
Graph-based Model-Selection Framework for
Large Ensembles

Krisztian Buza, Alexandros Nanopoulos and Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Samelsonplatz 1, University of Hildesheim, D-31141 Hildesheim, Germany

{buza,nanopoulos,schmidt-thieme}@ismll.de

Abstract. The intuition behind ensembles is that different prediciton
models compensate each other’s errors if one combines them in an appro-
priate way. In case of large ensembles a lot of different prediction models
are available. However, many of them may share similar error character-
istics, which highly depress the compensation effect. Thus the selection of
an appropriate subset of models is crucial. In this paper, we address this
problem. As major contribution, for the case if a large number of mod-
els is present, we propose a graph-based framework for model selection
while paying special attention to the interaction effect of models. In this
framework, we introduce four ensemble techniques and compare them to
the state-of-the-art in experiments on publicly available real-world data.

Keywords. Ensemble, model selection

1 Introduction

For complex prediction problems the number of models used in an ensemble
may have to be large (several hundreds). If many models are available for a
task, they often deliver different predictions. Due to the variety of prediction
models (SVMs, neural networks, decision trees, Bayesian models, etc.) and the
differences in the underlying principles and techniques, one expects diverse error
characteristics for the distinct models. Ensembles, also called blending or com-
mittee of experts, assumes that different models can compensate each other’s
errors and thus their right combination outperforms each individual model [3].

The aforementioned statement can be justified with the simple observation,
that the average of the predictions of the models may outperform the best in-
dividual model. This is illustrated with an example in Tab. 1, which presents
results of simple ensembles of 200 models contained in the AusDM-S dataset.1

Combining all classifiers, however, may not be the best choice: many of the
models may share similar error characteristics, that can highly depress the com-
pensation effect. In particular, the average of the 10 individually best models’
predictions outperforms the average of all the predictions. (See Table 1.) Instead,
if one selects the 10 individually worst models, the average of their predictions
perform much worse than the best model.
1 We describe the dataset later.

Table 1. Performance (Root Mean Squared Error) improvement w.r.t. best individual
model using simple ensemble schemes on the AusDM-S dataset. (10 fold cross valida-
tion, averaged results, in each fold the best/worst model(s) were selected based on the
performances on the train subset.)

Method RMSE-improvement

Average over all models 2.40
Average over the best 10 models 8.72
Average over the worst 10 models −20.84

We argue that different models have a high potential to compensate each
other’s errors, but the right selection of the models is important otherwise this
compensation effect may be depressed. How much the compensation effect is
depressed, also depends on how robust is the applied ensemble schema against
overfitting. In case of well-regularized ensemble methods (like stacking with lin-
ear regression or SVMs) the depression of compensation is typically much lower.
E.g. training a multivariate linear regression as meta-model on all predictions of
AusDM-S is still worse than training it on the predictions of the individually best
10 models (RMSE-improvement: 8.58 vs. 9.42). Note, however that the selection
of the 10 individually best models may be far from perfect: the potential power
of an ensemble may be much higher than the quality we reach by combining the
10 individually best models. Thus, even in case of well-regularized models, the
depression of compensation is an acute problem.

In this paper, we address this problem. As major contribution, we propose
a new graph-based framework that is generic enough to describe a wide range
of model selection strategies for ensembles varying from meta-filter to meta-
wrapper methods.2 In this framework, one can simply deploy our ensemble
method, that successfully participated in the recent Ensembling Challenge at
the Australian Data Mining Conference 2009. Using the framework, we propose
4 ensemble techniques: Basic, EarlyStop, RegOpt and GraphOpt. We evaluate
these strategies in experiments on publicly available real-world data.

2 Related Work

Ensembles are frequently used to improve predictive models, see e.g. [8], [7], [6].
The theoretical background, especially some fundamental reasons, why ensem-
bles work better than single models were discussed in [3].

Our focus in this paper is on a generic framework in order to describe model
selection strategies. Such an approach can be based on the stacking schema [9]
(also called stacked generalization[12]), in context of which, model selection is
feature selection at the meta-level (and variable selection is feature selection at
the elementary level), see Fig. 1. In the studied context, related work includes
feature selection at the elementary level [5] [4]. Some more closely related works

2 Filter (wrapper) methods score models without (with) involving the meta-model.

Fig. 1. Feature selection in ensembles: at the elementary level (variable selection, left)
and at the meta-level (model selection, right).

Algorithm 1 Edge Score Function: edge score
Require: Model mj , Model mk, data sample D, ErrorFunction calc err
Ensure: Edge weight of {mj ,mk}
1: p1 = mj .predict(D), p2 = mk.predict(D), ∀x : p[x] = (p1[x] + p2[x])/2
2: return calc err(p,D.labels)

study feature selection at the meta level, e.g. Bryll et al.[2] applies a ranking
of models and selects the best models to participate in the ensemble. In our
study, for comparison purposes, we use the schema of selecting the best models
as baseline to evaluate our proposed approach.

Other, less closely related work includes Zhou et al.[14], who employed a
genetic algorithm to find meta-level weights and selected models based on these
weights. They found, that the ensemble of the selected models outperformed
the ensemble of all of the models. Yang et al. [13] compared model selection
and model weighting strategies for Ensembles of Naive-Bayes-extensions, called
“Super-Parent-One-Dependence Estimators” (SPODE) [11]. All of these works
focus on specific models: Zhou et al.[14] are concerned with neural networks,
whereas Yang et al. focused on SPODE Ensembles[13]. In contrast to them,
we develop a general framework, that operate with various models and meta-
models. The model selection approach by Tsymbal et al.[10] is also essentially
different from ours: they select (dynamically) those models that deliver the best
predictions individually. In contrast, we view the task more globally by taking
interactions of models into account and thus supporting less-greedy strategies.
Bacauskiene et al. [1] applied genetic algorithm for finding the ensemble settings
both at the elementary level (hyper-parameters and variable selection) and at the
meta-level. However, due to their high computational cost, genetic algorithms
are impractical in our case of having large number of models present.

3 Graph-based Ensemble Framework

Given the prediction models m1, . . . ,mN , our goal is to find their best com-
bination. As mentioned before, the key of our ensemble technique is the selection
of models that compensate each other’s errors. For this, we build a graph first,
the model-pair graph, denoted as g in Alg. 2 (line 5). Each vertex corresponds
to one of the models m1, . . . ,mN . The graph is complete (all vertices are con-
nected). Edges of the graph are undirected and weighted, the weight of {mj ,mk}

Algorithm 2 Graph-based Ensemble Framework
Require: SubsetScoreFunction f , Predicate examine, ErrorFunction calc err,

ModelType meta model type, Int n, Real ε, set of all models MSet, labelled data D
Ensure: Ensemble of selected models

1: data[] splits = split D into 10 partitions
2: for i = 0; i < 10; i+ + do
3: data DA ← splits[i] ∪ . . .∪ splits[(i+ 4) mod 10]
4: data DB ← splits[(i+ 5) mod 10] ∪ . . .∪ splits[(i+ 9) mod 10]
5: g ← build graph with edge scores calculated by Alg. 1 for all edges { mj ,mk }
6: Mi ← ∅
7: Let scoreMi be the worst possible score
8: E(g)← sort the edges of g according to their weights, begin with the best one
9: for all edge {mj ,mk} in E(g), process edges according to the order do

10: if (mj ∈Mi ∧mk ∈Mi then proceed for the next edge
11: if examine({mj ,mk}) then
12: M ′i ←Mi ∪ {mj} ∪ {mk}
13: scoreM′

i
← f(M ′i , DA, DB ,calc err , g)

14: if scoreM′
i

better than scoreMi at least by ε then

15: Mi ←M ′i , scoreMi ← scoreM′
i

16: end if
17: end if
18: end for
19: end for
20: Mfinal ← {m ∈MSet|m is included in at least n sets among M0 . . .M9}
21: M ← train a model of type meta model type over the prediction vectors of the

models in Mfinal using D
22: return M

reflects the mutual error compensation power of mj and mk. In Alg. 1 for each
data instance, we average the predicitions of the both regression models mj and
mk (line 1). This gives a new prediction vector p. Then the error of p is returned
(line 2), which is used as the weight of edge {mj ,mk}.

Alg. 2 shows the pseudocode of our ensemble framework. This works with
various error functions, subset score functions and meta model types. The method
iterates over the edges of the graph (lines 9. . . 18). To scale up the selection, one
can specify a predicate called examine that determines which edges should be
examined and which ones should be excluded. As we will see in section 4, the
specific choice of these parameters result in various ensemble methods having
the common characteristic, that they all exploit the error compensation effect.

While learning, we divide the train data into two disjoint subsets DA and
DB (lines 3 and 4)3 and we build the model-pair graph (line 5). The division of
the train data is iteratively repeated in a round robin fashion (see line 2).

We process the edges in order of their scores, beginning with the edge which
corresponds to the best pair of models, see lines 6. . . 18. (E.g. in case of RMSE

3 This is a natural way to split because it allows effective learning of the selection
since it balances well between fitting and avoiding of overfitting.

smaller values indicate better predictions, so we process the edges in ascending
order with respect to their weights.) Mi denotes a set of models, that are selected
in the i-th iteration, scoreMi denotes the score of Mi. This score reflects how
good is the ensemble based on the models in Mi. When iterating over the edges
of the model-pair graph, we try to improve scoreMi

by adding models to Mi.
In each iteration we select a set of models Mi. Mfinal denotes the set of

such models that are contained at least n times among the selected models, i.e.
improve at least n times by at least ε. Finally, we train a model M of type
meta model type over the output of models in Mfinal using all training data
instances. Then M can be used for the prediction task (for unlabelled data).

Note, that our framework operates fully at the meta level: the attributes of
data instances are never accessed directly, only the prediction vectors that the
models deliver for them. Also note, that the hyperparameters (ε and n) can be
learned using a hold-out subset of the train data that is disjoint from D.

4 Ensemble Techniques

As we mentioned, the specific choice of the i) error function calc err, ii) subset
score function f , iii) examine predicate and iv) meta model type lead to differ-
ent ensemble techniques. In all of our techniques the error function calculates
RMSE (root mean squared error). As meta model type we chose multivariate
linear regression. In the followings, we describe further characteristic settings of
our ensemble techniques.

Basic When searching for the appropriate subset of models Mi, we calculate
the component-wise average of prediction vectors of models in Mi and based
on that we score that subset of models Mi. We use favg (Alg. 3) as subset
score function in Alg. 2 at line 13. The examine predicate is constant true.

EarlyStop In order to save time we only examine the best N edges (w.r.t. their
weights) of the model-pair graph. For this we use examinetopN predicate that
is true for the best N edges of the model-pair graph and false else. As subset
score function, similar to the Basic technique, we chose favg.

RegOpt Like in EarlyStop, we use the examinetopN predicate. However, instead
of favg we use multivariate linear regression to score the current model se-
lection in each iteration (see freg in Alg. 4).

GraphOpt This operates exclusively on the model-pair graph: we chose the
fgopt subset score function (Alg. 5) and the examinetopN predicate. Function
fgopt calculates an average-like aggregation of the edge weights, but it gives
priority to larger sets, as the sum of the weights is divided by a number that is
larger than the number of edges (as we use RMSE as error measure, smaller
numbers correspond better scores). If simply the average were calculated
(without priorising large sets), the set M containing solely the vertices of
the best edge (and no other vertices) would maximize the score function and
that would not be capable to find model set having larger size than 2.

Algorithm 3 Score Average Prediction: favg

Require: Modelset M , Data samples DA and DB , ErrorFunction calc err, Graph g
1: for ∀mi ∈M do pi = mi.predict(DB),
2: ∀x : p[x] = (p1[x] + . . .+ pi[x] + . . .)/M.size (predictions averaged per instance)
3: return calc err(p,DB .labels)

Algorithm 4 Score Model Set using Linear Regression: freg

Require: Modelset M , Data samples DA and DB , ErrorFunction calc err, Graph g
1: for ∀mi ∈M do pA

i = mi.predict(DA),
2: for ∀mi ∈M do pB

i = mi.predict(DB),
3: Train multivariate linear regression L using pA

i as data and DA.labels as labels
4: p = L.predict(pB

i)
5: return calc err(p,DB .labels)

Basic examines O(N2) edges (N is the number of models). As examinetopN

returns true for the most promising edges, we expect that EarlyStop does not
lose much on quality against Basic, but the runtime is reduced by an order of
magnitude, as EarlyStop examines only O(N) edges. We expect RegOpt to be
slower than EarlyStop, because from the computational point of view, training
a linear regression is more expensive then calculating an average. On the other
hand, as freg is more sophisticated than favg, we expect quality improvement.
RegOpt works in a meta-wrapper fashion, but filter methods, like GraphOpt,
are expected to be faster, as they do not invoke the meta-model in the phase of
model selection. Nevertheless, GraphOpt may produce worse results as only the
information encoded in the model-pair graph is taken into account.

Note, that we expect well-performing ensemble techniques, if the score func-
tion f and the meta model type are chosen in a way that there is a natural cor-
respondence between them, like in case of our ensemble techniques. Also note,
that Alg. 3 and 4 are conceptual descriptions of the score functions: in the imple-
mentation, the base models are not invoked as many times as the score function
is called, but their prediction vectors are pre-computed and stored in an array.

5 Evaluation

Datasets. We used the labelled datasets, namely Small (AusDM-S, 200 models,
15000 cases), Medium (AusDM-M, 250 models, 20000 cases) and Large (AusDM-
L, 1151 models, 50000 cases) of the RMSE task of the Ensembling Challenge at
the Australian Data Mining Conference 2009. These data sets are publicly avail-
able at http://www.tiberius.biz/ausdm09/. They contain the outputs of differ-
ent prediction models for the same task, movie rating prediction. The prediction
models were originally developed by different teams of the Netflix challenge.
There the task was to predict how users rate movies on a 1 to 5 integer scale
(5=best, 1=worst). In AusDM, however, both the predicted ratings and the
target were multiplied by 1000 and rounded to an integer value.

Algorithm 5 Score Model Set using the Model-Pair Graph: fgopt

Require: Modelset M , Data samples DA and DB , ErrorFunction calc err, Graph g
1: SumW ← 0
2: for (∀{mi,mj}|mi,mj ∈M) do SumW ← SumW + g.edgeWeight({mi,mj})
3: return SumW

(M.size)2∗ln(M.size)

Table 2. Performance of the baseline and our methods: root mean squared error
(RMSE) on test data averaged over 10 folds. The numbers in parenthesis indicate
in how many folds our method won against the baseline.

Method AusDM-S AusDM-M AusDM-L

SVM-Stacking best 20 models 871.97 872.38 876.68
Basic 869.68 (9) 868.42 (10) 871.88 (10)
EarlyStop 869.79 (10) 868.59 (10) 872.61 (10)
RegOpt 868.81 (10) 867.88 (10) 871.41 (10)
GraphOpt 870.49 (7) 868.33 (10) 870.53 (10)

Experimental settings. We have examined several baselines, namely Tsym-
bal’s method[10], as well as stacking of different number of best models with
LinearRegression and SVM (this selection of the individually best models is in
accordance with [2]). To keep comparison clear, we select as single baseline, the
stacking of the individually best models with SVMs, because SVM is generally
regarded as one of the best performing regression/classification methods.4 We
used the WEKA-implementations (http://www.cs.waikato.ac.nz/˜ml/) of SVM
(for the baseline) and Linear Regression (for RegOpt). We performed 10-fold-
crossvalidation.5 The hyperparameters of the SVM and our models (complexity
constant C, exponent of the polynomial kernel e; and n, ε respectively) were
searched on a hold-out subset of the train data.6

Results. The results on test data are summarized in Tab. 2. Similarly to [11] and
[13], we report the number of folds where our method won against the baselines.
Discussion. All of our proposed techniques clearly (in the majority of folds)
outperform the baselines. As expected, compared to Basic, EarlyStop lost almost
nothing in terms of quality. RegOpt however outperformed not only EarlyStop
but Basic as well. GraphOpt, that works according to the filter schema, could

4 In our reported results, we used stacking of the 20 individually best models. The
reason is two-fold: i) this number leads to very good performance for the baseline,
and ii) ensures fair comparison of all examined methods by making them have ap-
proximately the same number of selected models.

5 The internal data splitting in Alg. 2 is performed each time only on the current train-
ing data of the 10-fold-crossvalidation. In each round of the 10-fold-crossvalidation,
Alg. 2 is executed according to which this internal splitting of the current training
data is iteratively repeated several times in a round robin fashion.

6 To simplify the reproduciblity, we report the found SVM-hyperparameters: e = 20 =
1 and C = 2−5 (AusDM-S), C = 2−3 (AusDM-M), C = 2−8 (AusDM-L).

still outperform the baselines, but it did not clearly outperform Basic. Regarding
runtimes, we observed EarlyStop to be 3.3-times faster than Basic on average,
whereas GraphOpt was 1.65-times more performant than Basic, and RegOpt was
1.4-times faster than Basic. This is in accordance with our expectations.

6 Conclusion

We proposed a new graph-based ensemble framework that supports stacking-
based ensemble with appropriate model selection in the case if large number
of models are present. We put special focus on the selection of models that
compensate each other’s errors. Our experiments showed that our four techniques
implemented in this framework outperforms the state-of-the-art technique.

Acknowledgements. This work was co-funded by the EC FP7 project MyMedia
under the grant agreement no. 215006. Contact: info@mymediaproject.org.

References

1. M. Bacauskiene, A. Verikas, A. Gelzinis, and D. Valincius. A feature selection
technique for generation of classification committees and its application to catego-
rization of laryngeal images. Pattern Recognition, 42:645–654, 2009.

2. R. Bryll, R. Gutierrez-Osuna, and F. Quek. Attribute bagging: improving accu-
racy of classifier ensembles by using random feature subsets. Pattern Recognition,
36(6):1291–1302, 2003.

3. T. G. Dietterich. Ensemble methods in machine learning. In MCS, volume 1857
of LNCS, pages 1–15. Springer-Verlag, 2000.

4. Tin Kam Ho. The random subspace method for constructing decision forests. IEEE
Trans. Pattern Anal. Mach. Intell., 20(8):832–844, 1998.

5. G.-Z. Li and T.-Y. Liu. Feature selection for bagging of support vector machines.
In PRICAI 2006, volume 4099/2006 of LNCS, pages 271–277. Springer, 2006.

6. Y. Peng. A novel ensemble machine learning for robust microarray data classifica-
tion. Computers in Biology and Medicine, 36(6):553–573, 2006.

7. C. Preisach and L. Schmidt-Thieme. Ensembles of relational classifiers. Knowl.
Inf. Syst., 14:249–272, 2008.

8. A.C. Tan and D. Gilbert. Ensemble machine learning on gene expression data for
cancer classification, 2003.

9. K. M. Ting and I. H. Witten. Stacked generalization: when does it work? In Int’l.
Joint Conf. on Artificial Intelligence, pages 866–871. Morgan Kaufmann, 1997.

10. A. Tsymbal and D.W. Patterson S. Puuronen. Ensemble feature selection with
simple bayesian classification. Inf. Fusion, 4:87–100, 2003.

11. G. I. Webb, J. R. Boughton, and Z. Wang. Not so naive bayes: Aggregating one-
dependence estimators. Mach. Learn., 58(1):5–24, 2005.

12. D. H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.
13. Y. Yang et al. To select or to weigh: A comparative study of linear combination

schemes for superparent-one-dependence estimators. IEEE Trans. on Knowledge
and Data Engineering, 19:1652–1665, 2007.

14. Z.-H. Zhou, J. Wu, W. Tang, Zhi hua Zhou, Jianxin Wu, and Wei Tang. Ensembling
neural networks: Many could be better than all. Artificial Intelligence, 137(1–
2):239–263, 2002.

