (where does and
where does not work the model well), on the other hand theypnayide powerful
means to build successful ensembles that select for eawnrége most appropri-
ate model(s). In this paper we introduce an extremely lnedlierror estimation,
calledindividualized error estimation (IEE), that estimates the error of a prediction
modelM for each instance individually. To solve the problem of individualized
error estimation, we apply a meta modi#t. We systematically investigate various
combinations of elementary moda¥s and meta models1* on publicly available
real-world data sets. Further, we illustrate the power & iliEthe context of time se-
ries classification: on 35 publicly available real-worlahé series data sets, we show
that IEE is capable to enhance state-of-the art time selassification methods.

1 Introduction

Error estimation is one of the most crucial tasks in macleaering. For measuring
the overall quality of a model, global error estimations a@sed, while for the task
of analyzing the behavior of a model in different regionstef tnput space, local
error estimations can be performed. This may be interestinigs own, as it con-
tributes to the better understanding of prediction modaisthermore, by allowing
for the selection of the most appropriate model(s) for eagion of the input space,
local error estimation provides powerful means to buildegnisles of classifiers or
regressors.
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In this paper we focus on local error estimation techniqifés.introduce the
notion of an extremely localized error estimation, calledividualized error esti-
mation (IEE), that estimates the error of a prediction molkefor each instance
x individually. To solve the problem of individualized errestimation, we apply a
meta modeM*. We systematically investigate different combinationslefentary
modelsM and meta modelsl* on publicly available real-world data sets.

Furthermore, we show how to exploit IEE’s power in the cohtéixime series
classification in order to enhance state-of-the art motléésevaluate our approach
on 35 publicly available real-world time series data setg flesults show that our
approach outperforms state-of-the art time series cleatgn methods.

The paper is organized as follows. In section 2 we introdod&idualized error
estimation. In section 3 we systematically investigate f&B/arious combinations
of elementary models and meta models. In section 4 we desanbapplication
of IEE to time series classification, we also present our expntal results. After
summarizing related work in section 5, we conclude in sedsio

2 Individualized Error Estimation

We illustrate IEE in context of a simple binary classificattask of a 2-dimensional
data set. Figure 1 depicts a set of labeled instances fromlagses that are denoted
by triangles and circles. The density in the class of trieaglipper region) is larger
than in the class of circles (lower region). We consider tegh instances, denoted as
‘1'and ‘2’, that have to be classified. We also assume thagtbend-truth considers
test instance ‘1’ as a triangle, and ‘2’ as a circle. Suppaseyise nearest neighbor
(NN) models to classify the test instances.

Both for ‘1’ and ‘2’, the first nearest neighbor is a circle.usy the 1-NN clas-
sifies ‘1" incorrectly, while ‘2’ is classified correctly. kieever, using e.g. a 6-NN
classifier, due to the lower density in the circles’ classplyserve ‘2’ to be misclas-
sified (see the large dashed circle around ‘2"), while ‘1’lasssified correctly.
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Table 1 Classification of test instances in the example

Instance  Ground-truth Classification with 1-NN Classifmatwith 6-NN
M1 M My M

1 triangle circle incorrect triangle correct

2 circle circle correct triangle incorrect

In this example we are concerned with two modéfs: 1-NN andM;: 6-NN.
The perfect meta-model fod;, denoted a1y, would output thaiM; classifies the
first test instance incorrectly, while it classifies the settest instance correctly (see
4th column of Tab. 1). Similarlyy; (the perfect meta-model fvl,) would output
that M, classifies the first test instance correctly, while it clissithe second test
instance incorrectly (see the last column of Tab. 1).

In this simple example, the output of meta-modéls and M5 consists of bi-
nary decisions whether the classifications by the elemgntadelsM; andM, are
correct or not. Please note, that one can develop more aglaneta-models, that
output e.g. the likelihood (probability) of the correct @gan, or, if we use a re-
gression model at the elementary level, the meta-modeticoutput the residuals
(difference between predicted and true label).

Problem formulation Given a modeM and a set of instances(M predicts the
labels of9), the task of Individualized Error Estimation (IEE) is tovééop a meta-
modelM* that is able to estimate the errorldffor each instance ddindividually.

Various versions of this task can be formulated (both in thetext of classi-
fication and regression), and this defines the exact meaifiiega in the above
definition. Some of these possible versions include:

1. M is a classification model, and (as in the example above) thia-medelM*
takes binary decisions whether the classificatiofvbig correct or not,

2. M is a classification model, and the meta-modélestimates for each instance
the likelihood (probability) of the classification beingroect,

3. M is a regression model, arld* estimates the residuals (difference between
predicted and true label) for each instance.

This generic definition allows for various classificatiordaegression models, in
this paper we are going to explore just a discrete set of nsodel

Our approach for IEE Fig. 2 summarizes the training procedure of our approach.
Here, we describe the approach in the context of residuahasbn, but it can
simply be adapted for other versions of the task. The magmssare:

1. Split the labeled training data into two subdegsandDg.

2. Train the elementary modil onDa.

3. LetM predict the labels oDg.

4. As the true labels dDg are known, we can calculate the error of the predicted
labels. In the case of residual estimation, when the labelsantinuous, the
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Fig. 3 Evaluation of IEE

calculated erroe(i) of an instance € Dg is: e(i) = M(i) — (i), whereM(i)
denotes the prediction of the elementary mddedndl (i) is the true label of.
5. TrainM* on Dg using the calculated errors as labels.

When an unlabeled instanias processed, the elementary mohlfepredicts its
label, while the meta-mod@&l* estimates the error. In the case of residual estima-
tion, the final predicted label dfis: | (i’)f" = M(i’) + M*(i’), whereM(i’) denotes
the prediction of the elementary mod) andM*(i’) denotes the residual estimated
by M* for instance’.

3 |IEE with various models

Our approach (section 2), is generic as it allows to appliouarclassification and
regression models both at the elementary leveMpand at the meta-level (&4*).
Whenever a particular choice bf andM* is made, we would like to evaluate how
successfullyM* could predict the errors dfl. As this evaluation procedure is non-
trivial, we continue by describing our evaluation protocol

In order to evaluate our approach (see Fig. 3), we first traith M, and M*
on training data as described in Section 2. Then, ublfigwe estimate the error
for each instance of the disjoint test d&ig.y. We also predict the labels @freq
usingM. Comparing the predicted labels to the ground-truth oféisedata, we can
calculate the true errors of the predicted labels. Finally,compare the estimated
errors to the true errors. When doing so, we calculate RM8&t (nean squared
error) between the vector of true errors and the vector ahesed errors.
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Fig. 4 Results: IEE with various combinations of models and metalels (data: Communities).
We used the same model types at the elementary and meta |l&veéégailed description of the
models can be found in the WEKA software package (Hall etG092.

In our first experiment, we investigated various combinatiof elementary mod-
elsM and meta modelsl* in the residual estimation setting as described above. We
used the following publicly available real-world data sitsm the UCI repository
(Frank and Asuncion, 2010): i) Communities, ii) WineQualiboth red wines and
white wines) and iii) Parkinson (both targets: motoric e and total abilities).
As we observed very similar trends on all data sets, we ordgntehe results on
the Communities data set. As a simple baseline we used theemedelMy; that
estimates that the prediction of the elementary miiglas always correct.

We performed 10-fold-cross-validation: in each round thire data is divided
into 10 splits, out of which 1 serves as test d@gd ), the other 9 splits are used as
training data. Out of the 9 training splits, 5 splits conggtdlD and the remaining
4 splits belonged t®g (see section 2 foba, Dg and the training procedure).

Fig. 4 summarizes our results: it shows for all the examinedhinations of
models and meta-models, in how many folds our approach viter iean the base-
line. The applied models are listed on the right of the figwe,used the imple-
mentations from the WEKA software package (Hall et al, 2009jhe matrix, the
horizontal dimension corresponds to the applied meta-inddewhile the elemen-
tary models are listed along the vertical dimension. Formgda, the 4th column
position in the 2nd row corresponds to the combination whieeemodel isk-NN
and the meta-model is LWL. The color of the cell shows how miamgs (in how
many rounds of the 10-fold-cross-validation) our traineztammodeM* was better
than the baselin®l};,. Black cells mean thail* is better tharvij; (almost) always
(10 or 9 times); dark gray cells indicate th\t is better thamMy; 8 or 7 times, while
light gray cells denoté* being better thaivl, 6 or 5 times.

As a general observation, we see that for (almost) all of kamentary models,
there are meta-models that are capable to deliver (relgtigeod error estimations,
although the particular choice of the meta-model is impudrtasome of the meta-
models deliver very poor estimations. As further obseortive see, that RBF-
Networks and SVMs seem to work generally well as meta-models
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Fig. 5 |EE for time series classification

4 Time series classification using IEE

In our second experiment, we aimed at improving the accushtiyne series clas-
sification with IEE. In the time series domain, accordingeoent works, e.g. (Xi
et al, 2006; Ding et al, 2008), simple nearest neighbor iflass (using Dynamic
Time Warping as distance measure) are generally very diffcwutperform (if it
is possible at all). On the other hand, the ideal number ofestaeighborsk, is
non-trivial to be chosen and it may vary from region to regjast like in the exam-
ple in section 2. Therefore, as elementary modklsve implemented DTW-based
nearest neighbor classifiers for time series with kddlues between 1 and 10, i.e.
Mj: 1-NN-DTW, My: 3-NN-DTW, ...,Ms: 9-NN-DTW. For each of them, we imple-
mented a meta-mod®;", that aimed at estimating the likelihood of the erroMyf

1 <i < 5. This schema is depicted in Fig. 5. We trained the elemgwtassifiers
M; and the corresponding meta-models as described in section 2.

Note, that in contrast to the previous experiment, wherduass were estimated,
here, we apply IEE to estimate the error likelihood (see 2edion of the IEE-
problem in section 2). Therefore the training procedurdightly different: when
calculating the individual error of each predicted labesdt@p 4 of our approach, as
described in section 2, the error is considered as 0, if thesdication produced by
M was correct, otherwise the error is considered as 1. Thésalad errors serve
as meta-level labels. At the meta-level, we use neareshbeigegression models,
that simply average the meta level labels of the neareshheig. While the number
of nearest neighbors at the elementary level is non-tiiwibe selected, we observed
that the meta-model for error likelihood estimation is mlebs sensitive to the
number of nearest neighbotg, andk’ = 5 (almost) always leads to appropriate
error likelihood estimation, therefore we fix&d= 5 for all the meta-models!;".

When classifying a test time serigsthe meta-models estimated the error like-
lihood for each elementary modil;: 1-NN-DTW, ...,Ms: 9-NN-DTW. Then we
selected the elementary model with minimal estimated dikelihood and used it
to classifyt. (In this final step of predicting the class label of a tesetiserieg, all
the training dataDa U Dg, is used by the selected nearest neighbor model.)

In our experiments we used 35 publicly available time sets sets from the
collection used in (Ding et al, 2008). We omitted 3 data setstd their tiny sizes:
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Table 2 Summary of our results for time series classification: nunobeases where our approach
wins / looses (significantly wins / looses in parenthesig)iggt the baselines.

p=1% p=>5% p=10% total

Wins against 1-NN-DTW 30 (20) 34 (29) 34 (31) 98 (80)
Looses against 1-NN-DTW 5() 1(0) 1(0) 7))
Wins againsk-NN-DTW 30 (15) 30 (9) 28 (14) 88 (38)
Looses againgt-NN-DTW 5() 5(1) 7)) 17 (3)

each of them contained less than 100 observations. We pextbd 0-fold-cross-
validation. As baselines we used 1-NN-DTW daIN-DTW with globally bestk
selected on a hold-out subset of the training data (aftecsef the globally opti-
mal k, all the training data is used to classify test time serid .tested statistical
significance using t-test at leveld®. For the original data sets, in the majority of the
cases, we did not observe significant differences (ofteapglfoaches, ours and both
baselines performed very well). As recent research sholaatihub$ are respon-
sible for a surprisingly high portion of the error (Radovaiteet al, 2010). Thus, in
order to make the task more challenging, we artificiallyadtrced some bad hubs:
we changed the best hubs to bad ones (set the class labelsattifaial 'noise’
class) by infecting in totap % of the entire data set. Tab. 2 summarizes our results
for 3 different levels ofp. In the table we report in how many cases our approach
wins/looses against the baselines, in parenthesis wetrieplbow many cases the
wins/looses are statistically significant.

5 Related work

Error-prediction methods are usually applied globallyiidey to estimate the over-
all performance of a classification model (Molinaro et alp20Jain et al, 1987).
Closely related to ours is the work of Tsuda et al. (Tsuda,&Cf1), who proposed
an individualized approach for predicting the leave-oneeror of vector classi-
fication with support vector machines (SVM) and linear pesgming machines
(LPM). Compared to this work, our proposed approach is mereegc, as i) we
did not only focus on the overall leave one out error, ii) wé dot only focus on
vector classification (but also allow for more complex stinwes like time series),
and, most importantly, iii) in the current work we have shdvenv to exploit IEE to
enhance classification.

IEE is also related to boosting, where residuals are estinatorder to enhance
classification like in (Duffy and Helmbold, 2002). HoweWE is not limited to the

1 Hubs are time series that appear most frequently as ne@igsibiors of other time series. Denote
the set of time series for whidhs the nearest neighbor 8. A hubt is a bad hub if its class label
is different from the class labels ofany time series in\;. See also (Radovanovic et al, 2010).
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estimation of residuals and in this sort of sense IEE is mereegc than boosting.
Moreover, in the case of boosting a (long) series of (usua#gk) models of the
same type is used, whereas in IEE we use a pair of models: exeelary model
and a meta model, and the models may belong to differentn@tmodel types.

The presented application of IEE (estimation of ki®r time series classifica-
tion usingk-NN-DTW) is related to locally adaptive models (Hastie arilgshirani,
1996; Domeniconi and Gunopulos, 2001; Domeniconi et al220@ contrast to
these works, our approach adapts by selecting the propss wék and not by de-
termining a localized distance function.

6 Conclusion

In this paper we introduced the notion of individualizecbemstimation (IEE) and
defined three versions of the IEE-problem. We systemayidallestigated IEE in

context of various prediction models. We observed RBF-det& and SVMs to

deliver good error estimations compared to the other exaghinodels. We have
also shown that IEE is capable to enhance state-of-thenagtgeries classification
models. As future work, we aim at exploring new IEE-problerd applications.
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