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Abstract. Time series classification, due to its applications in various
domains, is one of the most important data-driven decision tasks of arti-
ficial intelligence. Recent results show that the simple nearest neighbor
method with an appropriate distance measure performs surprisingly well,
outperforming many state-of-the art methods. This suggests that the
choice of distance measure is crucial for time series classification. In this
paper we shortly review the most important distance measures of the lit-
erature, and, as major contribution, we propose a framework that allows
fusion of these different similarity measures in a principled way. Within
this framework, we develop a hybrid similarity measure. We evaluate it
in context of time series classification on a large, publicly available col-
lection of 35 real-world datasets and we show that our method achieves
significant improvements in terms of classification accuracy.
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1 Introduction

One of the most prominent research topics in artificial intelligence, in particu-
lar in data-driven decision tasks, is time series classification. Given a series of
measured values, like the blood pressure of a patient every hour, the position
coordinates of a ballpoint pen in consecutive moments, acoustic or electrocar-
diograph signals, etc., the task is to recognize which pre-defined group the signal
belongs to. In the previous applications these groups could correspond, for ex-
ample, to words written or said by a person or to the health status of a patient
(normal, high or low blood pressure; regular or irregular heart rhythm). In gen-
eral, besides speech recognition [15], time series classification finds applications
in various domains such as finance, medicine, biometrics, chemistry, astronomy,
robotics, networking and industry [8].

Because of the increasing interest in time-series classification, various ap-
proaches have been introduced ranging from neural and Bayesian networks to
genetic algorithms, support vector machines and frequent pattern mining [2].
One of the most surprising recent results is, however, that the simple 1-nearest
neighbor (1-NN) classifier using dynamic time warping (DTW) distance [15] has
been shown to be competitive or superior to many state-of-the art time-series
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classification methods [6], [9], [13]. These results inspired intensive research of
DTW in the last decade: this method has been examined in depth (for a thorough
summary of results see [11]), while the improvements in its accuracy [2], [12] and
efficiency [10] allowed to apply it to large, real-word recognition problems.

This success of DTW suggests that, in time series classification, what really
matters is the distance measure, i.e. when and why two time series are considered
to be similar. DTW allows shifting and elongations in time series, i.e., when
comparing two time series t1 and t2, the i-th position of t1 is not necessarily
matched to the i-th position in t2, but it can be matched to some other positions
too (that are usually close to the i-th position). By allowing for shifting and
elongations, DTW captures the global similarity of the shape of two time series
very well. In general, however, many other characteristic properties might be
crucial in a particular application, such as similar global or local behavior in the
frequency domain, that can be captured by the Fourier or Cosine-spectrum or
the Wavelet Transform of the signal [3], [7].

In this paper, we examine this phenomenon in more detail. We consider a
set of state-of-the art time series similarity measures and discuss what kind of
similarity they capture. As major contribution, we propose a framework that
allows fusion of these different similarity measures in a principled way. Within
this framework, we develop a hybrid similarity measure. We evaluate our findings
in context of time series classification on a large, publicly available collection of 35
real-world datasets and show that our method achieves substantial (statistically
significant) improvements in terms of classification accuracy.

2 Related Work

We focus on related works that are most relevant w.r.t. the major contribution,
i.e. fusion of similarity measures. For a (short) review of time series similarity
measures we refer to Section 3.

There were many attempts to fuse several classifiers by combining their out-
puts. This resulting structure is often called as an ensemble of classifiers. Be-
sides the simple schemes of majority and weighted voting, more sophisticated
methods were introduced such as bagging, boosting [1], [5] and stacking [18].
Ensembles of classifiers have been designed and applied for time series classifica-
tion in e.g. [16], [19]. In contrast to these works, we aim at fusing the similarity
measure, instead of working at the level of classifiers’ outputs.

One of the core components of our framework is a model for pairwise decisions
about whether two time series belong to the same class. Similar models were
applied in context of web page clustering [14] and de-duplication [4]. Both of
these works, however, aimed at finding equivalent items (whereas the concept of
”equivalence” is understood in a broad sense by defining e.g. two web pages as
equivalent if they write about the same person). In contrast to them, we work
with time series, and, more importantly, we focus on classification.

Fusion of similarity measures is also related to multiple kernel learning [17].
As opposed to [17], we consider time series in a simple and generic framework.
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3 Time Series Similarity Measures

In this section we review the most important time series similarity measures.
Please note, that throughout this paper we use similarity measure and distance
measure as synonyms. Denoting the i-th position of the time series t by t(i) we
can define the Euclidean Distance of two time series t1 and t2 of length k as:

dE(t1, t2) =
√∑k

i=1(t1(i)− t2(i))2.

The intuition behind Dynamic Time Warping (DTW) is that we can not
expect an event to happen (or a characteristic pattern to appear respectively)
at exactly the same time position and its duration can also (slightly) vary. DTW
captures global similarity of two time series’ shapes in a way that it allows for
shifting and elongations. DTW is an edit distance: the distance of two time series
t1 and t2 of length k, denoted as dDTW (t1, t2), is the cost of transforming t1 into
t2. This can be calculated by filling entries of a k× k matrix. See also [11], [12].

The Discrete Fourier Transformation (DFT) maps the time series t to a set
of (complex) coefficients {cf}kf=1 that are defined as

cf (t) =
1√
k

k∑
i=1

t(i)e−
2πjfi
k

where j =
√
−1. The Fourier-coefficients {cf}kf=1 of t can efficiently be cal-

culated in O(k log k) time with the Fast Fourier Transform (FFT) algorithm.
DFT captures the signal’s periodic behavior by transforming the time series
into the frequency domain. If different periodic behavior characterize the time
series classes of the underlying application, it is worth to calculate e.g. the Eu-
clidean distance of the Fourier-coefficients {cf (t1)}kf=1 and {cf (t2)}kf=1 of two

time series t1 and t2: dFE(t1, t2) =
√∑k

f=1(cf (t1)− cf (t2))2.

While DFT captures global periodic behavior, wavelets reflect both local and
global character of a time series [7]. We use the recursive Haar Wavelet decompo-
sition1 of a time series t that results in a set of Wavelet-coefficients {wi(t)}ki=1.
Similarly to dFE , we can calculate the Euclidean distance of these Wavelet-
coefficients, denoted as dWE .

In order to be able to capture further aspects of similarity, we use the fol-
lowing similarity measures (see [6] and the references therein for a more detailed
description): (a) DISSIM that computes the similarity of time series with differ-
ent sampling rates, (b) distance based on longest common subsequences (LCSS),
(c) edit distance on real sequences (EDR), (d) edit distance with real penalty
(EPR) that combines DTW and EDR.

4 Fusion of Similarity Measures

In the recent work of Ding et al. [6], none of the examined similarity measures
could outperform DTW in general. However, in some specific tasks, one or the

1 See http://www.ismll.uni-hildesheim.de/lehre/ip-08w/script/imageanalysis-2up-05-
wavelets.pdf for an example
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Fig. 1. Example: fusion of time series similarity measures. A regression model M is
trained and its output is used as similarity measure.

other similarity measure worked better than DTW, which is likely to be explained
by the fact that different aspects of similarity are relevant in different domains.
In the case of simple tasks, one of the similarity measures may capture the
relevant aspects of similarity entirely. This best similarity measure can be found
based on domain knowledge or by measuring e.g. the leave-one-out classification
error on the train data for the candidate similarity measures. In more complex
cases, however, a single similarity measure may not be sufficient alone. Thus,
we need to combine several ones. Such hybridization is often achieved in an ad
hoc manner. In contrast, we develop a fusion schema for time series similarity
measures that allows to combine similarity measures in a principled way.

In order to distinguish between the similarity measures that we want to
combine and the resulting similarity measure, we refer to the former ones as
elementary similarity measures whereas to the later one as fused similarity mea-
sure. Our approach for fusion of similarity measures2 consists of the following
steps, see also Figure 1 for an example:

1. For all the pairs of time series in the train data, we calculate the similarity
values using all the considered elementary similarity measures.

2. In some of the above pairs, both time series belong to the same class, in
others they belong to different classes. We define the indicator I(t1, t2) of a
pair of time series (t1, t2), as follows: I(t1, t2) = 0 if t1 and t2 belong to the
same class, I(t1, t2) = 1 otherwise.

2 Note that we do not assume the elementary similarity measures to fulfill specific
properties (such as triangular inequality).
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3. We train a regression modelM. We use the similarity values (see first step)
as training data along with the corresponding indicators as labels.

4. We propose to use the output of M as the fused similarity measure. For
a pair of time series (t′, t), where either or both of them can be unlabeled
(test) time series, we calculate the similarity values using all the considered
elementary similarity measures. Then use M to predict (based on these
similarity values) the likelihood that t and t′ belong to the different classes.
Finally, we use this prediction as the distance of t and t′.

Note that our approach is generic, as this framework allows the fusion of ar-
bitrary similarity measures using various regression models asM. Furthermore,
this fused similarity measure can be used by various classification algorithms.

Also note that the above description is just the conceptual description of
our approach. While implementing it, one would not separately calculate the
similarity of the pair (t1, t2) and (t2, t1) if the used elementary similarity measure
is symmetric. Furthermore, one can pre-calculate and store the similarities of
many pairs in case if the classification algorithm (which uses this fused similarity
measure) queries the similarity of the same pair several times.

While fusing elementary similarity measures according to the above descrip-
tion, we consider all the pairs of time series. Therefore, if the training data
contains n time series, the elementary similarity values are required to be cal-
culated O(n2) times and the data used to train M contains O(n2) records. In
case of small data sets, this is not a problem. For large datasets, we propose
to sample the pairs, and calculate the elementary similarity values only for the
sample. In this case, a large enough sample is sufficient for training M.

As mentioned before, in simple domains, one single similarity measure might
be sufficient to capture all the relevant aspects of similarity. In such cases, fusion
of similarity measures is not necessary and could introduce noise. In order to
avoid it, we propose to select the best similarity measure out of some fused
similarity measures (with different regression modelsM) and all the elementary
similarity measures. In order to allow for this selection, we can judge the quality
of each similarity measure by its leave-one-out nearest neighbor classification
error on the train data.

5 Experiments

Datasets. We examined 35 out of all the 38 datasets used in [6]. We excluded 3
of them (Coffee, Beef, OliveOil) due to their tiny size (less than 100 time series).
Considered similarity measures. We used all the elementary similarity mea-
sures described in Section 3. We use two versions of DTW with warping window
sizes constrained at 5% and 10% around the matrix diagonal [11] [12].
Comparison protocol. As discussed in Section 1, 1-NN has been shown to be
competitive and often even superior to many state-of-the art time series clas-
sification algorithms. Therefore, we compare time series similarity measures in
context of 1-NN classification. We measure classification error as the misclas-
sification ratio. We perform 10-fold cross validation. For each dataset we test
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whether the differences between the performance of our approach and its com-
petitors is statistically significant (t-test at significance level of 0.05).3

Baselines. We use two state-of-the art time series classifiers as baselines. The
first one is the 1-NN using DTW with window size constrained at 5%. We de-
note it as DTW. For our second baseline, ELEM, we select the best elementary
similarity measure based on the leave-one-out classification error on the train
data and we use that similarity measure in the 1-NN classifier.

Fusion of Similarity Measures. We produce two fused similarity measures: as
M1 andM2 we use (i) linear regression and (ii) multilayer perceptron4 from the
Weka machine learning library (http://www.cs.waikato.ac.nz/ml/weka/). After
trainingM1 andM2, we select the best similarity measure out of the fused and
elementary similarity measures based on the leave-one-out nearest neighbor clas-
sification error on the train data. Finally, we use the selected similarity measure
in the 1-NN classifier. This approach is denoted as FUSION.

Results. For many of the examined datasets, the classification task is simple:
DTW’s error rates are less than 10 %. In these cases, all methods worked equally
well, we did not observe statistically significant differences. For the remaining 22
non-trivial datasets, our results are shown in Tab. 1 and summarized in Tab. 2. In
Tab. 1 bold font denotes the winner, in case of ties we use italic fonts. Whenever
FUSION outperformed any of the baselines, we provide a symbol in form of
±/± where + denotes significance and − its absence against DTW and ELEM
respectively. The baselines never outperformed FUSION significantly.5 Note that
we are not concerned with binary classification problems as the number of classes
is more than two in most of the cases. In fact, this is one of the reasons why
these datasets are challenging and this explains the relatively high error rates.

Discussion. As mentioned before, in simple domains an appropriately chosen
elementary similarity measure can lead to very good classification accuracy,
whereas a hybrid similarity measure, like the one we introduced, is necessary
in more complex cases. Our experimental results show that based on the leave-
one-out nearest neighbor classification error of the train data, FUSION could
successfully identify those cases where the fusion of similarity measures is ben-
eficial. Therefore, FUSION significantly outperformed DTW in 15 cases and
ELEM in 5 cases, while FUSION never lost significantly against the baselines.

3 In order to save computational time, as discussed in Section 4, for some large datasets
we randomly sample the pairs: we calculate similarities in case of Faces and Motes
for 10 %, ChlorineConcentration for 5%, Mallat and TwoPatterns for 2%, Yoga and
Wafer for 1 %, CinC and StarLightCurves for 0.5 % of all the pairs. In order to
ensure fair comparison, we used the same sample of pairs both in our approach and
for the baselines.

4 We used Weka’s standard parameter-settings, i.e. learning rate: 0.3, momentum: 0.2,
number of train epochs: 500.

5 We note that in 15 out of the 22 non-trivial datasets M2 (the similarity measure fused
by multilayer perceptron) outperformed M1 (the similarity measure fused by linear
regression). These datasets are: 50words, Adiac, Car, FacesUCR, Haptics, Light-
ing2, Lighting7, ChlorineConcentration, CinC, InlineSkate, Mallat, StarLightCurves,
SwedishLeaf, WordsSynonyms, Yoga.



Fusion of Similarity Measures for Time Series Classification 7

Table 1. Examined non-trivial datasets, their sizes and classification errors (in %)

Dataset Size DTW ELEM FUSION Dataset Size DTW ELEM FUSION

Haptics 463 55.9 57.4 58.7 Stard 9236 23.2 20.8 15.0+/+
InlineSkate 650 51.4 45.2 46.2+/- Lighting2 121 23.1 20.6 20.6
Chlorinea 4307 50.1 47.3 47.3+/- Lighting7 143 23.1 25.1 25.1
Yoga 3300 42.5 41.8 40.1+/+ Wordse 905 21.8 22.5 21.4-/-
Adiac 781 41.0 40.7 35.2+/+ ECG200 200 20.0 14.5 14.5+/-

Car 120 37.5 32.5 28.3+/- Swedishf 1125 17.5 11.5 11.5+/-
OSULeaf 442 33.9 21.7 22.8+/- FaceFour 112 16.0 9.8 11.6

TwoPb 5000 32.0 0.2 0.2+/- CinC 1420 15.0 7.4 4.3+/+
FISH 350 26.6 16.9 17.4+/- Motes 1272 14.0 7.0 7.0+/-
Medicalc 1141 24.2 23.4 23.4 -/- Mallat 2400 11.6 11.6 10.0+/+
50words 905 23.4 24.2 22.4-/- FacesUCR 2250 11.6 7.7 7.7+/-

aChlorineConcentration, bTwoPatterns, cMedicalImages, dStarLightCurves,
eWordsSynonyms, f SwedishLeaf

Table 2. Number of FUSION’s wins/loses and ties against DTW and ELEM

against DTW against ELEM
total significant total significant

Wins 20 15 8 5
Ties 0 - 9 -
Loses 2 0 5 0

6 Conclusions and Outlook

Motivated by recent results, in this paper we focused on similarity measures for
time series classification. We discussed what aspects of similarity they capture.
As in complex applications several of these similarity aspects may be relevant
simultaneously, we developed a generic framework which allowed fusion of vari-
ous similarity measures. In our experiments over a large collection of real-world
datasets, we showed that such complex applications exist and our approach
achieved statistically significant improvements in those cases.

Our method for the fusion of similarity measures is not limited to time series
classification. As future work, we would like to examine fusion of similarity mea-
sures in other contexts such as vector data or more complex, structured data.
As our approach works on data instance pairs, for large datasets, we aim at ex-
ploring sampling strategies with special focus on the possibly imbalanced nature
of the pair indicators. We would also like to examine in more depth, if all the
similarity measures are worth to be fused or one should rather select a subset of
them, because many of them could do better (and hopefully faster) than all [20].
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