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Abstract—In clinical practice, electrocardiographs (ECG)
are used in various ways. In the most simple case, directly
after the ECG has been recorded, the doctor analyses it and
makes the diagnosis. In other cases, e.g. when the abnormality
can only be observed occasionally, at a previously unknown
time, the ECG is being recorded continuously. Fast automatic
recognition of abnormalities of ECG signals may substantially
support doctors’ work in both cases: either by immediately
displaying a warning or calling the emergency service in case
of danger or by pointing to the abnormal parts of a long
ECG-signal in order to support analysis and diagnosis. In
this paper, we focus on the (semi-)automated recognition of
abnormal ECG signals. We formulate the task as a time-series
classification problem, point out that state-of-the-art solutions
are capable to solve this problem with a high accuracy. The
recognition time is, however, crucial in our case. Therefore, as
major contribution, we aim at speeding up the recognition by
a new instance selection technique. We describe this technique
and discuss its theoretical background. In our experiments
on publicly available real ECG-data, we empirically evaluate
our approach and show that it outperforms a state-of-the-art
instance selection technique.

Keywords-electrocardiograph (ECG), time-series classifica-
tion, scaling, instance selection, hubs

I. INTRODUCTION

Electrocardiographs (ECG) are used in various ways in
clinical practice: in the most simple case, directly after the
ECG has been recorded, the doctor analyses it and makes
the diagnosis. In other cases, due to the general health
state of the patient or when the abnormality can only be
observed at a previously unknown time (in some types
of arrhythmias and ischemias), the ECG signal is being
recorded continuously for a longer time period (intensive
care monitoring or monitoring with a mobile device called
Holter monitor).

In such cases, automatic recognition of abnormalities in
ECG signals may substantially support doctors’ work. When
an out-patient is wearing a mobile ECG recorder, and this
device detects serious abnormalities, it can warn the patient
or call the emergency service automatically. If a nurse
takes care for several patients and the ECG signal becomes
abnormal, the ECG recording device displays a warning so
that the doctor can be called in advance. Recognizing a
disease soon and accurately, either by human experts or
automatically, is a difficult task: a retrospective study [1]

showed that, e.g., the infants admitted to a neonatal intensive
care unit had abnormal heart beating patterns 24 hours
before the doctor diagnosed them with sepsis.

When an ECG signal is recorded for one day for an
out-patient, the record reflects approximately one hundred-
thousand heart beats. Therefore, deep analysis of the entire
signal, due to its length, is usually impossible by human
experts. Rather, the doctor focuses on the most important
parts of the signal, which can be positions where an event
happens (something changes) or abnormalities appear. While
the ECG is being recorded with a mobile device, the patient
can press a button in specific cases such as sickness, going
to bed, taking pills, etc. ”A special mark will be then placed
into the record so that the doctors or technicians can quickly
pinpoint these areas when analyzing the signal.”1 Some
abnormalities, however, may be left unnoticed by the patient
and therefore no marking points to the corresponding parts
of the signal. The entire signal can be scanned and auto-
matically analyzed by computers, that produce suggestions
to medical experts for abnormal parts of the signal. Addi-
tionally, the system can recognize the disease and in which
part of the patient’s heart it happened by detecting in which
lead of the ECG the disease is expressed.2 Therefore, the
approach we describe can be considered as semi-automated,
because it capitalizes on automated recognition models that
support human experts’ diagnostic work.

As ECG signals can be considered as time series, the task
can be formulated as a time-series classification problem,
for which state-of-the-art solutions are based on machine
learning. A recognition model, called classifier, is con-
structed based on previously collected data and evidence
(such as which data corresponds to which disease, where
are the symptoms of that disease expressed in the data).
Although state-of-the-art classifiers are able to solve the task
of recognition with high accuracy, the quality depends on
the available data and evidence. In general: the more data is
used to construct the classifier, the better the recognition is.

As the accuracy is crucial in medical applications, this
strongly motivates the usage of very large collections of

1http://en.wikipedia.org/wiki/Holter Monitor
2From our point of view, each lead of the ECG is a signal that reflects the

electrical activity of a certain part of the heart, different leads correspond
different parts. See also: http://en.wikipedia.org/wiki/Electrocardiography



data and evidence. When doing so, however, both the time
required to construct the model and the recognition time can
be very high. As ECG is a medical instrument used in (al-
most) all hospitals world-wide, and one single recording (of
some hours) already contains ten-thousands of heartbeats,
the amount of potentially available data is huge, which can
lead to intractably high recognition times. Nearest-neighbor
classifiers, that have been shown to be competitive, if not
superior, to many state-of-the-art time-series classification
methods [2], [3], [4], are especially affected by the afore-
mentioned problem: whenever we want to detect abnormal-
ities in a new ECG signal, nearest-neighbor methods search
the available data for ECG signals that are most similar to
the new one, and in case of very large collections, this search
can take a long time and therefore the recognition time
can be intractably high. In order to alleviate this problem,
various speed-up techniques have been introduced, such as
indexing [5], [6], lower bounding [7] or aggregation [8].
Having the common trade-off between quality and runtime
in our minds, we aim at speeding-up the recognition without
or with minimal loss of quality.

In this paper, we propose a new technique to speed-up
the classification of ECG signals. The proposed technique
is complementary to the above ones, as it can be applied
together with them. Our approach is based on the recently
observed phenomenon of hubness [9], [10], which states that
some few ECG signals tend to be much more frequently
nearest neighbors than the remaining ones. Our approach
selects the most important ECG signals from the available
data, and uses only the selected ECG signals for the classifi-
cation of new ECG signals, which leads to substantial speed-
up. In our experiments on publicly available real ECG-data,
we evaluate our approach and show that it outperforms a
state-of-the-art instance selection technique.

This paper is organized as follows: in Section II we review
related work, we formally define the problem of ECG signal
classification in Section III, we describe our approach in
Section IV and present our experimental results in Section V
before concluding in Section VI.

II. RELATED WORK

Semi-automatic detection of irregularities in ECG signals
has been explored by several researchers. An early approach
was proposed by Bortolan and Willems who used neural
networks for ECG classification [11]. Olszewski [12] ex-
amined feature extraction techniques for ECG classification,
Melagni and Bazi used support vector machines [13], Syed
and Chia presented an approach based on approximately
conserved heart rate sequences [14], while Keogh et al. [15]
applied a similarity-based, unsupervised, nearest-neighbor-
like method in order to find ”unusual” (and therefore likely
irregular) segments of ECG signals. In contrast to [15],
we formulate the problem as supervised classification task,
which allows not only for the detection of some ”unusual”

segments of the signal, but also for the detection of the
type of abnormality and many other tasks, like finding the
location, where e.g. an infarct happened in the patient’s body.
Therefore, our approach is more generic. Furthermore, we
use the Dynamic Time Warping (DTW) distance instead of
the Euclidean distance used in [15]. In contrast to all the
aforementioned works, we focus on instance selection in
order to speed-up the classification of ECG signals.

As we consider the detection of abnormal segments of
ECG signals as a time-series classification task, we review
the related work in time-series classification domain. The
intensive research efforts of the last decades resulted in a
plethora of different approaches ranging from neural [16]
and Bayesian networks [17] to genetic algorithms, support
vector machines [18] and frequent pattern mining [19]. Nev-
ertheless, recent research has shown that the simple nearest-
neighbor (1-NN) classifier using Dynamic Time Warping
(DTW) [20] as distance measure is “exceptionally hard to
beat” [3]. Due to its good performance, this method has been
examined in depth (a thorough summary of results can be
found at [21]) with the aim to improve its accuracy [22],
[23], [24] and efficiency [25].

Attempts to speed up DTW-based nearest neighbor (NN)
classification fall into 4 major categories: i) speed-up the
calculation of the distance of two time series, ii) reduce the
length of time series, iii) indexing, and iv) instance selection.

If we implement DTW in the simple, straightforward
way, the comparison of two time series of length l requires
the calculation of the entries of an l × l matrix using
dynamic programming, and therefore each comparison has a
complexity of O(l2). A simple idea is to limit the warping
window size, which eliminates the calculation of most of
the entries of the DTW-matrix: only a small fraction around
the diagonal remains. Ratanamahatana and Keogh [21]
showed that such reduction does not negatively influence
classification accuracy, instead, it leads to more accurate
classification. More advanced scaling techniques include
lower-bounding, like LB Keogh [7].

Another way to speed-up time series classification is to
reduce the length of time series by aggregating consecutive
values into a single number [25], [8]. This makes processing
faster by reducing the overall length of time series.

Indexing [5], [6] aims at quickly finding the time series
that are most similar to the time series to be classified.
Due to the “filtering” step that is performed by indexing,
the execution time for classifying new time series can be
considerable for large time-series data sets, since it can be
affected by the significant computational requirements posed
by the need to calculate DTW distance between the new
time-series and several time-series in the training data set
(O(n) in worst case, where n is the size of the training set).
For this reason, indexing can be considered complementary
to instance selection, since both these techniques can be
applied to improve execution time.



Instance selection (also known as numerosity reduction or
prototype selection) aims at discarding most of the training
time series while keeping only the most informative ones,
which are then used to classify unlabeled instances. While
instance selection is well explored for general nearest-
neighbor classification, see e.g. [26], [27], [28], [29], [30],
[31], there are just a few works for the case of time series.
Xi et al. [32] present the FastAWARD approach and show
that it outperforms state-of-the-art, general-purpose instance
selection techniques applied for time series.

FastAWARD first calculates the optimal warping window
size for DTW, then it follows an iterative procedure for
discarding time series: in each iteration, the rank of all the
time series is calculated and the lowest ranked time series
is discarded. Thus, each iteration corresponds to a particular
number of kept time time series. Xi et al. argue that the
optimal warping window size depends on the number of kept
time series. Therefore, FastAWARD calculates the optimal
warping window size for each number of kept time series.

FastAWARD follows some decisions whose nature can
be considered as ad-hoc (such as the application of an
iterative procedure or the use of tie-breaking criteria [32]).
Conversely, our approach is more principled: in particular,
we generalize FastAWARD by being able to use several
formula for scoring instances. We will explain that the
suitability of such formula is based on the hubness property
that holds in most time-series data sets. The presence of
hubs, i.e., that some few objects tend to be much more
frequently nearest neighbors than the remaining ones, has
been observed for many natural and artificial networks, such
as protein-interaction networs or the internet [33], it has
been used in context of clustering [34], and in order to
make classification algorithms more accurate [9], [10]. In
this paper we exploit hubness for instance selection for time
series classification algorithms. In our previous work [35] we
proved that instance selection is an NP-complete problem
and discussed coverage of the selected instances. Here,
in contrast, we focus on hub-based instance selection for
electrocardiography. Furthermore, we show that the iterative
procedure of FastAWARD is not a well-formed decision,
since its large computation time can be saved by ranking
instances only once. Furthermore, we observed the warping
window size to be less crucial, and therefore we simply
use a fixed window size for our approach (that outperforms
FastAWARD which uses adaptive window size).

III. DEFINITIONS AND PROBLEM FORMULATION

In order to allow for different recognition tasks related to
ECG signals, we define the problem in a generic way.

A time series x of length l, that represents a segment of
an ECG signal in our case, is a sequence of real numeric
values: x = (v1, ..., vl). We denote the set of all considered
time series as T . We are given some groups (subsets of T )
of time series. These groups are called classes, and they are

denoted as C1, ..., Cm. Each time series xi ∈ T belongs to
one of the classes, however, for some xi, it is unknown to
which class they belong: ∀xi ∈ T :

(
(xi ∈ C1) ∨ (xi ∈

C2) ∨ ... ∨ (xi ∈ Cm)
)
∧
(
xi ∈ Cj ⇒ xi 6∈ Ck, k 6= j

)
. A

labeled dataset D = {(xi, c(i)}ni=1 consists of n time series
together with their class labels c(i). (The class label c(i)
shows the class of time series xi, e.g. c(i) = 2⇔ xi ∈ C2.)
The time series in a dataset D are also called instances of
D. Time series in a labeled dataset are called labeled time
series. Other time series for which their classes are unknown,
are called unlabeled time series respectively.

Next, we define the time series classification problem:
we are given a labeled dataset D, the task is to find a
function g(x) : T → {C1, ..., Cm} that is able to assign new,
unlabeled time series to their classes. The function g is called
classifier. More advanced classifiers, besides assigning an
unlabeled time series to one of the classes, also output a
likelihood (or probability) for each class.

By different concrete choices of the classes, the above def-
inition allows for various recognition tasks related to ECG:

1) If we want to find when abnormalities appear in a
long (e.g. 24 hours) ECG-recording, each time series
in the above definition corresponds to a short segment
(e.g. 1 heartbeat) of the long signal. In this case, there
are two classes: normal signal segments belong to the
first class, while abnormal signal segments belong to
the second class. Whenever a segment is recognized as
abnormal, this is a candidate that may be examined by
human experts more accurately. If the classifier outputs
a probability for each segment of being abnormal, the
segments can be ranked according to this probability
so that the most serious segments can be checked first
by the human expert.

2) Another task is to find where, in which part of the pa-
tient’s heart, the abnormality, like an infarct, happened.
This is possible as signals of different leads of the
ECG correspond to the electrical activity of different
parts of the heart (see Footnote 2). Therefore, the task
is to find in which signal the abnormality is expressed.
One class corresponds to the expression of the abnor-
mality, while the signals where the abnormality is not
expressed, belong to the other class.

3) If we aim at recognizing the type of abnormality, we
can define several classes, one class for each disease
and an additional class for the normal signal.

Of course, we can combine all the above tasks (by e.g.
using several classifiers), so that the result of the automatic
recognition is a list of items describing when (at what
time, at which position of the signal), where (at which part
of the patient’s heart) and what kind of abnormality was
likely to happen. Such lists of abnormality-candidates can
considerably support human expert’s diagnostic work.



Require: Time-series dataset D, Score Function f , Number
of selected instances N

Ensure: Set of selected instances (time series) D′

1: Calculate score function f(x) for all x ∈ D
2: Sort all the time series in D according to their scores
f(x)

3: Select the top-ranked N time series and return the set
containing them

Figure 1. Outline of Hub-based Instance Selection, our instance selection
approach.

IV. OUR APPROACH: HUB-BASED INSTANCE SELECTION

In order to be able to support doctor’s work by automatic
ECG analysis, classifiers must be able to perform recognition
within an acceptable time. As already described in the
Introduction, due to the huge amount of available ECG data,
this is a challenge. In general, a large collection of data is
required for accurate recognition and therefore reducing data
in a naive way (e.g. by selecting time series randomly) could
substantially harm accuracy. Instead, one should focus on
selecting the most representative time series, the ones, that
are most important for the recognition.

Our instance selection approach first assigns a score to
each instance (instances are time series in our case). Then it
selects the ones having the highest scores (see Figure 1). In
this section, we examine how to develop appropriate score
functions by exploiting the property of hubness.

A. The Hubness Property

In order to develop a score function that selects repre-
sentative instances for nearest-neighbor time-series classifi-
cation, we have to take into account the recently explored
property of hubness [10]. This property states that for data
with high (intrinsic) dimensionality, as most of the time-
series data3, some objects tend to become nearest neighbors
much more frequently than others.

In order to express hubness in a more precise way, for
a (time series) dataset D we define the k-occurrence of an
instance (time series) x ∈ D, denoted fkN (x), as the number
of instances of D having x among their k nearest neighbors.
With the term hubness we refer to the phenomenon that
the distribution of fkN (x) becomes significantly skewed. We
can measure this skewness, denoted by Sfk

N
(x), with the

standardized third moment of fkN (x):

Sfk
N
(x) =

E[(fkN (x)− µfk
N
(x))

3]

σ3
fk
N
(x)

(1)

where µfk
N
(x) and σfk

N
(x) are the mean and standard de-

viation of fkN (x). When Sfk
N
(x) is higher than zero, the

3In case of time series, consecutive values are strongly interdependent,
thus instead of the length of time series, we have to consider the intrinsic
dimensionality [9].

Figure 2. Distribution of f1
G(x) for the ECG200 and TwoLeadECG

datasets. The horizontal axis correspond to the values of f1
G(x), while on

the vertical axis we see how many instance have that value.

corresponding distribution is skewed to the right and starts
presenting a long tail.

In the presence of labeled data, we distinguish between
good hubness and bad hubness: we say that the instance
y is a good (bad) k-nearest neighbor of the instance x if
(i) y is one of the k-nearest neighbors of x, and (ii) both
have the same (different) class labels. This allows us to
define good (bad) k-occurrence of a time series x, fkG(x)
(and fkB(x) respectively), which is the number of other time
series that have x as one of their good (bad) k-nearest
neighbors. For time series, both distributions fkG(x) and
fkB(x) are usually skewed, as it is exemplified in Figure 2,
which depicts the distributions of f1G(x) for the ECG200 and
the TwoLeadECG datasets (we will describe the datasets in
Section V). As shown, the distributions have long tails, in
which the good hubs occur.

We say that a time series x is a good (bad) hub, if fkG(x)
(and fkB(x) respectively) is exceptionally large for x. For the
nearest neighbor classification of time series, the skewness
of good occurrence is of major importance, because a few
time series (i.e., the good hubs) are able to correctly classify
most of the other time series. Therefore, it is evident that
instance selection should pay special attention to good hubs.

B. Score functions based on Hubness

1) Good 1-occurrence score: In the light of the previous
discussion, our approach (see Figure 1) can use scores that
take the good 1-occurrence of an instance x into account.
Thus, a simple score function that follows directly is the
good 1-occurrence score fG(x):

fG(x) = f1G(x) (2)

When there is no ambiguity, we omit the upper index 1.
2) Relative score: While x is being a good hub, at

the same time it may appear as bad neighbor of several
other instances. Thus, we also consider scores that take
bad occurrences into account too. This leads to scores that
relate the good occurrence of an instance x to either its total
occurrence or to its bad occurrence. For simplicity, we focus
on the following relative score, however, other variations can
be used too. Relative score fR(x) of a time series x is the
fraction of good 1-occurrences and total occurrences plus
one (plus one in the denominator avoids division by zero):



fR(x) =
f1G(x)

f1N (x) + 1
(3)

3) Xi’s score: Interestingly, fkG(x) and fkB(x) allows us to
interpret the ranking criterion of Xi et al. [32], by expressing
it as another form of score for relative hubness:

fXi(x) = f1G(x)− 2f1B(x) (4)

V. EXPERIMENTS

We experimentally examine the performance of our ap-
proach, Hub-based Instance Selection, with respect to clas-
sification accuracy and execution time. Instead of presenting
a complete, ready-to-use application, we focus on analyzing
our approach by comparing against FastAWARD, a state-of-
the-art instance selection technique for time series [32].

A. Datasets

We performed experiments on two ECG datasets, ECG200
and TwoLeadECG from the dataset collection used in [3].
As this is one of the most frequently used publicly available
collections of labeled time series datasets, we assist compa-
rability and reproducibility with this choice.4

1) ECG200: The ECG200 dataset contains 200 ECG
signals, each of them consisting of 96 measured values
(each time series reflects 1 heartbeat). Out of the 200 time
series, 133 are labeled as normal while the remaining 67
are labeled as abnormal [12]. Time series are segments of a
long ECG signal, therefore the experiments on this dataset
simulate the scenario when the automatic recognition system
is supposed to support the doctor while she or he is searching
for abnormal parts of a long ECG signal (first task listed in
Section III).

2) TwoLeadECG: This dataset contains 1162 ECG sig-
nals of length 82 (each time series reflects 1 heartbeat). In
the TwoLeadECG dataset, two different leads of the ECG are
considered, each signal originates from one out of these two
leads. An abnormality, infarct, is expressed with different
intensity in these both leads.5 As the two classes correspond
to two different leads of the ECG, experiments on this
dataset simulate the second scenario listed in Section III,
when we aim at finding in which part of the patient’s heart
the abnormality occurred.

B. Experimental Protocol

We performed 10-fold-cross validation. We divided the
data into 10 splits, out of which 1 was reserved as test data
while the remaining 9 splits constituted the so called training
data. We selected the most representative instances (time
series) from the training data and then we constructed the
recognition system (i.e. trained the classifier) using these
selected instances. While the instances are being selected

4http://www.cs.ucr.edu/˜eamonn/time series data/
5http://users.eecs.northwestern.edu/˜hdi117/listfile/VLDB08 datasets.ppt

and the classifier is being constructed (trained), the data in
the test split is unknown both for the instance selection
algorithm and the classifier. At the end, the classifier is
used to determine the class labels of the test data, which
is then compared to the true class labels in order to allow
for quantitative evaluation of the quality of the classifier. The
whole process of instance selection, classifier construction
and evaluation is repeated 10 times, in each of the 10 rounds
a different data split serves as test data.

In our experiments we used two instance selection algo-
rithms: (i) our approach (see Figure 1) with the score func-
tions in section IV-B and (ii) the competitor, FastAWARD.
We refer to our approach as ”Hub-based Selection”.

Both for our approach and FastAWARD, as classifier, we
used 1-NN, i.e. the nearest neighbor algorithm with k = 1
(i.e. we considered always the first nearest neighbor).

As distance function, both for the classifier and for the
calculation of the scores, we used Dynamic Time Warping
(DTW). One of the parameters of DTW is the size of
warping window. In contrast to FastAWARD, which de-
termines the optimal warping window size ropt, for our
approach, Hub-based Selection, we set the warping-window
size to a constant of 5%. (This selection is justified by the
results presented in [21], which show that relatively small
window sizes lead to higher accuracy.) In order to speed-
up the distance calculations, we used the LB Keogh lower
bounding technique [7] both for Hub-based Selection and
FastAWARD.

C. Results on Effectiveness

We first compare Hub-based Selection and FastAWARD
in terms of classification accuracy (i.e. ratio of correctly
recognized signals) that results when using the instances
selected by these two methods. Table I presents the average
accuracy and corresponding standard deviation for each data
set, for the case when the number of selected instances is
equal to 10% of the size of the training set. For both datasets,
all variants of our approach (Hub-based Selection with all
score functions) clearly outperform FastAWARD. Figure 4
shows the classification of some signals.

We also compared Hub-based Selection and FastAWARD
in terms of the resulting classification accuracy for varying
number of selected instances. Figure 3 illustrates that Hub-
based Selection compares favorably to FastAWARD. In
order to keep the presentation simple, we only present results
for the case when we used fG(x) score function. We note,
however, that we observed very similar tendencies for the
other score functions.

Besides the comparison between Hub-based Selection and
FastAward, what is also interesting to examine, is their
relative performance compared to the case of using the entire
training data (i.e., no instance selection is applied). For the
ECG200 dataset, selecting 10% of the training data using our
Hub-based Selection algorithm with fG(x), the accuracy is



Figure 3. Accuracy as function of the number of selected instances (in %
of the entire training data) for FastAWARD and Hub-based Selection with
fG(x) on the ECG200 (top) and TwoLeadECG (bottom) datasets.

Table I
ACCURACY ± STANDARD DEVIATION FOR SELECTING 10 % OF THE
ENTIRE TRAINING DATA WITH OUR APPROACH, CALLED HUB-BASED

SELECTION, AND FASTAWARD (BOLD FONT: WINNER).

ECG200 TwoLeadECG
FastAWARD 0.755±0.113 0.978±0.013
Hub-based Selection with fG(x) 0.835±0.090 0.989±0.012
Hub-based Selection with fR(x) 0.820±0.071 0.989±0.012
Hub-based Selection with fXi(x) 0.820±0.071 0.989±0.012

approximately 0.05 worse compared to the case of using the
entire training data. For FastAWARD, however, this number
is about 0.13. For TwoLeadECG, our approach wins against
FastAWARD again with 0.01 vs. 0.02.

Next, we investigate the reasons for the presented differ-
ence between Hub-based Selection and FastAward. In Sec-
tion IV-A, we identified the skewness of good k-occurrence,
fkG(x), as a crucial property for instance selection to work
properly, since skewness renders good hubs to become
representative instances. In our examination, we found that
using the iterative procedure applied by FastAWARD, this
skewness has a decreasing trend from iteration to iteration.
Figure 5 exemplifies this by illustrating the skewness of

Figure 4. Some signals from the ECG200 dataset, their true class
labels and the class labels output by 1-NN after selecting instances with
FastAWARD and our approach, Hub-based selection. Note that in most
cases, both algorithms classified the signals correctly, the above examples
aim at illustrating the differences. Also note that all variants of our approach
(Hub-based with different score functions) agreed on the classification of
these signals.

Table II
EXECUTION TIMES (IN SECONDS, AVERAGED OVER 10 FOLDS) OF

INSTANCE SELECTION WITH OUR APPROACH, CALLED HUB-BASED
SELECTION, AND FASTAWARD

Dataset FastAWARD Hub-based Selection
with fG(x)

ECG200 634 2
TwoLeadECG 12 946 45

f1G(x) for the ECG200 and TwoLeadECG datasets as a
function of iterations performed in FastAWARD. In order
to quantitatively measure skewness we use the standard-
ized third moment, see Equation 1. The reduction in the
skewness of f1G(x) means that FastAWARD is not able to
identify representative instances in the end, since there are
no pronounced good hubs remaining. Note that FastAWARD
iteratively drops bad instances, the instances remaining at
the end are considered as the selected ones that are used for
classification, therefore, the reduction of skewness is crucial.

The above observation justifies that the reduced effec-
tiveness of FastAWARD stems from its iterative procedure
and not from its score function, fXi(x) (Eq. 4). In the last
row of Table I, we show our approach, Hub-based Selection
with FastAWARD’s score function, fXi(x). This variant of
Hub-based Selection, similarly to the other ones, clearly
outperforms FastAWARD, which indicates the robustness of
our approach with respect to the score function.

D. Results on Efficiency

In our analysis we focus on the computational time of two
steps, in particular the (i) recognition time, i.e. time required
to detect the classes of new instances, and the (ii) instance
selection time, i.e. the time required to select the instances.

Assuming that we select the same number of instances,
the recognition time is equal both for our approach and



Figure 5. Skewness of the distribution of f1
G(x) as function of the number

of iterations performed in FastAWARD for ECG200 and TwoLeadECG
datasets. On the trend, the skewness decreases from iteration to iteration.

for FastAWARD, because in both cases we perform nearest
neighbor classification using the same number of selected
instances. As shown in the experiments, if we select the same
number of instances, our approach, Hub-based Selection,
achieves higher accuracy. If we aim at achieving the same
accuracy as with FastAWARD, in case of our approach, it
is sufficient to select less number of instances, which makes
the classification faster.

Regarding the time required to select the instances, the
computational complexity of Hub-based Selection depends
on the calculation of the scores of the instances and on the
selection of the top-ranked instances. Thus, for the exam-
ined score functions, the computational complexity of our
approach is O(n2), n being the number of training instances,
since it is determined by the calculation of the distance
between each pair of training instances. For FastAWARD, its
first step (leave-one-out nearest neighbor classification of the
training instances) already requires O(n2) execution time.
However, FastAWARD performs additional computationally
expensive steps, such as determining the best warping-
window size and the iterative procedure for excluding in-
stances. For this reason, Hub-based Selection is expected to
require reduced execution time compared to FastAWARD.
This is verified by the results presented in Table II, which
shows the execution time needed for Hub-based Instance
Selection and instance selection with FastAWARD. As ex-
pected, our approach outperforms FastAWARD drastically.

VI. CONCLUSION

In this paper, we introduced a new instance selection
approach in order to speed-up the classification of electrocar-
diograph signals. Allowing for a semi-automated diagnosis,
in the clinical practice, our approach can support human
experts’ work by (i) quickly detecting abnormal segments of
a long ECG signal, i.e. when the abnormality occurred, (ii)
delivering suggestions regarding the disease, and (iii) finding
in which lead of the ECG the abnormality is expressed,
which can help in finding where, in which part of the heart
of the patient, the abnormality occurred. We evaluated our
approach on publicly available, real-world ECG data that
allowed to simulate two of the aforementioned use-cases.
In both cases, we found that our approach outperforms the
state-of-the-art instance selection technique: our approach
allows faster recognition at the same level of accuracy, and,
more importantly, more accurate recognition at the same
execution time.
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